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Abstract

We propose a multiscale method based on a finite element heterogeneous multiscale method (in space)
and the implicit Euler integrator (in time) to solve nonlinear monotone parabolic problems with
multiple scales due to spatial heterogeneities varying rapidly at a microscopic scale. The multiscale
method approximates the homogenized solution at computational cost independent of the small scale
by performing numerical upscaling (coupling of macro and micro finite element methods). Taking into
account the error due to time discretization as well as macro and micro spatial discretizations, the
convergence of the method is proved in the general Lp(W 1,p) setting. For p = 2, optimal convergence
rates in the L2(H1) and C0(L2) norm are derived. Numerical experiments illustrate the theoretical
error estimates and the applicability of the multiscale method to practical problems.
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1 Introduction
In this article, we propose a numerical method to solve nonlinear monotone parabolic multiscale problems

∂tu
ε(x, t)− div(Aε(x,∇uε(x, t))) = f(x) in Ω× (0, T ),

uε(x, t) = 0 on ∂Ω× (0, T ), uε(x, 0) = g(x) in Ω,
(1)

with given source f , initial condition g and maps Aε : Ω× Rd → Rd (indexed by ε) on a convex polygonal
domain Ω ⊂ Rd, d ≤ 3, and a finite time interval (0, T ). The variable ε > 0 represents a small scale in
the problem, at which the maps Aε(·, ξ) highly oscillate. Note that our results can be straightforwardly
extended to problems (1) with time dependent sources f(x, t) and different boundary conditions.

The model problem (1) is studied in the Lp(W 1,p) setting for p ∈ R with 1 < p <∞ and p > 2d/(d+2).
We assume that the maps Aε satisfy the following conditions uniformly in ε > 0

(A0) there is some C0 ≥ 0 such that |Aε(x, 0)| ≤ C0 for almost every (a.e.) x ∈ Ω;

(A1) there exist κ1 ≥ 0, L > 0 and 0 < α ≤ min{p− 1, 1} such that

|Aε(x, ξ1)−Aε(x, ξ2)| ≤ L(κ1 + |ξ1|+ |ξ2|)p−1−α|ξ1 − ξ2|α, ∀ ξ1, ξ2 ∈ Rd, a.e. x ∈ Ω;

(A2) there exist κ2 ≥ 0, λ > 0 and max{2, p} ≤ β <∞ such that

(Aε(x, ξ1)−Aε(x, ξ2)) · (ξ1 − ξ2) ≥ λ(κ2 + |ξ1|+ |ξ2|)p−β |ξ1 − ξ2|β , ∀ ξ1, ξ2 ∈ Rd, a.e. x ∈ Ω,

see Examples 1–3 in Section 2 for illustration. Those are the most general hypotheses for the maps Aε
under which homogenization for (1) can be established, see [15, 18, 42]. Many physical processes can be
modeled by parabolic partial differential equations (PDEs) of the form (1), e.g., non-Newtonian fluids,
ferromagnetic materials or composites with nonlinear materials, see [12, 41].

Using standard numerical methods, like the finite element method (FEM), to discretize the problem (1)
in space leads to high computational cost as the small scale ε of the spatial heterogeneities of Aε has
to be resolved. Thus, to efficiently approximate the solution of (1) at the scale of interest, effective
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models for (1) are needed. Homogenization theory, see [13, 37], is the usual framework used to study the
solutions uε to (1) in the limit ε→ 0 and aims at characterizing a limiting function u0 as the solution of
a homogenized (or effective) equation. The upscaling of (1) has been studied by Pankov and Svanstedt
in [42] and [44], respectively, using the notion of parabolic G-convergence (extending the work by Tartar,
see [46] and [47, Chapter 11], and Chiado’Piat et al., see [15], to parabolic problems). In particular,
the homogenized equation (with solution u0) is again of the same type as (1) with Aε replaced by the
homogenized map A0 for which the small scales are averaged out.

For linear homogenization PDEs, a broad literature about multiscale methods exists nowadays, see [2,
4] (elliptic problems), [9, 39] (parabolic problems) and the references therein. Numerical homogenization
methods for nonlinear problems are however less numerous, e.g., see [10] for multiscale methods for PDEs
with a nonmonotone nonlinearity (with respect to the solution uε). For parabolic multiscale PDEs (1)
with monotone nonlinearities (with respect to the gradient ∇uε), Svanstedt et al. proposed in [45]
a numerical method for periodically oscillating (in space and time) maps Aε based on an augmented
Lagrangian method (for p ≥ 2 and 0 < α ≤ 1, β = p in (A1−2)). In [27], Efendiev et al. applied
a generalized multiscale finite element method (MsFEM) – developed in [25, 26] for elliptic monotone
problems – to problem (1) with stochastic heterogeneities (for p ≥ 2 and 0 < α ≤ 1, β = p in (A1−2)).

In the numerical methods proposed in [26, 27] it is assumed that local problems (formulated on the
elements of a coarse mesh) are solved exactly. In turn, the convergence analysis in the spatial W 1,p norm
does not take into account the variational crimes due to numerical quadrature required to assemble the
stiffness matrix nor the numerical approximation of the local problems which are both necessary for a
practical implementation. Additionally, the convergence results for the parabolic problems studied in [27]
neglect the effect of the time discretization error. We note that in both [45] and [27] convergence of the
numerical solution to the homogenized solution is shown without deriving explicit convergence rates.

For completeness we briefly review numerical methods for elliptic monotone multiscale PDEs. In [33],
a sparse tensor FEM based on ideas developed in [34] has been analyzed (for p ≥ 2 and α = 1, β = p
in (A1−2)). Related to the heterogeneous multiscale method (HMM), the framework used in this paper,
we mention [32] and [29]. In [32], an a posteriori error estimate has been obtained for elliptic monotone
problems (for p = 2 and α = 1, β = 2 in (A1−2)), but no a priori convergence rates have been derived. In
[29] numerical homogenization methods (FE-HMM and MsFEM) for a class of elliptic monotone PDEs
(associated to minimization problems) have been studied and convergence of their modeling error as
well as a priori error estimates in the W 1,p norm for FE-HMM applied to periodic problems with p-
structure for p = 2 have been derived. In contrast, our results are valid for general monotone maps Aε
satisfying (A0−2) without assuming that Aε has an associated scalar potential. 1

In this article, we introduce a multiscale method to solve the nonlinear monotone parabolic multiscale
problem (1) following the design principles of the finite element heterogeneous multiscale method (FE-
HMM), see [23, 4]. Based on a homogenization result ensuring the existence of an effective model
associated to (1), we solve the effective problem using a macro finite element method and the implicit
Euler scheme for time integration. While the effective problem is (in general) not available in closed
form, we approximate the effective properties of the map Aε by upscaling the available micro information.
This is achieved by solving nonlinear monotone elliptic PDEs (constrained by the macro state) using a
microscopic finite element method within micro domains which are of the size of the finest scale ε. The
computational complexity of the multiscale method is thus independent of the smallest scale ε.

We briefly summarize the main contributions of this paper.
First, for general p, we prove that the numerical solution converges in the Lp(W 1,p) and C0(L2) norms

towards the weak homogenized solution u0 under a modeling assumption that can be proved in specific
situations (e.g., for maps Aε(x, ξ) locally periodic in x). To show such a convergence result, spatial errors
coming from macro and micro meshes in the FE-HMM, the time discretization error and the error coming
from the variational crimes (as the FE-HMM relies on numerical quadrature) need to be controlled.

Second, for strongly monotone and globally Lipschitz maps Aε (i.e., p = 2 and α = 1, β = 2
in (A1−2))2, we derive sharp error estimates in both L2(H1) and C0(L2) norms by splitting the overall
error into a modeling error, for which explicit bounds can be derived under structural assumptions
on the spatial heterogeneities of Aε (e.g., such as periodicity or random stationarity), and numerical
discretization errors which we bound with respect to the time step size and the mesh size of macro as
well as micro space discretizations (balancing micro and macro meshes is crucial to get a given precision

1For example, maps Aε(x, ξ) = aε(x)ξ with a non-symmetric tensor aε positive definite and bounded (linear problem)
or Aε(x, ξ) = aε(x)(1+ (1+

∑d
i=1 ξ

4
i )

−1/4)ξ (nonlinear problems) with aε positive definite and bounded are allowed in our
analysis but not in [29].

2The case of strongly monotone and Lipschitz continuous operators in the Hilbert space setting is commonly identified
as a particular case of general monotone operators in the Banach space setting, see [53, Chapter 25].
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at minimal computational cost). Our analysis is considerably more involved than the error analysis for
single scale parabolic monotone problems [19, 21]. Indeed as the homogenized data can be computed
only at quadrature points of the macro mesh, we have a FEM with numerical quadrature at the macro
scale and thus commit variational crimes. Further, the homogenized data are recovered from micro scale
computations, hence we only obtain at quadrature points an approximation of the true homogenized map.
Finally, the errors due to the sampling domains’ sizes and artificial boundary conditions need also to be
quantified and in contrast to [24, 1, 3, 10] our numerical strategy involves nonlinear micro problems.

The convergence results derived in this article, further serve as important ingredient for the a priori
error analysis in [7], where we study a linearized variant of the proposed multiscale method for prob-
lems (1) with maps Aε decomposed as Aε(x, ξ) = aε(x, ξ)ξ, where aε(x, ξ) ∈ Rd×d. In particular, at
each timestep, we obtain linearized macro and micro equations by using the computed solution at the
preceding timestep as argument ξ in the tensor aε(x, ξ).

Let us close the introduction by putting our results in contrast to existing FE approximation results of
single scale parabolic monotone problems. In the Lp(W 1,p) setting, optimal explicit convergence rates in
terms of the discretization parameters have been derived for maps with a p-structure 3, e.g., the parabolic
p-Laplacian, using quasi-norms in space, see [11, 20]. Note however that under the assumptions (A1−2)
the maps Aε have p-structure if and only if α = 1 and β = 2. As we assume 0 < α ≤ min{p− 1, 1} and
max{2, p} ≤ β <∞ (the most general assumptions on the oscillatory maps allowing for homogenization,
see [15, 18, 42]), we have in addition that p = 2 if we want both a p-structure and a valid homogenization
setting. For this set of parameters, the quasi-norm (in space) from [11, 20] collapses to the standardH1(Ω)
norm. For all other values of p, homogenization theory seems not to exist for maps Aε with p-structure
and thus studying numerical homogenization methods makes no sense. Therefore, convergence rates with
a p-structure are derived for p = 2 and α = 1, β = 2 in (A1−2) for our numerical homogenization method.
In the case p = 2 the error analysis for single scale parabolic monotone problems in the energy norm
(L2(H1)) is straightforward and follows the arguments of the linear case [48]. Optimal convergence rates
in the L2 norm are however more involved. So far the only results existing in the literature for the L2

estimates are either not optimal (see [19], where a nonlinear elliptic projection is used), restricted to the
dimension d = 2, see [50], or are a corollary of maximum norm error estimates using weighted norm
techniques following [21, 28]. In this paper we use a linear elliptic projection at the macroscopic scale
to derive optimal convergence results in the L2 norm of our FEM with numerical quadrature. For single
scale parabolic problems, i.e., when no micro sampling is required, we get as a byproduct of our analysis
optimal convergence rates in the L2 norm for classical FEM (with or without numerical integration)
under similar regularity assumptions as used in [19, 21, 50], but avoiding weighted norm techniques and
valid in dimension d ≤ 3. Further, based on this linear elliptic projection, new higher-order FE error
estimates for elliptic monotone (multiscale or single scale) PDEs can be proved in [6].

The outline of this article is as follows. In Section 2, we introduce the effective model associated to
the model problem (1). Then, we define in Section 3 a multiscale method based on a numerical upscaling
procedure. In Section 4 we present our main results: the convergence of the FE-HMM in the Lp(W 1,p)
setting and the explicit convergence rates for strongly monotone and globally Lipschitz maps. The proofs
of our main results are given in Section 5. In Section 6 we discuss an implementation of the proposed
method and provide several numerical tests that illustrate our theoretical findings. In Section 7, we
conclude the article with some remarks about possible generalizations and future research.

Notation 1.1. In what follows, C denotes a generic positive constant, whose value can change at any
occurrence. For D ⊂ Rm, we use Ck(D,Rn) for the set of k-times continuously differentiable functions
g : D → Rn. For 1 ≤ p ≤ ∞ (with dual exponent p′ = p/(p − 1)), we consider the usual Sobolev spaces
W k,p(Ω). For k = 1, W 1,p

0 (Ω) is the subspace of functions with vanishing trace on the boundary ∂Ω
(whose dual space is denoted by (W 1,p

0 (Ω))′ with dual pairing on (W 1,p
0 )′ ×W 1,p

0 written as 〈·, ·〉), and
W1,p
per(Y ) = {v ∈ W 1,p

per(Y ) |
∫
Y
v(y)dy = 0} where W 1,p

per(Y ) is defined as the closure of C∞per(Y ) (the
subset of C∞(Rd) of periodic functions in Y = (0, 1)d) for the W 1,p norm. For p = 2, we use the
notation Hk(Ω) and H1

0 (Ω) (with dual space written as H−1(Ω)), respectively. For g : [0, T ]→ X with
Banach space (X, ‖ · ‖X) the time derivative of g is denoted by ∂tg(t). The space of Lp functions g
and continuous functions g with values in X is denoted by Lp(0, T ;X) and C0([0, T ], X), respectively.
Both spaces form a Banach space when endowed with the norm ‖g‖Lp(0,T ;X) = (

∫ T
0
‖g(t)‖pXdt)1/p and

‖g‖C0([0,T ],X) = supt∈[0,T ] ‖g(t)‖X , respectively. The Euclidean norm for b ∈ Rd and the Frobenius norm
for a ∈ Rd×d are denoted by |b| and ‖a‖F , respectively, and the canonical basis of Rd is given by e1, . . . , ed.

3|A(ξ)−A(η)| ≤ L(κ1 + |ξ|+ |η|)p−2|ξ − η|, (A(ξ)−A(η)) · (ξ − η) ≥ λ(κ2 + |ξ|+ |η|)p−2|ξ − η|2, ∀ ξ, η ∈ Rd.
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2 Homogenization of the model problem
In this section we describe the homogenization results for the considered class of problems (1). Recall
that we assume p ∈ R with 1 < p < ∞ such that p > 2d/(d + 2), i.e., W 1,p(Ω) ↪→ L2(Ω) is a compact
embedding. The problem (1) then has a weak formulation (in time and space) in the W 1,p setting if
f ∈ Lp′(Ω), g ∈ L2(Ω) and Aε have the property that Aε(·, ξ) : Ω→ Rd is Lebesgue measurable for every
ξ ∈ Rd. Existence and uniqueness of a solution to problem (1) is studied in the Banach space

E = {v ∈ Lp(0, T ;W 1,p
0 (Ω)) | ∂tv ∈ Lp

′
(0, T ; (W 1,p

0 (Ω))′)}, (2)

endowed with the norm ‖v‖E = ‖v‖Lp(0,T ;W 1,p
0 (Ω)) + ‖∂tv‖Lp′ (0,T ;(W 1,p

0 (Ω))′) and which satisfies the con-
tinuous embedding E ↪→ C0([0, T ], L2(Ω)). Under the assumptions (A0−2) the problem (1) has a unique
solution uε ∈ E for ε > 0, e.g., see [53, Theorem 30.A], which are uniformly bounded (with respect to ε)

‖uε‖p
Lp(0,T ;W 1,p

0 (Ω))
+ ‖∂tuε‖p

′

Lp′ (0,T ;(W 1,p
0 (Ω))′)

≤ C((L0 + κ1 + κ2)p + ‖f‖p
′

Lp′ (Ω)
+ ‖g‖2L2(Ω)),

with L0 defined in (19). Thus, {uε} is a bounded sequence in E and by compactness there exists a
subsequence, still denoted by {uε}, and some u0 ∈ E, such that

uε ⇀ u0 in Lp(0, T ;W 1,p
0 (Ω)) and ∂tu

ε ⇀ ∂tu
0 in Lp

′
(0, T ; (W 1,p

0 (Ω))′), for ε→ 0. (3)

The idea of homogenization is to find a limiting equation for u0. For the problem (1) with (A0−2),
this question is studied in terms of G-convergence of parabolic operators, sometimes referred to as PG-
convergence or strong G-convergence, see [44, 42]. It can be shown that there exists a subsequence of {uε},
still denoted by {uε}, and a map A0 : Ω× Rd → Rd (independent of f), such that uε weakly converges
to u0 in the sense of (3) and Aε(x,∇uε) ⇀ A0(x,∇u0) weakly in Lp

′
(0, T ; (Lp

′
(Ω))d), where u0 ∈ E is

the solution of the homogenized or effective problem

∂tu
0(x, t)− div(A0(x,∇u0(x, t))) = f(x) in Ω× (0, T ),

u0(x, t) = 0 on ∂Ω× (0, T ), u0(x, 0) = g(x) in Ω,
(4)

where A0 satisfies (A0−2) with Hölder exponent γ = α/(β − α) in (A1) and with possibly different
constants C0, κ1, κ2, λ and L. Note that the class of maps Aε given by assumptions (A0−2) is closed
under PG-convergence, i.e., γ = α, if and only if p = 2, α = 1, β = 2. For maps Aε with additional
structure, e.g., Aε(x, ξ) = A(x/ε, ξ) with A(y, ξ) a Y -periodic function in y, an explicit representation of
A0 can be derived, see (67), and thus the whole sequence {uε} converges to u0 in the sense of (3).

We close this section by giving some examples of maps Aε satisfying (A0−2).

Example 1. One might consider maps Aε(x, ξ) = aε(x, ξ)ξ where aε(·, ξ) ∈ (L∞(Ω))d×d (for ξ ∈ Rd) is
depending on ξ. Note that adequate conditions have to be imposed on aε such that Aε satisfies (A1−2).

The multiscale p-Laplacian is a particular example. Let bε(x) ∈ L∞(Ω) with 0 < λ ≤ bε(x) ≤ Λ a.e.
x ∈ Ω and every ε > 0 for some λ,Λ ∈ R. Then,

Aε(x, ξ) = bε(x)|ξ|p−2
ξ, x ∈ Ω, ξ ∈ Rd,

satisfies (A0−2) with C0 = 0, α = min{p−1, 1} and β = max{2, p}, see [15, Section 7], [42, Section 2.1.3].

If p = 2 and α = 1, β = 2 in (A1−2), we obtain the class of strongly monotone and globally Lipschitz
continuous maps Aε, which already contains relevant problems for applications, see Example 2 and 3.

Example 2. For linear maps Aε(x, ξ) given by

Aε(x, ξ) = aε(x)ξ, with aε(x) ∈ (L∞(Ω))d×d, ε > 0,

with a uniformly elliptic and bounded family of tensors aε the maps Aε satisfy (A0−2) for p = 2, α = 1,
β = 2 and with constants C0 = 0 and we recover the linear parabolic multiscale problems studied in [9].

Example 3. Let µε : Ω× R→ R≥0 be a continuous function and the maps Aε be given by

Aε(x, ξ) = µε(x, |ξ|)ξ, x ∈ Ω, ξ ∈ Rd,

which is an extension of the problems studied in [35] to a multiscale context. If µε(x, ·) is uniformly (in
ε and x) Lipschitz continuous and strongly monotone then the assumptions (A0−2) for p = 2, α = 1 and
β = 2 are valid for Aε, see [35]. We mention for instance Carreau laws, used to model non-Newtonian
fluids, which behave for fixed ε > 0 and x ∈ Ω as µε(x, |ξ|) ∼ 1 + (1 + |ξ|2)θ−1 where 1/2 < θ ≤ 1.
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3 Multiscale method
In this section, we propose a multiscale method to solve nonlinear monotone parabolic multiscale prob-
lems with general spatial heterogeneities. We introduce then a reformulation of that method which is
convenient for the analysis and show the existence, uniqueness and boundedness of the numerical solution.

3.1 FE-HMM for nonlinear monotone parabolic problems
The multiscale method studied in this article requires a macroscopic spatial discretization of Ω.
Macro discretization. Let TH be a family of macro partitions of Ω consisting of conforming, shape-
regular meshes with simplicial elements. We assume that the elements K ∈ TH are open and satisfy
∪K∈THK = Ω (recall that Ω is polygonal). The macro mesh size H is defined by H = maxK∈TH diamK,
where diamK denotes the diameter of K ∈ TH . Then, we consider the macro finite element space

S1
0(Ω, TH) = {vH ∈W 1,p

0 (Ω) | vH |K ∈ P1(K),∀K ∈ TH}, (5)

where P1(K) is the space of affine polynomials on K ∈ TH . Further, the multiscale method is based on
barycentric quadrature ∫

Ω

ϕ(x)dx ≈
∑
K∈TH

|K|ϕ(xK), ϕ ∈ C0(Ω), (6)

where xK and |K| denote the barycenter and the measure of K ∈ TH , respectively. We note that the
quadrature formula (6) is exact for piecewisely affine functions ϕ. Further, for any macro element K ∈ TH
we define the sampling domain Kδ located at the quadrature point xK

Kδ = xK + δ I, where I = (−1/2, 1/2)d and δ ≥ ε.

Within the sampling domains, micro simulations are performed to recover the upscaled data.
Multiscale method. Let the time interval (0, T ) be uniformly divided into N subintervals of length
∆t = T/N and define tn = n∆t for 0 ≤ n ≤ N and N ∈ N \{0}. For given uH0 ∈ S1

0(Ω, TH), we
propose the following multiscale method to capture the effective solution of (1): for 0 ≤ n ≤ N − 1, find
uHn+1 ∈ S1

0(Ω, TH) such that∫
Ω

uHn+1 − uHn
∆t

wHdx+BH(uHn+1;wH) =

∫
Ω

f wHdx, ∀wH ∈ S1
0(Ω, TH), (7)

with the nonlinear macro map BH given by

BH(vH ;wH) =
∑
K∈TH

|K|
|Kδ|

∫
Kδ

Aε(x,∇vhK)dx · ∇wH(xK), vH , wH ∈ S1
0(Ω, TH), (8)

where vhK solve the constrained micro problems (10) on the sampling domains Kδ.
Micro solver. Each sampling domain Kδ, associated to a macro element K ∈ TH , is discretized
by a micro mesh Th consisting of simplicial elements T ∈ Th. The micro mesh size h is defined by
h = maxT∈Th diamT and we consider the micro finite element space

S1(Kδ, Th) = {vh ∈W (Kδ) | vh|T ∈ P1(T ),∀T ∈ Th}, (9)

where P1(T ) is the space of affine polynomials on T ∈ Th and W (Kδ) ⊂ W 1,p(Kδ) is some Sobolev
space. The choice of the space W (Kδ) determines the coupling between the macro and micro solver. We
consider

• periodic coupling: W (Kδ) =W1,p
per(Kδ) = {v ∈W 1,p

per(Kδ) |
∫
Kδ
v dx = 0};

• Dirichlet coupling: W (Kδ) = W 1,p
0 (Kδ).

For vH ∈ S1
0(Ω, TH) and sampling domain Kδ, we consider the micro problem: find vhK−vH ∈ S1(Kδ, Th)

such that ∫
Kδ

Aε(x,∇vhK) · ∇zhdx = 0, ∀ zh ∈ S1(Kδ, Th), (10)

i.e., vhK is the finite element solution to an elliptic nonlinear monotone PDE. Note that the generalization
of the map BH and the micro problems (10) to higher order macro and micro FEM is given in [6].
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3.2 A useful reformulation of the FE-HMM
First, in what follows, we write the difference quotient with respect to time, like in (7), as ∂̄tvn =
∆t−1(vn+1 − vn), for a sequence {vn}n≥0 ⊂ L2(Ω) and n ≥ 0.

For the analysis of the FE-HMM it is convenient to reformulate the nonlinear map BH as a standard
finite element method applied to a modified macro problem. Let ξ ∈ Rd and K ∈ TH , we introduce the
function χξ,hK as the solution to the variational problem: find χξ,hK ∈ S1(Kδ, Th) such that∫

Kδ

Aε(x, ξ +∇χξ,hK ) · ∇zh dx = 0, ∀ zh ∈ S1(Kδ, Th). (11)

Similarly, we define χ̄ξK by the variational problem: find χ̄ξK ∈W (Kδ) such that∫
Kδ

Aε(x, ξ +∇χ̄ξK) · ∇z dx = 0, ∀ z ∈W (Kδ). (12)

Based on the functions χξ,hK and χ̄ξK we define the maps

A0,h
K (ξ) =

1

|Kδ|

∫
Kδ

Aε(x, ξ +∇χξ,hK )dx, Ā0
K(ξ) =

1

|Kδ|

∫
Kδ

Aε(x, ξ +∇χ̄ξK)dx, (13)

and the nonlinear map BH given in (8) can then be reformulated using A0,h
K

BH(vH ;wH) =
∑
K∈TH

|K| A0,h
K (∇vH(xK)) · ∇wH(xK), vH , wH ∈ S1

0(Ω, TH).

Thus, the modified macro form BH is obtained by replacing elementwisely the exact effective mapA0(x, ξ)

from the homogenized equation (4) by the approximation A0,h
K (ξ).

Further, using the effective map A0 we introduce the map B0 : W 1,p
0 (Ω)×W 1,p

0 (Ω)→ R by

B0(v;w) =

∫
Ω

A0(x,∇v(x)) · ∇w(x)dx, v, w ∈W 1,p
0 (Ω), (14)

and, if A0(·, ξ) has a continuous representative for every ξ ∈ Rd (later on ensured by (36)), we define the
nonlinear map B̂0 as its discrete counterpart

B̂0(vH ;wH) =
∑
K∈TH

|K|A0(xK ,∇vH(xK)) · ∇wH(xK), vH , wH ∈ S1
0(Ω, TH). (15)

3.3 Existence and uniqueness of the numerical solution
The macro scheme (7) and the micro problems (10) are variational problems of the type G(u;w) =
F (w) on Banach spaces (with G(u; ·) and F bounded linear functionals). In this section, we show
local Hölder continuity of G(·;w), strict monotonicity G(v; v − w) − G(w; v − w) > 0 and coercivity
limv→∞G(v; v)/‖v‖ =∞ using the hypotheses (A0−2). The Browder-Minty theorem [53, Theorem 26.A]
then ensures existence and uniqueness of a solution to (7) and (10).

First, we introduce in Remark 3.1 and Lemma 3.2 two important inequalities.

Remark 3.1. Let ω ⊂ Rd be an open and bounded domain. For K,M ∈ N \{0}, let 1 < rk < ∞
satisfying

∑K
k=1 1/rk = 1 and fk ∈ Lrk(ω) as well as x(m)

k ∈ R for 1 ≤ k ≤ K, 1 ≤ m ≤ M . Whenever
using the Hölder inequalities (either in the continuous or the discrete setting)

∫
ω

∣∣∣∣∣
K∏
k=1

fk(x)

∣∣∣∣∣ dx ≤
K∏
k=1

‖fk‖Lrk (ω),

M∑
m=1

∣∣∣∣∣
K∏
k=1

x
(m)
k

∣∣∣∣∣ ≤
K∏
k=1

(
M∑
m=1

∣∣∣x(m)
k

∣∣∣rk)
1
rk

, (16)

we simply refer to (16) without giving the explicit values of ri as the values of rk are always either (i)
r1 = p, r2 = p′ = p/(p− 1), (ii) r1 = β/p, r2 = β/(β − p), (iii) r1 = (p− 1)/(p− 1− σ), r2 = (p− 1)/σ
if K = 2 or (iv) r1 = p/(p− 1− σ), r2 = p/σ, r3 = p if K = 3, with β ≥ p and 0 < σ ≤ min{p− 1, 1}.

The Hölder inequality yields the following fundamental technical estimate, see [18, Lemma 3.1].
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Lemma 3.2. Let ω ⊂ Rd be an open and bounded domain, 1 < p < ∞, β ≥ p and κ ≥ 0. Then, for
v, w ∈W 1,p(ω) it holds

‖∇v −∇w‖Lp(ω) ≤
[
κ|ω|

1
p + ‖∇v‖Lp(ω) + ‖∇w‖Lp(ω)

] β−p
β

(∫
ω

(κ+ |∇v|+ |∇w|)p−β |∇v −∇w|βdx
) 1
β

.

We next analyze the existence and uniqueness of a solution to the micro problem (10).

Lemma 3.3. Assume that Aε satisfies (A0−2). Let K ∈ TH , vH ∈ S1
0(Ω, TH) and ξ ∈ Rd. For both

coupling conditions, i.e., eitherW (Kδ) = W 1,p
0 (Kδ) orW (Kδ) =W1,p

per(Kδ), there exists a unique solution
vhK − vH , χ

ξ,h
K ∈ S1(Kδ, Th) and χ̄ξK ∈W (Kδ) to the micro problems (10), (11) and (12), respectively.

Proof. We prove the result for the micro problem (10). Consider the map aξK given by

aξK(z;w) =

∫
Kδ

Aε(x, ξ +∇z) · ∇w dx, z, w ∈W (Kδ), (17)

which is nonlinear in z and linear w. Then, taking ξ = ∇vH(xK), the micro problem (10) reads as

find vhK − vH ∈ S1(Kδ, Th) such that aξK(vhK − vH ;wh) = 0, ∀wh ∈ S1(Kδ, Th). (18)

We show that the Browder-Minty theorem [53, Theorem 26.A] can be applied to prove the existence and
uniqueness of vhK − vH ∈ S1(Kδ, Th). The results for the problems (11) and (12) are proved analogously.

Let v, w, z ∈W (Kδ). First, note that (A0−1) imply that Aε grows at rate p− 1 with respect to ξ

|Aε(x, ξ)| ≤ L(Lp−1
0 + (κ1 + |ξ|)p−1), where L0 = (C0/L)

1
p−1 , ∀ ξ ∈ Rd, ε > 0, a.e. x ∈ Ω. (19)

The growth estimate (19) and (16) yield that the linear map aξK(v; ·) is bounded∣∣∣aξK(v;w)
∣∣∣ ≤ 2L

[
(L0 + κ1 + |ξ|)|Kδ|

1
p + ‖∇v‖Lp(Kδ)

]p−1

‖∇w‖Lp(Kδ)
. (20)

Next, using (A1) and (16) we get that aξK is locally Hölder continuous in its first argument as∣∣∣aξK(v;w)− aξK(z;w)
∣∣∣ ≤ L [(κ1 + 2|ξ|)|Kδ|

1
p + ‖∇v‖Lp(Kδ)

+ ‖∇z‖Lp(Kδ)

]p−1−α

× ‖∇v −∇z‖αLp(Kδ)
‖∇w‖Lp(Kδ)

.

Combining Lemma 3.2 with (A2) we obtain that aξK is strictly monotone as

‖∇v −∇w‖Lp(Kδ)
≤ λ−

1
β

[
(κ2 + 2|ξ|)|Kδ|

1
p + ‖∇v‖Lp(Kδ)

+ ‖∇w‖Lp(Kδ)

] β−p
β

× (aξK(v; v − w)− aξK(w; v − w))
1
β .

(21)

Further, for v ∈W (Kδ), we first assume ‖∇v‖Lp(Kδ)
≥ (κ2 + 2|ξ|)|Kδ|1/p and derive from (21) and (20)

aξK(v; v) ≥ aξK(v; v)− aξK(0; v)−
∣∣∣aξK(0; v)

∣∣∣
≥ 2p−βλ‖∇v‖pLp(Kδ)

− 2L
[
(L0 + κ1 + |ξ|)|Kδ|

1
p

]p−1

‖∇v‖Lp(Kδ)

≥ 2p−β−1λ‖∇v‖pLp(Kδ)
− C(L0 + κ1 + κ2 + |ξ|)p|Kδ|, (22)

where Young’s inequality is used in the last step and C only depends on p, β, λ and L. It remains to
consider v ∈ W (Kδ) with ‖∇v‖Lp(Kδ)

< (κ2 + 2|ξ|)|Kδ|1/p. In this case, the bound (22) (with possibly
different constant C) can be directly derived from (20). Hence, the lower bound (22) for aξK(v; v) holds for
any v ∈W (Kδ) and, in particular, aξK is coercive onW (Kδ) for both periodic and Dirichlet coupling.

For the analysis of the macro-micro coupling, the following energy equivalence is essential.
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Lemma 3.4. Assume that Aε satisfies (A0−2). Let Kδ be the sampling domain associated to a macro
element K ∈ TH and vhK be the solution of the micro problem (10) constrained by vH ∈ S1

0(Ω, TH). Then,∥∥∇vH∥∥
Lp(Kδ)

≤
∥∥∇vhK∥∥Lp(Kδ)

≤ Ce((L0 + κ1 + κ2)|Kδ|
1
p +

∥∥∇vH∥∥
Lp(Kδ)

),

where L0 is defined in (19) and Ce ≥ 1 only depends on p, β, λ and L.

Proof. Due to the convexity of | · |p on Rd it holds that |η|p ≥ |ξ|p + p|ξ|p−2
ξ · (η − ξ) for all ξ, η ∈ Rd.

Applying this inequality pointwise for η = ∇vhK(x) and ξ = ∇vH(xK) yields∥∥∇vhK∥∥pLp(Kδ)
≥
∫
Kδ

∣∣∇vH(xK)
∣∣pdx+ p

∣∣∇vH(xK)
∣∣p−2∇vH(xK) ·

∫
Kδ

∇vhK −∇vHdx =
∥∥∇vH∥∥p

Lp(Kδ)
,

where in the last step we use that
∫
Kδ
∇vhK − ∇vHdx = 0 due to the Dirichlet or periodic boundary

conditions of vhK − vH ∈W (Kδ).
The upper bound is obtained by using ‖∇vhK‖Lp(Kδ) ≤ ‖∇vhK − ∇vH‖Lp(Kδ) + ‖∇vH‖Lp(Kδ) and

setting ξ = ∇vH(xK) in (22)

2p−β−1λ
∥∥∇vhK −∇vH∥∥pLp(Kδ)

≤ aξK(vhK − vH ; vhK − vH) + C(L0 + κ1 + κ2 +
∣∣∇vH(xK)

∣∣)p|Kδ|,

where aξK(vhK − vH ; vhK − vH) = 0 as vhK − vH ∈ S1(Kδ, Th) solves the micro problem (18).

Using Lemma 3.4 we prove several properties of the map BH from (8).

Lemma 3.5. Assume that Aε satisfies (A0−2). Let vH , wH , zH ∈ S1
0(Ω, TH) and the nonlinear map BH

be given by (8). Then BH satisfies the bound∣∣BH(vH ;wH)
∣∣ ≤ Cb [L0 + κ1 + κ2 +

∥∥∇vH∥∥
Lp(Ω)

]p−1 ∥∥∇wH∥∥
Lp(Ω)

, (23)

where Cb depends on p, β, λ, L and the measure of Ω. Further, BH is locally Hölder continuous in its
first argument with exponent γ = α/(β − α), strictly monotone and coercive, as we have∣∣BH(vH ; zH)−BH(wH ; zH)

∣∣ ≤ C [L0 + κ1 + κ2 +
∥∥∇vH∥∥

Lp(Ω)
+
∥∥∇wH∥∥

Lp(Ω)

]p−1−γ

×
∥∥∇vH −∇wH∥∥γ

Lp(Ω)

∥∥∇zH∥∥
Lp(Ω)

, (24)

λ
1
β
c

∥∥∇vH −∇wH∥∥
Lp(Ω)

≤
[
(L0 + κ1 + κ2)|Ω|

1
p +

∥∥∇vH∥∥
Lp(Ω)

+
∥∥∇wH∥∥

Lp(Ω)

] β−p
β

× (BH(vH ; vH − wH)−BH(wH ; vH − wH))
1
β , (25)

BH(vH ; vH) ≥ λc
∥∥∇vH∥∥p

Lp(Ω)
− Cc(L0 + κ1 + κ2)p, (26)

with λc > 0 depending only on p, β, λ and Ce from Lemma 3.4, where C only depends on p, β, α, λ, L
as well as the measure of Ω and Cc depends on the same quantities like C except α.

Remark 3.6. If γ = p−1 the constant C in (24) has the value Lp/λp−1 and if p = β the inequalities (25)
and (26) hold with constant λc = λ and λc = λ/2, respectively.

Proof. The bound (23) is derived from the growth estimate (19), (16) and the upper bound of Lemma 3.4.
To prove the Hölder continuity (24), let vhK , whK solve the micro problem (10) constrained by vH and
wH , respectively. We first observe that Lemma 3.2, (A1−2), the micro problems (10) and (16) yield

λ
∥∥∇vhK −∇whK∥∥βLp(Kδ)

≤ R(vhK , w
h
K)β−p

∫
Kδ

[
Aε(x,∇vhK)−Aε(x,∇whK)

]
· (∇vhK −∇whK)dx

= R(vhK , w
h
K)β−p

∫
Kδ

[
Aε(x,∇vhK)−Aε(x,∇whK)

]
· (∇vH −∇wH)dx (27)

≤ LR(vhK , w
h
K)β−α−1

∥∥∇vhK −∇whK∥∥αLp(Kδ)

∥∥∇vH −∇wH∥∥
Lp(Kδ)

, (28)

where R(vhK , w
h
K) = (κ1+κ2)|Kδ|1/p+‖∇vhK‖Lp(Kδ)+‖∇whK‖Lp(Kδ) can be bounded applying Lemma 3.4

R(vhK , w
h
K) ≤ 3Ce(L0 + κ1 + κ2 +

∣∣∇vH(xK)
∣∣+
∣∣∇wH(xK)

∣∣)|Kδ|
1
p , (29)
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where Ce is from Lemma 3.4. Hence, using inequalities (28) and (29) we get∥∥∇vhK −∇whK∥∥Lp(Kδ)
≤ C

[
L0 + κ1 + κ2 +

∣∣∇vH(xK)
∣∣+
∣∣∇wH(xK)

∣∣] β−α−1
β−α

×
∣∣∇vH(xK)−∇wH(xK)

∣∣ 1
β−α |Kδ|

1
p ,

(30)

where C only depends on p, β, α, λ, L. Combining estimate (30) with (A1) and (16) then proves (24).
Next, using the lower bound of Lemma 3.4, inequality (27), Lemma 3.2, (A2) and (16) leads to

∥∥∇vH −∇wH∥∥p
Lp(Ω)

≤
∑
K∈TH

|K|
|Kδ|

∥∥∇vhK −∇whK∥∥pLp(Kδ)
≤ λ−

p
β

∑
K∈TH

|K|
|Kδ|
R(vhK , w

h
K)

(β−p)p
β

×
(∫

Kδ

[
Aε(x,∇vhK)−Aε(x,∇whK)

]
· (∇vH(xK)−∇wH(xK))dx

) p
β

≤ λ−
p
β

( ∑
K∈TH

|K|
|Kδ|
R(vhK , w

h
K)p

) β−p
β (

BH(vH ; vH − wH)−BH(wH ; vH − wH)
) p
β ,

which combined with (29) proves (25). The estimate (25) at hand, the coercivity bound (26) is proved
analogously to the coercivity bound (22) shown in Lemma 3.3.

The existence and uniqueness of the numerical solution obtained by the multiscale method (7) follows
from the Browder-Minty theorem.

Lemma 3.7. Assume that Aε satisfies (A0−2). Let zH ∈ S1
0(Ω, TH), ∆t > 0 as well as f ∈ Lp′(Ω) be

given and let BH be defined in (8). Then, there exists a unique uH ∈ S1
0(Ω, TH) such that∫

Ω

uH − zH

∆t
wHdx+BH(uH ;wH) =

∫
Ω

f wHdx, ∀wH ∈ S1
0(Ω, TH). (31)

Proof. For fixed zH ∈ S1
0(Ω, TH), consider the bilinear form B∆t and the linear map l∆tzH given by

B∆t(vH , wH) =
1

∆t

∫
Ω

vHwHdx, l∆tzH (wH) =

∫
Ω

(
f +

1

∆t
zH
)
wHdx,

for vH , wH ∈ S1
0(Ω, TH). Then, the problem (31) can be written as

find uH ∈ S1
0(Ω, TH) such that B∆t(uH , wH) +BH(uH ;wH) = l∆tzH (wH), ∀wH ∈ S1

0(Ω, TH).

Observe that B∆t(vH , vH) ≥ 0 for any vH ∈ S1
0(Ω, TH) and that the embedding W 1,p(Ω) ↪→ L2(Ω) yields∣∣B∆t(vH , wH)

∣∣ ≤ C∆t−1
∥∥∇vH∥∥

Lp(Ω)

∥∥∇wH∥∥
Lp(Ω)

, ∀ vH , wH ∈ S1
0(Ω, TH).

Combining that with Lemma 3.5 shows that B∆t + BH is linear and bounded in its second argument,
hemicontinuous (see [52, Def. 26.1]) in its first argument, strictly monotone and coercive. As the linear
map l∆tzH (·) is continuous, the Browder-Minty theorem [53, Theorem 26.A] thus concludes the proof.

Finally, the boundedness of the numerical approximations (7) is proved.

Theorem 3.8. Assume that (A0−2) hold and that f ∈ Lp
′
(Ω), uH0 ∈ S1

0(Ω, TH) are given. Then, for
periodic or Dirichlet coupling and any parameter ∆t,H, h, δ > 0, there exists a unique numerical solution
defined by the multiscale method (7). Further, the numerical solution {uHn }Nn=1 satisfies the bound

max
1≤n≤N

∥∥uHn ∥∥2

L2(Ω)
+

N∑
n=1

∆t
∥∥∇uHn ∥∥pLp(Ω)

≤ C((L0 + κ1 + κ2)p + ‖f‖p
′

Lp′ (Ω)
+
∥∥uH0 ∥∥2

L2(Ω)
),

where C only depends on p, β, λ, L, T , the measure of Ω and the Poincaré constant CP on Ω.
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Proof. The existence and uniqueness of the numerical solution defined by (7) follows from Lemma 3.7.
To derive the a priori bound we set wH = uHn+1 in (7), use the bound (26) and (16) to obtain∫

Ω

∂̄tu
H
n u

H
n+1dx+ λc

∥∥∇uHn+1

∥∥p
Lp(Ω)

≤
∫

Ω

f uHn+1dx+ Cc(L0 + κ1 + κ2)p

≤ CP ‖f‖Lp′ (Ω)

∥∥∇uHn+1

∥∥
Lp(Ω)

+ Cc(L0 + κ1 + κ2)p,
(32)

where CP is the Poincaré constant on Ω and λc as well as Cc are the constants from Lemma 3.5. As

1

2
∂̄t
∥∥uHn ∥∥2

L2(Ω)
≤
∫

Ω

∂̄tu
H
n u

H
n+1dx, for 0 ≤ n ≤ N − 1, (33)

multiplying (32) by 2∆t and using Young’s inequality, we get that for any 0 ≤ n ≤ N − 1 it holds∥∥uHn+1

∥∥2

L2(Ω)
−
∥∥uHn ∥∥2

L2(Ω)
+ λc∆t

∥∥∇uHn+1

∥∥p
Lp(Ω)

≤ C∆t(‖f‖p
′

Lp′ (Ω)
+ (L0 + κ1 + κ2)p),

where C only depends on p, the Poincaré constant CP as well as λc and Cc from Lemma 3.5. Summing
the last inequality from n = 0 to n = N − 1 concludes the proof.

4 Main results
In this section we present the main results about the convergence of the numerical solution uHn defined
by the multiscale strategy (7) towards the exact homogenized solution u0(x, t). In Theorem 4.2, the
convergence of the numerical solution towards the homogenized solution is proved for general p and
in Section 4.2 fully discrete a priori error estimates are derived for strongly monotone and Lipschitz
continuous maps Aε, i.e., p = 2 with α = 1, β = 2 in (A1−2).

Remark 4.1. In the model problem (1) we consider homogeneous Dirichlet boundary conditions and
source terms f independent of time. We emphasize that our results can be generalized straightforwardly
for a right-hand side of the form f(x, t). They also remain valid for other type of boundary conditions.

Notation for HMM error. For the analysis, we denote by rHMM the overall upscaling error

rHMM (∇vH) =

(∑
K∈TH |K|

∣∣∣A0(xK ,∇vH(xK))−A0,h
K (∇vH(xK))

∣∣∣p′) 1
p′

, (34)

which, if necessary, is split into the contributions of micro and modeling error rmic and rmod defined as

rmic(∇vH) =

(∑
K∈TH |K|

∣∣∣Ā0
K(∇vH(xK))−A0,h

K (∇vH(xK))
∣∣∣p′) 1

p′

, (35a)

rmod(∇vH) =
(∑

K∈TH |K|
∣∣A0(xK ,∇vH(xK))− Ā0

K(∇vH(xK))
∣∣p′) 1

p′
, (35b)

where vH ∈ S1
0(Ω, TH), A0 is the exact homogenized map from (4) and Ā0

K and A0,h
K are given in (13).

Note that the Minkowski inequality yields rHMM (∇vH) ≤ rmic(∇vH) + rmod(∇vH) for vH ∈ S1
0(Ω, TH).

4.1 Convergence of the multiscale method
For general 1 < p <∞ (with the usual restriction p > 2d/(d+ 2)), we show that the numerical solution
obtained by the HMM scheme (7) converges to the solution of the homogenized problem (4) if the
numerical discretization parameters (micro and macro mesh size h and H, respectively, and time step
size ∆t) tend to zero and upscaling parameters (coupling conditions and sampling domain size δ) exist
such that the modeling error rmod from (35b) is arbitrarily small. We emphasize that the order of the
limits as stated in Theorem 4.2 cannot be interchanged in general.

Upscaling parameters such that rmod is small exist if for the given maps Aε an explicit formula for
the homogenized map A0 is available (like for periodic or randomly stationary spatial heterogeneities of
Aε). Note for instance, that for locally periodic maps Aε, i.e., Aε(x, ξ) = A(x, x/ε, ξ) where A(x, y, ξ)
is Y -periodic in y, we get rmod = 0 on S1

0(Ω, TH) when replacing Aε(x, ξ) by A(xK , x/ε, ξ) in (8) as
well as (10), taking periodic boundary conditions for (10) and setting δ = ε. The multiscale method (7),
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being defined for general maps Aε, is however reasonable if Aε exhibits scale-separation and its good
performance is known for randomly stationary data. Further, even for maps Aε without any structure in
their spatial heterogeneities, the corresponding homogenized map A0 (in the sense of PG-convergence)
can be approximated via explicit formulas when locally periodizing the maps Aε, see [37, p. 155] (the
“principle of periodic localization”).

Theorem 4.2. Assume that Aε satisfies (A0−2). Let u0 ∈ E be the solution to the homogenized prob-
lem (4) and uHn the HMM solution obtained by (7) with initial conditions uH0 satisfying ‖g−uH0 ‖L2(Ω) → 0
for H → 0. Let A0 be Hölder continuous in space, i.e., there exists 0 < γ̃ ≤ 1 such that (with L0 ≥ 0
from (19))∣∣A0(x1, ξ)−A0(x2, ξ)

∣∣ ≤ C|x1 − x2|γ̃(Lp−1
0 + (κ1 + |ξ|)p−1), ∀x1, x2 ∈ Ω,∀ ξ ∈ Rd. (36)

If for any given H > 0 and R > 0, the coupling condition for the micro problems (10) and the sampling
domain size δ can be chosen, such that rmod(∇vH) from (35b) is arbitrarily small (written as rmod → 0)
for all vH ∈ S1

0(Ω, TH) with ‖∇vH‖L∞(Ω) ≤ R, then we have the convergence

lim
(∆t,H)→0

lim
rmod→0

lim
h→0

 max
1≤n≤N

∥∥u0(·, tn)− uHn
∥∥
L2(Ω)

+

(
N−1∑
n=0

∫ tn+1

tn

∥∥∇u0(·, s)−∇uHn+1

∥∥p
Lp(Ω)

ds

) 1
p

 = 0.

Following the lines of the proof of Theorem 4.2, explicit convergence rates with respect to the time
step size ∆t, the macro and micro mesh size H and h, respectively, can be derived if sufficient regularity of
the homogenized solution u0 is assumed, see Remark 4.3, as then the approximation of the exact solutions
(at macro and micro scale) can be obtained by nodal interpolation instead of density arguments. Note
however that for p 6= 2, higher regularity of u0 is not realistic even for smooth data, e.g., see [11, 20].

Remark 4.3. For simplicity, assume that p > d/2 and that the modeling error rmod vanishes (e.g., if
Aε(x, ξ) is locally periodic in x). Assume that Aε satisfies (A0−2) and that the Hölder continuity (36)
holds for the homogenized map A0. If the exact homogenized solution u0 to (4) has the regularity

u0 ∈ C0([0, T ],W 2,p(Ω)), ∂tu
0 ∈ C0([0, T ],W 2,p̃(Ω)), ∂2

t u
0 ∈ C0([0, T ], L2(Ω)),

with p̃ = min{p, 2} and the solutions χ̄ξK to the micro problems (10) for ξ ∈ Rd, K ∈ TH satisfy∣∣∣χ̄ξK∣∣∣
W 2,p(Kδ)

≤ Cε−1(L0 + κ1 + κ2 + |ξ|)|Kδ|
1
p ,

then the HMM approximation uHn given by (7) converges towards the homogenized solution u0 at rates(
N−1∑
n=0

∫ tn+1

tn

∥∥∇u0(·, s)−∇uHn+1

∥∥p
Lp(Ω)

ds

) 1
p

≤ C
(

∆t+Hmin{γ,γ̃} +

(
h

ε

)γ) 1
β−1

+ C
∥∥g − uH0 ∥∥ 2

β

L2(Ω)
,

where C is independent of ∆t,H, δ, ε and h.

4.2 Explicit convergence rates for strongly monotone and Lipschitz maps
For p = 2 and α = 1, β = 2 in (A1−2), we derive optimal convergence rates in the L2(0, T ;H1

0 (Ω)) and
C0([0, T ], L2(Ω)) norm for the temporal and spatial macro error in Theorem 4.4 and for the upscaling
error in Theorems 4.5 and 4.6. The error estimates always contain a modeling error, which we only
explicitly bound for locally periodic data Aε, and numerical discretization errors due to temporal and
spatial (macro and micro) errors, whose bound is valid without any structural assumptions about the
heterogeneities of Aε.

4.2.1 Optimal estimates for temporal and spatial macro error

We first explicitly quantify the time discretization and the macro finite element error committed in the
multiscale method (7).
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Theorem 4.4. Let p = 2 and assume that Aε satisfies (A0−2) with α = 1, β = 2. Let u0 be the solution
to the homogenized problem (4) and uHn the HMM solution obtained from (7). Provided that for µ = 1

u0, ∂tu
0 ∈ C0([0, T ], H2(Ω)), ∂2

t u
0 ∈ C0([0, T ], L2(Ω)), (37a)

A0(·, ξ) ∈Wµ,∞(Ω;Rd) with
∥∥A0(·, ξ)

∥∥
Wµ,∞(Ω;Rd)

≤ C(L0 + |ξ|), ∀ ξ ∈ Rd, (37b)

the following discrete C0(L2) and L2(H1) error estimates hold

max
1≤n≤N

∥∥u0(·, tn) −uHn
∥∥
L2(Ω)

+

(
N∑
n=1

∆t
∥∥∇u0(·, tn)−∇uHn

∥∥2

L2(Ω)

)1/2

≤ C
[
∆t+H + max

1≤n≤N
rHMM (∇IHu0(·, tn)) +

∥∥g − uH0 ∥∥L2(Ω)

]
,

where IHu0 denotes the nodal interpolant of u0 and C is independent of ∆t,H and rHMM .
If additionally we assume that (37b) is satisfied for µ = 2 and

u0 ∈ C0([0, T ],W 2,∞(Ω)), A0(x, ·) ∈W 2,∞(Rd;Rd), a.e. x ∈ Ω, (38a)

A 0
ij , ∂tA

0
ij ∈ C0([0, T ],W 1,∞(Ω)), 1 ≤ i, j,≤ d, (38b)

quasi-uniformity of macro meshes TH and the elliptic regularity (63), (38c)

where A 0(x, t) = DξA0(x,∇u0(x, t)), then, there exists an H0 > 0 such that for all H < H0, we get the
improved error estimate in the discrete C0(L2) norm

max
1≤n≤N

∥∥u0(·, tn)− uHn
∥∥
L2(Ω)

≤ C
[
∆t+H2 + max

1≤n≤N
rHMM (∇ũH,0(·, tn)) +

∥∥g − uH0 ∥∥L2(Ω)

]
,

where ũH,0 is the elliptic projection (59) and C is independent of ∆t,H and rHMM .

Let us comment on the hypotheses of Theorem 4.4 in view of the results for linear parabolic single scale
and multiscale problems, see [43] and [9], respectively. Recall that the homogenized map A0 would be
given by A0(x, ξ) = a0(x)ξ with a0(x) ∈ Rd×d if problem (1) is linear.

The temporal regularity in (37a) is required to obtain first order global convergence of the implicit
Euler scheme. Assumption (37b) allows to estimate the error due to the quadrature formula (6) and
reduces to a0

ij ∈ Wµ,∞(Ω) for linear problems, which is likewise assumed in [43, Theorem 2]. Fur-
ther, the hypotheses (38) are solely used to show the optimal convergence of the spatial macro error.
Condition (38a) is used in combination with (38c) to obtain error estimates in the W 1,∞ norm for the
elliptic projection (59) (an application of the maximum norm error estimates for standard FEM, see [14])
and to estimate the Taylor remainder term for the map A0(x, ξ) (with respect to ξ). Finally, assump-
tions (38b) are needed to obtain optimal estimates of u0− ũH,0 and ∂t(u0− ũH,0) in the L2 norm, where
ũH,0 is the elliptic projection (59). For linear parabolic problems (with time-dependent data) where
A 0(x, t) = a0(x, t), assumptions (38b) are comparable to the conditions used in [43, 9].

4.2.2 Fully discrete space-time a priori error estimates

We decompose the HMM upscaling error rHMM introduced in (34) into micro and modeling error rmic
and rmod defined in (35), e.g., as in [3]. In particular, rmic accounts for the finite element error committed
during micro simulations and rmod quantifies the quality of the micro sampling, i.e.,the influence of the
size of the sampling domains Kδ or the boundary conditions in micro problems (10).

First, let us assume that χ̄ξK , the exact solutions to the micro problems (12), satisfy

(H1) χ̄ξK ∈ H2(Kδ) and
∣∣∣χ̄ξK∣∣∣

H2(Kδ)
≤ Cε−1(L0 + |ξ|)

√
|Kδ|,

for ξ ∈ Rd, K ∈ TH . We note that the solutions χ̄ξK are H2 regular if the maps Aε are smooth, see [38,
Section 4], and that similar assumptions are used for linear multiscale problems, see [3, Remark 4].

As seen in [22, 10] for non-symmetric linear problems, adjoint micro problems are necessary to de-
rive sharp bounds for the micro error. We introduce a similar adjoint micro problem (65), denote its
corresponding solutions by X̄ξ,j

K and assume that
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(H1∗)


(i) X̄ξ,j

K ∈ H2(Kδ) and
∣∣∣X̄ξ,j

K

∣∣∣
H2(Kδ)

≤ Cε−1
√
|Kδ|,

(ii) X̄ξ,j
K ∈W 1,∞(Kδ) and

∣∣∣X̄ξ,j
K

∣∣∣
W 1,∞(Kδ)

≤ C,

for ξ ∈ Rd, 1 ≤ j ≤ d and K ∈ TH . We note that the adjoint cell problem (65) is a linear elliptic problem.
Thus, for smooth data, the first hypothesis in (H1∗) is a classical H2 regularity result – see [3, Remark
4] – and the W 1,∞ regularity can be proved, see [38, Section 3].

Theorem 4.5. Let p = 2 and assume that Aε satisfies (A0−2) with α = 1, β = 2. Let µ ∈ {1, 2}, u0 be
the solution to the homogenized problem (4) and uHn the HMM solution obtained from (7). Assume (H1),
hypotheses (37) (either for µ = 1 or µ = 2) and, if µ = 2, that additionally (38) holds. Further, let the
multiscale method (7) be initialized with uH0 such that ‖g − uH0 ‖L2(Ω) ≤ CHµ. Then we have

max
1≤n≤N

∥∥u0(·, tn)− uHn
∥∥
L2(Ω)

≤ C
[
∆t+Hµ +

(
h

ε

)ν
+ max

1≤n≤N
rmod(∇UHn )

]
,(

N∑
n=1

∆t
∥∥∇u0(·, tn)−∇uHn

∥∥2

L2(Ω)

)1/2

≤ C
[
∆t+H +

(
h

ε

)ν
+ max

1≤n≤N
rmod(∇UHn )

]
,

(39)

for ν = 1, where UHn = IHu0(·, tn) is the nodal interpolant of u0 if µ = 1 or UHn = ũH,0(·, tn) is the
elliptic projection (59) and H < H0 (with H0 from Theorem 4.4) if µ = 2. The constant C is independent
of ∆t,H, h, ε, δ and the modeling error rmod.

If in addition (H1∗) holds and Aε(x, ·) ∈W 2,∞(Rd;Rd) for a.e. x ∈ Ω, then (39) holds for ν = 2.

As for linear homogenization problems, e.g., see [1, 22, 10], we thus get the optimal quadratic micro
convergence rate (h/ε)2.

Finally, we present explicit estimates for the modeling error rmod supposing that the maps Aε are
locally periodic and Lipschitz continuous with respect to the macroscopic variable, i.e.,

(H2) the maps Aε are locally periodic, i.e., Aε(x, ξ) = A(x, x/ε, ξ) with A(x, y, ξ) being Y -periodic
in y and satisfying (for ξ ∈ Rd, a.e. y ∈ Y )

|A(x1, y, ξ)−A(x2, y, ξ)| ≤ C|x1 − x2|(L0 + |ξ|), ∀x1, x2 ∈ Ω.

Further, if the decomposition Aε(x, ξ) = A(x, x/ε, ξ) is explicitly known, it is advantageous to modify
the multiscale method (7) by collocating the slow variable x within the sampling domains Kδ at the
quadrature node xK , see (69). In particular, Aε(x, ξ)|Kδ is replaced by A(xK , x/ε, ξ) in the map BH

defined in (8) and the micro problems (10).

Theorem 4.6. Let p = 2 and assume that Aε satisfies (A0−2) with α = 1, β = 2. If (H2) holds, then,
for any vH ∈ S1

0(Ω, TH), the modeling error rmod(∇vH) defined in (35b) is bounded by

rmod(∇vH) ≤


0,

if W (Kδ) =W1,2
per(Kδ), δ/ε ∈ N and

Aε|Kδ = A(xK , x/ε, ξ) collocated at xK ,
C1
mod δ, if W (Kδ) =W1,2

per(Kδ), δ/ε ∈ N,
C2
mod(δ +

√
ε/δ), if W (Kδ) = H1

0 (Kδ), δ > ε,

with C1
mod and C2

mod given by

C1
mod = C(L0 + ‖∇vH‖L2(Ω)), C2

mod = C(C1
mod + max

K∈TH
‖χ∇v

H(xK)(xK , ·)‖W 1,∞(Y )),

where χξ(xK , ·), for ξ ∈ Rd, K ∈ TH , denote the exact solutions to the homogenization cell problems (68)
and C is independent of ∆t,H, h, ε, δ and vH .

Thus combining periodic coupling and collocation is optimal for locally periodic maps Aε. Further, note
that χξ(xK , ·) ∈ W 1,∞(Y ) is a common assumption to bound the modeling error for Dirichlet coupling,
e.g., see [24, Theorem 1.2] for linear problems.
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Refinement strategies. The Theorem 4.5 reveals that simultaneous refinement of macro and micro
meshes is needed for convergence of the spatial errors. For instance, if the modeling error is equal to zero
(e.g., optimal coupling is used for locally periodic maps), then we have

max1≤n≤N
∥∥u0(·, tn)− uHn

∥∥
L2(Ω)

≤ C
[
∆t+H2 +

(
h
ε

)2]
,(∑N

n=1∆t
∥∥∇u0(·, tn)−∇uHn

∥∥2

L2(Ω)

)1/2

≤ C
[
∆t+H +

(
h
ε

)2]
,

(40)

To efficiently decrease of the spatial errors in the C0(L2) and the L2(H1) norm the spatial grids TH and
Th have to be refined according to h/ε ∼ H and h/ε ∼

√
H, respectively. Those refinement strategies

allow to obtain convergence at optimal computational cost.
Complexity. The numerical upscaling used in (7) leads to computational cost that are independent of
the size of the small oscillations ε. For instance, let Nmac and Nmic denote the number of elements in
each dimension for the macro and micro spatial discretization, respectively, using quasi-uniform meshes.
Then, the macro and micro mesh sizes H and h scale as H ∼ 1/Nmac and h ∼ δ/Nmic, respectively. As
the size δ of the sampling domains Kδ is of order O(ε), we find that h/ε ∼ 1/Nmic. Thus, the convergence
rates summarized in (40) can be expressed in terms of Nmac and Nmic, i.e., they are robust with respect
to ε, and can be obtained with O(Nd

macN
d
mic) spatial degrees of freedom.

5 Proof of the main results
In this section, we prove Theorems 4.2, 4.4, 4.5 and 4.6. We split the total error according to ‖u0−uHn ‖ ≤
‖u0 − UHn ‖ + ‖UHn − uHn ‖ where UHn is an approximation of the exact solution u0 in S1

0(Ω, TH). For the
general convergence result of Theorem 4.2 we choose UHn to be close to u0 using the density of smooth
functions in the space E given in (2). To derive explicit convergence rates in the case of p = 2 and α = 1,
β = 2 in (A1−2), choosing UHn as the nodal interpolant of u0 yields optimal L2(H1) estimates, whereas a
new elliptic projection of u0 for nonlinear monotone problems is needed for the optimal C0(L2) estimates.

5.1 Error propagation formula
Let U ∈ E with U ∈ C0([0, T ],W 1,p

0 (Ω)) and ∂tU ∈ C0([0, T ], L2(Ω)). Further, let UH(·, t) ∈ S1
0(Ω, TH)

be an approximation of U(·, t) for t ∈ [0, T ] and define UHn = UH(·, tn) for 0 ≤ n ≤ N . The fundamental
tool to derive a priori error estimates using the energy method is the error propagation formula for the
error θHn = uHn − UHn , 0 ≤ n ≤ N , given by

∆t

∫
Ω

∂̄tθ
H
n w

H dx+ ∆t
[
BH(uHn+1;wH)−BH(UHn+1;wH)

]
=

∫ tn+1

tn

∫
Ω

f wHdx ds−∆t

∫
Ω

∂̄tUHn wHdx−∆tBH(UHn+1;wH)

=

∫ tn+1

tn

〈
∂tu

0(·, s), wH
〉
ds−∆t

∫
Ω

∂̄tUHn wHdx+

∫ tn+1

tn

B0(u0(·, s);wH)ds−∆tBH(UHn+1;wH)

=

∫ tn+1

tn

〈
∂tu

0(·, s)− ∂tU(·, tn+1), wH
〉
ds (41a)

+

∫ tn+1

tn

B0(u0(·, s);wH)−B0(U(·, tn+1);wH)ds (41b)

+ ∆t

∫
Ω

[
∂tU(x, tn+1)− ∂̄tU(x, tn)

]
wHdx (41c)

+ ∆t

∫
Ω

[
∂̄tU(x, tn)− ∂̄tUHn

]
wHdx (41d)

+ ∆t
[
B0(U(·, tn+1);wH)−B0(UHn+1;wH)

]
(41e)

+ ∆t
[
B0(UHn+1;wH)− B̂0(UHn+1;wH)

]
(41f)

+ ∆t
[
B̂0(UHn+1;wH)−BH(UHn+1;wH)

]
, (41g)

where wH ∈ S1
0(Ω, TH) is arbitrary, u0 is the exact solution to the homogenized problem (4) and the

forms B0, B̂0 and BH are given by (14), (15) and (8), respectively.
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In the error propagation formula (41) we already decomposed the overall error into its different
components. The terms (41a) and (41b) arise from the difference between the weak and the strong
formulation in time of (4). In particular, they vanish if we set U = u0 (with u0 sufficiently smooth), see the
proof of Theorem 4.4 for details. The error terms (41c) – (41g) are due to the numerical discretization used
for the multiscale method (7). While the term (41c) accounts for the error due to the time discretization
scheme, the terms (41d) and (41e) consist of the finite element error at the discrete time levels tn and (41f)
captures the influence of quadrature formula (6). The components (41c) – (41f) are independent of the
multiscale nature of the method (7), whereas the last term (41g) is solely due to the upscaling strategy
consisting of micro simulations and averaging techniques. Thus we call term (41g) the HMM upscaling
error.

In our subsequent analysis we first estimate the different error terms from (41), see Section 5.1.1,
5.1.2 and 5.1.3 for estimates of the difference between the weak and strong formulation in time of (4),
the temporal and macro spatial error and the HMM upscaling error, respectively. Those bounds at hand
we then prove Theorem 4.2 in Section 5.2. Finally, for p = 2 and α = 1, β = 2 in (A1−2), the proofs of
Theorems 4.4 and 4.5 given in Section 5.3 follow from the improved bounds for the macro spatial error
(using a linear elliptic projection) derived in Section 5.3.1 and the explicit estimates for the HMM error
consisting of micro and modeling error shown in Section 5.3.2.

5.1.1 Estimates for the difference between weak and strong formulation in time

In this section, we estimate the terms (41a) and (41b).

Lemma 5.1. Let u0,U ∈ E with U , ∂tU , ∂2
t U ∈ C0([0, T ], L2(Ω)). Then, for wH ∈ S1

0(Ω, TH)∣∣∣∣∫ tn+1

tn

〈
∂tu

0(·, s)− ∂tU(·, tn+1), wH
〉
ds

∣∣∣∣ ≤ ∫ tn+1

tn

∥∥∂tu0(·, s)− ∂tU(·, s)
∥∥

(W 1,p
0 (Ω))′

∥∥∇wH∥∥
Lp(Ω)

ds

+ C∆t2
∥∥∂2

t U
∥∥
C0([0,T ],L2(Ω))

∥∥wH∥∥
L2(Ω)

,

for 0 ≤ n ≤ N − 1 and where C is independent of ∆t and H.

Proof. Let wH ∈ S1
0(Ω, TH). We decompose the term into the two parts∫ tn+1

tn

〈
∂tu

0(·, s)− ∂tU(·, s), wH
〉
ds−

∫ tn+1

tn

∫
Ω

[∂tU(x, tn+1)− ∂tU(x, s)]wHdx ds,

where the first part is bounded straightforwardly. Next, for the inner integral of the second term we have∫
Ω

[∂tU(x, tn+1)− ∂tU(x, s)]wHdx =

∫ tn+1

s

∫
Ω

∂2
t U(x, τ)wHdx dτ, ∀ s ∈ [tn, tn+1], (42)

as ∂tU , ∂2
t U ∈ C0([0, T ], L2(Ω)). The claimed result is then directly obtained.

The second term (41b) is bounded using the Hölder continuity of the homogenized map A0.

Lemma 5.2. Let u0,U ∈ E with U , ∂tU ∈ C0([0, T ],W 1,p(Ω)). Assume that A0 satisfies (A1) with
exponent γ = α/(β − α) and constants L̃ > 0, κ̃1 ≥ 0. Then, for wH ∈ S1

0(Ω, TH) and 0 ≤ n ≤ N − 1∣∣∣∣ ∫ tn+1

tn

B0(u0(·, s);wH)−B0(U(·, tn+1);wH)ds

∣∣∣∣
≤ L̃

∫ tn+1

tn

(κ̃1 +
∥∥∇u0(·, s)

∥∥
Lp(Ω)

+ ‖∇U(·, s)‖Lp(Ω))
p−1−γ∥∥∇u0(·, s)−∇U(·, s)

∥∥γ
Lp(Ω)

∥∥∇wH∥∥
Lp(Ω)

ds

+ C∆t1+γ(κ̃1 + ‖∇U‖C0([0,T ],Lp(Ω)) + ‖∂t∇U‖C0([0,T ],Lp(Ω)))
p−1
∥∥∇wH∥∥

Lp(Ω)
,

where C is independent ∆t and H.

Proof. Let wH ∈ S1
0(Ω, TH). We then use the decomposition of the error term into∫ tn+1

tn

B0(u0(·, s);wH)−B0(U(·, s);wH)ds−
∫ tn+1

tn

B0(U(·, tn+1);wH)−B0(U(·, s);wH)ds,
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where the first integral is estimated using the Hölder continuity of A0 and (16). To bound the second
term we first note that since U , ∂tU ∈ C0([0, T ],W 1,p(Ω)) it holds for tn ≤ s ≤ tn+1, similarly to (42),

‖∇U(·, tn+1)−∇U(·, s)‖Lp(Ω) =

∥∥∥∥∫ tn+1

s

∂t∇U(·, τ)dτ

∥∥∥∥
Lp(Ω)

≤ ∆t‖∂t∇U‖C0([0,T ],Lp(Ω)), (43)

which combined with the Hölder continuity of A0 and (16) yields the final bound.

5.1.2 Temporal and macro spatial error

In this section, we provide explicit error bounds for the terms (41c) – (41f).
Time discretization error. We start by estimating the error due to the implicit Euler method, i.e.,
term (41c).

Lemma 5.3. Let U , ∂tU , ∂2
t U ∈ C0([0, T ], L2(Ω)). For wH ∈ S1

0(Ω, TH) and 0 ≤ n ≤ N − 1, we have∣∣∣∣∫
Ω

[
∂tU(x, tn+1)− ∂̄tU(x, tn)

]
wHdx

∣∣∣∣ ≤ C∆t
∥∥∂2

t U
∥∥
C0([0,T ],L2(Ω))

∥∥wH∥∥
L2(Ω)

,

where C is independent of ∆t and H.

Proof. Let wH ∈ S1
0(Ω, TH). As U , ∂tU ∈ C0([0, T ], L2(Ω)) results similar to (42) hold if U and ∂tU is sub-

stitute to ∂tU and ∂2
t U , respectively, in particular,

∫
Ω
∂̄tU(x, tn)wHdx = ∆t−1

∫ tn+1

tn

∫
Ω
∂tU(x, s)wHdx ds.

Combining that with the result from (42) yields∫
Ω

[
∂tU(x, tn+1)− ∂̄tU(x, tn)

]
wHdx =

1

∆t

∫ tn+1

tn

∫ tn+1

s

∫
Ω

∂2
t U(x, τ)wHdx dτ ds,

from where the result of Lemma 5.3 follows.

Macro finite element error. Next, we estimate the spatial macro error terms (41d) and (41e) in
Lemma 5.5 and Lemma 5.7, respectively. We therefore first introduce the nodal interpolant.
Nodal interpolant. Let IH : C0(Ω)→ S1(Ω, TH) be the usual nodal interpolant where S1(Ω, TH) is the
FE-space defined as S1

0(Ω, TH) in (5), but without zero boundary conditions. Then, for k ∈ {1, 2} and q,
q∗ with 1 ≤ q ≤ q∗ and q∗ > d/2, we have the bounds, see [16, Theorem 3.1.6],

‖IHz‖W 1,q(Ω) ≤ C‖z‖W 2,q∗ (Ω), ‖IHz − z‖W 2−k,q(Ω) ≤ CH
k‖z‖W 2,q∗ (Ω), ∀ z ∈W 2,q∗(Ω), (44a)

‖IHz‖W 1,∞(Ω) ≤ C‖z‖W 1,∞(Ω), ∀ z ∈W 1,∞(Ω). (44b)

We note that for z ∈ C0(Ω) ∩W 1,p
0 (Ω) it holds that IHz ∈ S1

0(Ω, TH).

Remark 5.4. Let q, q∗ be as in (44a). If U , ∂tU ∈ C0([0, T ],W 2,q∗(Ω)), then the interpolation operator
IH and the differentiation ∂t with respect to the time variable can be interchanged, i.e., ∂t(IHU(x, t)) =
IH(∂tU(x, t)) on Ω× [0, T ] and thus ‖∂tU(·, t)− ∂t(IHU(·, t))‖W 1,q(Ω) ≤ CH‖∂tU(·, t)‖W 2,q∗ (Ω).

Lemma 5.5. Let either p̃ = 2 (if p ≥ 2) or p ≤ p̃ ≤ 2 with p̃ > d/2 (if p < 2). Let U , ∂tU ∈
C0([0, T ],W 2,p̃(Ω)) and UHn = IHU(·, tn) be its nodal interpolant for 0 ≤ n ≤ N − 1. Then, it holds∣∣∣∣∫

Ω

[
∂̄tU(x, tn)− ∂̄tUHn

]
wHdx

∣∣∣∣ ≤ CH‖∂tU‖C0([0,T ],W 2,p̃(Ω))

∥∥wH∥∥
L2(Ω)

,

for any wH ∈ S1
0(Ω, TH) and with a constant C independent of ∆t and H.

Proof. As U , ∂tU ∈ C0([0, T ],W 2,p̃(Ω)) and IHU , ∂tIHU ∈ C0([0, T ], S1
0(Ω, TH)), see Remark 5.4, equa-

tion (42) holds analogously if ∂tU is substituted by U or UH . Thus, for wH ∈ S1
0(Ω, TH), we obtain∣∣∣∣∫

Ω

[
∂̄tU(x, tn)− ∂̄tUHn

]
wHdx

∣∣∣∣ ≤ 1

∆t

∫ tn+1

tn

∥∥∂tU(x, s)− ∂tUH(x, s)
∥∥
L2(Ω)

∥∥wH∥∥
L2(Ω)

ds (45)

≤ C 1

∆t

∫ tn+1

tn

∥∥∂tU(x, s)− ∂tUH(x, s)
∥∥
W 1,p̃(Ω)

∥∥wH∥∥
L2(Ω)

ds,

and the estimate from Remark 5.4 concludes the proof.
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Remark 5.6. If p̃ = 2 a convergence of order O(H2) can be shown in Lemma 5.5 by applying the
interpolation estimate (44a) directly to (45), i.e., without first using the embedding W 1,p̃(Ω) ↪→ L2(Ω).

Lemma 5.7. Assume that A0 satisfies (A1) with γ = α/(β − α) and constants L̃ > 0, κ̃1 ≥ 0. Let
U ∈ C0([0, T ],W 2,p∗(Ω)) for some p∗ with p ≤ p∗ and p∗ > d/2 and let UHn = IHU(·, tn) be its nodal
interpolant. Then, for 0 ≤ n ≤ N − 1∣∣B0(U(·, tn+1);wH)−B0(UHn+1;wH)

∣∣ ≤ CHγ(κ̃1 + ‖U‖C0([0,T ],W 2,p∗ (Ω)))
p−1
∥∥∇wH∥∥

Lp(Ω)
,

for any wH ∈ S1
0(Ω, TH) and with C independent of ∆t and H.

Proof. Let wH ∈ S1
0(Ω, TH). The Hölder continuity (A1) of A0 and (16) yield∣∣B0(U(·, tn+1);wH)−B0(UHn+1;wH)

∣∣ ≤ L̃(κ̃1 + ‖∇U(·, tn+1)‖Lp(Ω) +
∥∥∇UHn+1

∥∥
Lp(Ω)

)p−1−γ

×
∥∥∇U(·, tn+1)−∇UHn+1

∥∥γ
Lp(Ω)

∥∥∇wH∥∥
Lp(Ω)

,

which is estimated using the bounds (44a).

Quadrature error for Hölder continuous A0. Estimating the effect of the barycentric quadrature (6)
used in the method (7) is achieved by comparing the maps B0 and B̂0 given by (14) and (15), respectively.

Lemma 5.8. Assume that A0 satisfies the hypothesis (36) for some 0 < γ̃ ≤ 1. Let B0 and B̂0 be given
by (14) and (15), respectively. Then, the error due to the quadrature (6) is bounded by∣∣∣B0(vH ;wH)− B̂0(vH ;wH)

∣∣∣ ≤ CH γ̃(L0 +
∥∥∇vH∥∥

Lp(Ω)
)p−1

∥∥∇wH∥∥
Lp(Ω)

,

for any vH , wH ∈ S1
0(Ω, TH) and where C is independent of H.

In particular, if U ∈ C0([0, T ],W 2,p∗(Ω)) for some p∗ such that p∗ > d/2 and UHn = IHU(·, tn) where
IH denotes the nodal interpolant, then we have for 0 ≤ n ≤ N − 1∣∣∣B0(UHn+1;wH)− B̂0(UHn+1;wH)

∣∣∣ ≤ CH γ̃(L0 + ‖U‖C0([0,T ],W 2,p∗ (Ω)))
p−1
∥∥∇wH∥∥

Lp(Ω)
,

for any wH ∈ S1
0(Ω, TH) and where C is independent of H.

Proof. Let vH , wH ∈ S1
0(Ω, TH). As ∇vH and ∇wH are piecewise constant, we get from (14) and (15)

B0(vH ;wH)− B̂0(vH ;wH) =
∑
K∈TH

∫
K

[
A0(x,∇vH(xK))−A0(xK ,∇vH(xK))

]
· ∇wH(xK)dx.

The Hölder continuity (36) of A0(x, ξ) in x, (16) and the bound (44a) then yield the results.

5.1.3 Abstract estimates for the HMM upscaling error

The last term (41g) in the error propagation formula (41) quantifies the upscaling error. Using rHMM

introduced in (34), we obtain∣∣∣B̂0(vH ;wH)−BH(vH ;wH)
∣∣∣ ≤ rHMM (∇vH)

∥∥∇wH∥∥
Lp(Ω)

, vH , wH ∈ S1
0(Ω, TH). (46)

Recall that rHMM (∇vH) ≤ rmic(∇vH) + rmod(∇vH) with rmic and rmod from (35). While structural
assumptions about the spatial heterogeneities of Aε are necessary to estimate the modeling error rmod,
an abstract error estimate for the micro error rmic holds for general maps Aε. Explicit bounds for rmod
and rmic in the case of p = 2, α = 1, β = 2 will be derived in Section 5.3.2.

Lemma 5.9. Let Aε satisfy (A0−2). For both periodic coupling W (Kδ) =W1,p
per(Kδ) or Dirichlet coupling

W (Kδ) = W 1,p
0 (Kδ) in the micro problems (10), the micro error rmic(∇vH) from (35a) is bounded by

rmic(∇vH) ≤ C
[
L0 + κ1 + κ2 +

∥∥∇vH∥∥
Lp(Ω)

]p−1−γ

×

( ∑
K∈TH

|K|
|Kδ|

inf
zh∈S1(Kδ,Th)

∥∥∥∇χ̄∇vH(xK)
K −∇zh

∥∥∥p
Lp(Kδ)

) γ
p

,

for any vH ∈ S1
0(Ω, TH), where χ̄ξK solves (12) and C is independent of H, h, δ and ε.
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Proof. For given ξ ∈ Rd and K ∈ TH , let χ̄ξK and χξ,hK be the solution of (12) and (11), respectively.
Using aξK defined in (17) we get from (21) and the micro problems (18) that for zh ∈ S1(Kδ, Th)

λ
∥∥∥∇χ̄ξK −∇χξ,hK ∥∥∥β

Lp(Kδ)
≤ R(ξ,K)β−p

(
aξK(χ̄ξK ; χ̄ξK − z

h)− aξK(χξ,hK ; χ̄ξK − z
h
)
,

with R(ξ,K) = (κ2 + 2|ξ|)|Kδ|1/p + ‖∇χ̄ξK‖Lp(Kδ) + ‖∇χξ,hK ‖Lp(Kδ). Analogously to (30) we get∥∥∥∇χ̄ξK −∇χξ,hK ∥∥∥
Lp(Kδ)

≤ C
[
(L0 + κ1 + κ2 + |ξ|)|Kδ|

1
p

] β−α−1
β−α

∥∥∥∇χ̄ξK −∇zh∥∥∥ 1
β−α

Lp(Kδ)
. (47)

Combining this estimate with (A1) and (16) we obtain for Ā0
K and A0,h

K given in (13)∣∣∣Ā0
K(ξ)−A0,h

K (ξ)
∣∣∣ ≤ C [L0 + κ1 + κ2 + |ξ|]p−1−γ

(
1

|Kδ|

∥∥∥∇χ̄ξK −∇zh∥∥∥p
Lp(Kδ)

)γ
, (48)

where γ = α/(β − α). Setting ξ = ∇vH(xK) for K ∈ TH and using (48) and (16), we obtain the result
by noting that zh can be chosen arbitrarily in S1(Kδ, Th).

5.2 Proof of the general convergence result
In this section, we prove Theorem 4.2. We start by proving the convergence of the micro error.

Lemma 5.10. Assume that Aε satisfies (A0−2). Let the time step size ∆t > 0, the macro mesh size
H > 0, the sampling domain size δ > 0 and the coupling conditions for (10) be given. Then, for any set
{UHn }1≤n≤N ⊂ S1

0(Ω, TH) with
∑N−1
n=0 ∆t‖∇UHn+1‖

p
Lp(Ω) bounded independently of the micro mesh size h,

the micro error rmic from (35a) satisfies

lim
h→0

(
N−1∑
n=0

∆t rmic(∇UHn+1)p
′

) 1
p′

= 0.

Proof. Let 0 < η < 1 be given. Let ξ ∈ Rd, K ∈ TH and χ̄ξK ∈ W (Kδ) solving (12). First, we observe
that for sufficiently small h we have infzh∈S1(Kδ,Th) ‖χ̄

ξ
K − zh‖W (Kδ) < η. Indeed, as C∞(Kδ)∩W (Kδ) is

dense in W (Kδ) (for both periodic and Dirichlet coupling), there exists zη ∈ C∞(Kδ)∩W (Kδ) such that
‖χ̄ξK − zη‖W (Kδ) < η/2. Setting zh = Ihzη and applying the interpolation estimate (44a) to the nodal
interpolant Ih on Kδ (for some p∗ satisfying p ≤ p∗ and p∗ > d/2) we get∥∥∥χ̄ξK − zh∥∥∥

W (Kδ)
≤
∥∥∥χ̄ξK − zη∥∥∥

W (Kδ)
+
∥∥zη − zh∥∥W (Kδ)

<
η

2
+ Ch‖zη‖W 2,p∗ (Kδ)

,

i.e., in particular, there exists h0(η) > 0 such that ‖χ̄ξK − zh‖W (Kδ) < η for all h ≤ h0(η).
Using this result for ξ = ∇UHn+1(xK) and any K ∈ TH , 0 ≤ n ≤ N − 1, i.e., a finite set of parameters

independent of h, we obtain with Lemma 5.9 and (16) that

lim
h→0

(
N−1∑
n=0

∆t rmic(∇UHn+1)p
′

) 1
p′

≤ C

L0 + κ1 + κ2 +

(
N−1∑
n=0

∆t
∥∥∇UHn+1

∥∥p
Lp(Ω)

) 1
p

p−1−γ

|Kδ|−
γ
p ηγ ,

and thus, as 0 < η < 1 can be chosen arbitrarily small, the micro error vanishes.

Proof of Theorem 4.2. Step 1: General error bound. Let U ∈ E with U ∈ C0([0, T ],W 2,p∗(Ω)), ∂tU ∈
C0([0, T ],W 1,p(Ω)) ∩ C0([0, T ],W 2,p̃(Ω)) and ∂2

t U ∈ C0([0, T ], L2(Ω)) where p̃ = min{p∗, 2} and some
p∗ with p ≤ p∗ and p∗ > d/2. We then set θHn = uHn − UHn with UHn = IHU(·, tn) for 0 ≤ n ≤ N .
Summing (25) from n = 0, . . . , N − 1, using (16) and the error propagation formula (41) yields

λ
p
β
c

N−1∑
n=0

∆t
∥∥∇θHn+1

∥∥p
Lp(Ω)

≤ R(uHn ,UHn )
p(β−p)
β

(
N−1∑
n=0

∆t(BH(uHn+1; θHn+1)−BH(UHn+1; θHn+1))

) p
β

= R(uHn ,UHn )
p(β−p)
β

(
−
N−1∑
n=0

∆t

∫
Ω

∂̄tθ
H
n θ

H
n+1dx+

N−1∑
n=0

Btotn

) p
β

, (49)
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where Btotn denotes the sum of the terms (41a)–(41g) with test function θHn+1 and R(uHn ,UHn ) is given by

R(uHn ,UHn ) = (L0 + κ1 + κ2)(T |Ω|)
1
p +

(
N−1∑
n=0

∆t
∥∥∇uHn+1

∥∥p
Lp(Ω)

) 1
p

+

(
N−1∑
n=0

∆t
∥∥∇UHn+1

∥∥p
Lp(Ω)

) 1
p

. (50)

Using the bound (33) analogously for θHn , estimating the terms (41a) – (41g) by Lemmas 5.1, 5.2, 5.3,
5.5, 5.7, 5.8 and inequality (46) and using (16) we obtain

λ
p
β
c

N−1∑
n=0

∆t
∥∥∇θHn+1

∥∥p
Lp(Ω)

≤ R(uHn ,UHn )
p(β−p)
β

[
− 1

2

∥∥θHN∥∥2

L2(Ω)
+

1

2

∥∥θH0 ∥∥2

L2(Ω)
(51a)

+ C

{∥∥u0 − U
∥∥
E

+
[
κ̃1 +

∥∥u0
∥∥
E

+ ‖U‖E
]p−1−γ ∥∥u0 − U

∥∥γ
E

(51b)

+
[
‖∂tU‖C0([0,T ],W 2,p̃(Ω)) +

∥∥∂2
t U
∥∥
C0([0,T ],L2(Ω))

]
(∆t+H) (51c)

+
[
L0 + κ1 + ‖U‖C0([0,T ],W 2,p∗ (Ω)) + ‖∂tU‖C0([0,T ],W 1,p(Ω))

]p−1

(∆tγ +Hγ +H γ̃) (51d)

+

(
N−1∑
n=0

∆t rHMM (∇UHn+1)p
′

) 1
p′
}(

N−1∑
n=0

∆t
∥∥∇θHn+1

∥∥p
Lp(Ω)

) 1
p
] p
β

, (51e)

For the rest of the proof, the term − 1
2‖θ

H
N ‖2L2(Ω) ≤ 0 in (51a) can be omitted.

Step 2: Density in E. Let 0 < η < 1 be given. To show the convergence of (51) we choose U ∈
C∞(Ω× [0, T ]) such that U(·, t) ∈ C∞0 (Ω) for any t ∈ [0, T ] and ‖u0−U‖E < η/2. This is possible as the
polynomials

∑
i t
ivi with vi ∈ W 1,p

0 (Ω) are dense in E, see [52, Proposition 23.23], and C∞0 (Ω) is dense
in W 1,p

0 (Ω). Note that such U further satisfies ‖U‖E < ‖u0‖E + 1/2.
We then set UHn = IHU(·, tn) as above in (51). Using the interpolation estimate (44a) in space and a

bound analogous to (43) in time we get that for s ∈ [tn, tn+1] and 0 ≤ n ≤ N − 1∥∥∇U(·, s)−∇UHn+1

∥∥
Lp(Ω)

≤ C(∆t+H)(‖U‖C0([0,T ],W 2,p∗ (Ω)) + ‖∂t∇U‖C0([0,T ],Lp(Ω))).

Hence, combining that with the properties of U , there exists D0(η) > 0 such that for all ∆t,H ≤ D0(η)(
N−1∑
n=0

∫ tn+1

tn

∥∥∇u0(·, t)−∇UHn+1

∥∥p
Lp(Ω)

dt

) 1
p

< η,

(
N−1∑
n=0

∆t
∥∥∇UHn+1

∥∥p
Lp(Ω)

)1/p

≤
∥∥u0
∥∥
E

+ 1. (52)

Further, by possibly taking a smaller value for D0(η) we simultaneously get that for H ≤ D0(η)

max
1≤n≤N

∥∥u0(·, tn)− UHn
∥∥
L2(Ω)

≤ CE
∥∥u0 − U

∥∥
E

+ CH‖U‖C0([0,T ],W 2,p∗ (Ω)) < CE
η

2
+
η

2
, (53)

where we used the embeddings E ↪→ C0([0, T ], L2(Ω)) (with operator norm CE), W 1,p(Ω) ↪→ L2(Ω) and
the interpolation estimate (44a).

Step 3. Bound for R. Next, we bound R(uHn ,UHn ) from (50). From Theorem 3.8 and the convergence
‖g − uH0 ‖L2(Ω) → 0 for H → 0 we have that there exists H0 > 0 such that for all H ≤ H0 it holds(

N−1∑
n=0

∆t
∥∥∇uHn+1

∥∥p
Lp(Ω)

) 1
p

≤ C((L0 + κ1 + κ2) + ‖f‖
1
p−1

Lp′ (Ω)
+ ‖g‖

2
p

L2(Ω) + 1),

i.e., independent of the initial approximation uH0 . Combining that with (52) we get that R(uHn ,UHn ) is
bounded independently of U , η, ∆t and H for all ∆t,H ≤ min{D0(η), H0}. Additionally, the same bound
is valid for the last term in (51e) as (

∑N−1
n=0 ∆t‖∇θHn+1‖

p
Lp(Ω))

1/p ≤ R(uHn ,UHn ).
Step 4. Convergence of HMM error. By decomposing rHMM in (51e) into micro error rmic and

modeling error rmod, see (35), we obtain from Lemma 5.10 and the convergence of the modeling error
assumed in Theorem 4.2 that limrmod→0 limh→0(

∑N−1
n=0 ∆t rHMM (∇UHn+1)p

′
)1/p′ = 0 for given ∆t and H.

Step 5. Convergence in Lp(W 1,p) norm. First using the embedding E ↪→ C0([0, T ], L2(Ω)) (again with
operator norm CE) and the interpolation estimate (44a) the initial error θH0 in (51a) can be bounded by∥∥θH0 ∥∥L2(Ω)

≤
∥∥g − uH0 ∥∥L2(Ω)

+ CE
∥∥u0 − U

∥∥
E

+ CH‖U‖C0([0,T ],W 2,p∗ (Ω)). (54)
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Combining then (51) with (54) and using the properties of U derived in Step 2 and 3, there exists
0 < D1(η) ≤ min{D0(η), H0} such that for ∆t,H ≤ D1(η)

lim
rmod→0

lim
h→0

(
N−1∑
n=0

∆t
∥∥∇θHn+1

∥∥p
Lp(Ω)

) 1
p

≤ C(η + ηγ), (55)

where C is independent of η, U as well as H, ∆t, δ and h. The convergence in the discrete Lp(W 1,p)
norm then follows from (55) and (52) as η is arbitrarily small.

Step 6. Convergence in C0(L2) norm. Let 1 ≤ K ≤ N . Summing the error formula (41) with
wH = θHn+1 for n = 0, . . . ,K − 1, using (33) and the monotonicity of BH from Lemma 3.5 we get

1

2

∥∥θHK∥∥2

L2(Ω)
− 1

2

∥∥θH0 ∥∥2

L2(Ω)
≤
K−1∑
n=0

∆t

[∫
Ω

∂̄tθ
H
n θ

H
n+1dx+BH(uHn+1; θHn+1)−BH(UHn+1; θHn+1)

]
,

which can be bounded by
∑K−1
n=0 Btotn with Btotn used in (49). Then, analogously to Step 5, estimating Btotn

like in (51) and combining that with (53) proves the convergence of max1≤n≤N ‖u0(·, tn)−uHn ‖L2(Ω).

5.3 Proof of the explicit convergence rates for strongly monotone and Lips-
chitz maps

In this section, the fully discrete a priori error estimates for p = 2 and α = 1, β = 2 in (A1−2) are shown.
The estimates of the temporal and macro spatial error from Theorem 4.4 are proved in two steps: the
L2(H1) estimate is proved below using the results of Sections 5.1.2 and 5.2 and then, in Section 5.3.1,
the C0(L2) bound is derived using an elliptic projection. Finally, we show the estimates of micro and
modeling error from Theorem 4.5 and 4.6 in Section 5.3.2.

Proof of L2(H1) estimate from Theorem 4.4. Recall that θHn = uHn − UHn for 0 ≤ n ≤ N . To
derive the L2(H1) estimate we set UHn = IHu0(·, tn). Note, that when deriving the error propagation
formula (41) for U = u0 with the regularity of u0 assumed in Theorem 4.4 (with µ = 1), one can use∫

Ω

∂tu
0(x, t)w dx+B0(u0(·, t);w) =

∫
Ω

f w dx, ∀w ∈W 1,p
0 (Ω),∀ t ∈ (0, T ],

instead of the weak formulation in time. Hence, the error terms (41a) and (41b) vanish. Then, analogously
to (51), we estimate (41c) – (41g) using Lemmas 5.3, 5.5, 5.7, 5.8 and (46). Observing that γ = α/(β−α) =
1, p/β = 1 and that (37b) for µ = 1 yields the Hölder continuity (36) with γ̃ = 1, we get

1

2

∥∥θHN∥∥2

L2(Ω)
+ λc

N−1∑
n=0

∆t
∥∥∇θHn+1

∥∥2

L2(Ω)

≤ 1

2

∥∥θH0 ∥∥2

L2(Ω)
+ C(∆t+H + max

1≤n≤N
rHMM (∇UHn ))

(
N−1∑
n=0

∆t
∥∥∇θHn+1

∥∥2

L2(Ω)

) 1
2

≤ 1

2

∥∥θH0 ∥∥2

L2(Ω)
+ C(∆t+H + max

1≤n≤N
rHMM (∇UHn ))2 +

λc
2

N−1∑
n=0

∆t
∥∥∇θHn+1

∥∥2

L2(Ω)
, (56)

which combined with (44a) concludes the proof for µ = 1.

5.3.1 Optimal bounds of macro error in spatial L2 norm

To obtain quadratic convergence of the macro spatial error in the C0(L2) norm we introduce an elliptic
projection of the homogenized solution u0. We derive its approximation properties and improve the
bounds of (41d), (41e) and (41f) to get the sharp bounds of Theorem 4.4.

Remark 5.11. Let A : Ω× Rd → Rd with A(x, ·) ∈ C1(Rd;Rd) for a.e. x ∈ Ω. Then, the map A satisfies
hypotheses (A1−2) with p = 2, α = 1, β = 2 if and only if DξA(x, ξ) is uniformly elliptic and bounded

DξA(x, ξ) η · η ≥ λ |η|2, |DξA(x, ξ) η| ≤ L |η|, ∀ ξ, η ∈ Rd, a.e. x ∈ Ω.
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Further, for ξ, η ∈ Rd and a.e. x ∈ Ω, we have the identity

A(x, ξ + η) = A(x, ξ) +DξA(x, ξ)η +

∫ 1

0

DξA(x, ξ + τη)−DξA(x, ξ)dτ η. (57)

If additionally DξA(x, ·) is Lipschitz continuous (e.g., A(x, ·) ∈W 2,∞(Rd;Rd)), we obtain from (57)∣∣∣∣∫
Ω

[
A(x,∇v +∇w)−A(x,∇v)−DξA(x,∇v) · ∇w

]
· ∇z dx

∣∣∣∣ ≤ LA‖w‖2W 1,4(Ω)‖z‖H1(Ω), (58)

for v, w ∈W 1,4(Ω), z ∈ H1(Ω) and where LA = ess supx∈Ω Lx with Lipschitz constant Lx of A(x, ·).

Elliptic projection. Let u0(x, t) ∈ E be the exact solution of the homogenized problem (4). The elliptic
projection ũH,0(·, t) of u0(·, t) is given by the variational problem: find ũH,0(·, t) ∈ S1

0(Ω, TH) such that

Bπ(t; ũH,0(·, t), wH) = Bπ(t;u0(·, t), wH), ∀wH ∈ S1
0(Ω, TH), (59)

where, for a.e. t ∈ (0, T ), the bilinear form Bπ is defined as, for v, w ∈ H1
0 (Ω),

Bπ(t; v, w) =

∫
Ω

A 0(x, t)∇v · ∇w dx, with A 0(x, t) = DξA0(x,∇u0(x, t)), (60)

for a.e. (x, t) ∈ Ω×(0, T ). The existence and uniqueness of the elliptic projection ũH,0(·, t) defined in (59)
is studied in Lemma 5.12. Note that for a linear problem we recover the tensor A 0(x, t) = a0(x, t) and
∂tA 0(x, t) = ∂ta

0(x, t) as considered in [49, 43, 9].

Lemma 5.12. Let p = 2 and assume that A0 satisfies (A1−2) with α = 1, β = 2 and A0(x, ·) ∈ C1(Rd;Rd)
for a.e. x ∈ Ω. If the homogenized solution u0 satisfies u0 ∈ L2(0, T ;H1

0 (Ω)), then, for a.e. t ∈ (0, T ),
the bilinear form Bπ given by (60) is uniformly elliptic and bounded and there exists a unique solution
ũH,0(·, t) to (59). Further, we have∥∥∇ũH,0(·, t)

∥∥
L2(Ω)

≤ L

λ

∥∥∇u0(·, t)
∥∥
L2(Ω)

, a.e. t ∈ (0, T ). (61)

Proof. Due to Remark 5.11 and the regularity of u0 the tensor A 0 satisfies A 0
ij ∈ L∞(0, T ;L∞(Ω)), for 1 ≤

i, j ≤ d. Using again Remark 5.11 we have for v, w ∈ H1
0 (Ω) that |Bπ(t; v, w)| ≤ L‖∇v‖L2(Ω)‖∇w‖L2(Ω),

λ‖∇v‖2L2(Ω) ≤ Bπ(t; v, v) for a.e. t ∈ (0, T ). Thus, the Lax-Milgram theorem concludes the proof.

Lemma 5.13. Let p = 2 and assume that A0 satisfies (A1−2) with α = 1, β = 2 and A0(x, ·) ∈ C1(Rd;Rd)
for a.e. x ∈ Ω. Let the homogenized solution u0 and A 0 defined in (60) satisfy

u0, ∂tu
0 ∈ C0([0, T ], H1

0 (Ω)), A 0
ij , ∂tA

0
ij ∈ C0([0, T ], L∞(Ω)), for 1 ≤ i, j ≤ d. (62)

Then, the map t 7→ ũH,0(·, t) ∈ S1
0(Ω, TH), where ũH,0 is the elliptic projection (59), is of class C1.

Proof. As (59) defines a linear elliptic projection, the proof is based on similar arguments as given in [9,
Eq. (5.3)]. A full proof is available in [36, Lemma 6.5.4].

Lemma 5.14. Let p = 2 and assume that A0 satisfies (A1−2) with α = 1, β = 2 and A0(x, ·) ∈ C1(Rd;Rd)
for a.e. x ∈ Ω. Let u0 be the solution of the homogenized problem (4), ũH,0 its elliptic projection (59)
and A 0 the tensor given by (60). Let k ∈ {1, 2} and assume

u0, ∂tu
0 ∈ C0([0, T ], H2(Ω)), A 0

ij , ∂tA
0
ij ∈ C0([0, T ],W k−1,∞(Ω)), for 1 ≤ i, j ≤ d.

Then, for any t ∈ [0, T ], we have the error estimates

(i)
∥∥ũH,0(·, t)− u0(·, t)

∥∥
H1(Ω)

≤ CH, (iii)
∥∥∂t(ũH,0 − u0)(·, t)

∥∥
H1(Ω)

≤ CH,

(ii)
∥∥ũH,0(·, t)− u0(·, t)

∥∥
L2(Ω)

≤ CHk, (iv)
∥∥∂t(ũH,0 − u0)(·, t)

∥∥
L2(Ω)

≤ CHk,

where C is independent of H.

Proof. Due to the linearity of the variational problem (59), the proof follows along the lines of the proof
of [9, Lemma 5.1]. For a detailed proof we refer to [36, Lemma 6.5].
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To prove the optimal convergence in the C0(L2) norm, we further need an estimate for ‖ũH,0(·, t) −
u0(·, t)‖W 1,∞(Ω).

Lemma 5.15. Let p = 2, assume that A0 satisfies (A1−2) with α = 1, β = 2 and A0(x, ·) ∈ C1(Rd;Rd)
for a.e. x ∈ Ω. Let u0 be the solution of the homogenized problem (4), ũH,0 its elliptic projec-
tion (59), A 0(x, t) be given by (60) and u0,∗(·, t) ∈ H1(Ω) be solving the dual problem Bπ(t;w, u0,∗(·, t)) =
Bπ(t;u0(·, t), w) for all w ∈ H1

0 (Ω). Assume

u0 ∈ C0([0, T ],W 2,∞(Ω)), A 0
ij ∈ C0([0, T ],W 1,∞(Ω)), 1 ≤ i, j ≤ d,

and the ”elliptic regularity”, for t ∈ [0, T ] and 1 < q < σ with some σ > d,∥∥u0(·, t)
∥∥
W 2,q(Ω)

+
∥∥u0,∗(·, t)

∥∥
W 2,q(Ω)

≤ C
∥∥div(A 0(·, t)∇u0(·, t))

∥∥
Lq(Ω)

. (63)

If {TH}H>0 is a family of quasi-uniform meshes, e.g., see [16, Condition (3.2.28)], then there exists an
H0 > 0 such that for every t ∈ [0, T ] and H < H0∥∥ũH,0(·, t)

∥∥
W 1,∞(Ω)

≤ C
∥∥u0(·, t)

∥∥
W 1,∞(Ω)

,
∥∥u0(·, t)− ũH,0(·, t)

∥∥
W 1,∞(Ω)

≤ CH
∥∥u0(·, t)

∥∥
W 2,∞(Ω)

,

where C is independent of H.

Proof. Recall that the elliptic projection ũH,0 is the finite element solution to a linear elliptic problem,
see (59). The maximum norm error estimates provided by [14, Theorem 8.1.11 and Corollary 8.1.12] thus
apply.

Optimal estimates of macro spatial error using elliptic projection. By adapting Lemma 5.5
and 5.7 for U = u0 and UH given by the elliptic projection ũH,0 from (59) we get the improved bounds
(with respect to the macro mesh size H) given below in Lemma 5.16 and 5.17.

Lemma 5.16. Let p = 2, assume that A0 satisfies (A0−2) with α = 1, β = 2 and A0(x, ·) ∈ C1(Rd;Rd) for
a.e. x ∈ Ω. Let u0 be the solution of the homogenized problem (1) and ũH,0 be its elliptic projection (59).
If u0, ∂tu

0 ∈ C0([0, T ], H2(Ω)) and A 0 from (60) satisfies (38b), then for UHn = ũH,0n we get∣∣∣∣∫
Ω

[
∂̄tu

0(x, tn)− ∂̄tUHn
]
wHdx

∣∣∣∣ ≤ CH2(
∥∥u0
∥∥
C0([0,T ],H2(Ω))

+
∥∥∂tu0

∥∥
C0([0,T ],H2(Ω))

)
∥∥wH∥∥

L2(Ω)
,

for 0 ≤ n ≤ N − 1 and every wH ∈ S1
0(Ω, TH) with a constant C independent of ∆t and H.

Proof. As ũH,0, ∂tũH,0 ∈ C0([0, T ], S1
0(Ω, TH)), see Lemma 5.13, the bound (45) holds analogously for

UH(x, s) given by the elliptic projection (59) and using Lemma 5.14 concludes the proof.

While in term 41d optimal quadratic convergence H2 for p = 2 can be obtained even for UHn =
IHu0(x, tn), see Remark 5.6, the optimal convergence rate for term (41e) is only obtained for UHn = ũH,0n

(due to its particular definition (59)).

Lemma 5.17. Let p = 2 and assume that A0 satisfies (A1−2) with α = 1, β = 2. Let u0 be the solution
of the homogenized problem (4), ũH,0 its elliptic projection (59) and B0 be given by (14). Assume
hypotheses (38a) for u0 and A0, quasi-uniformity and elliptic regularity (38c) as well as regularity A 0

ij ∈
C0([0, T ],W 1,∞(Ω)) (for 1 ≤ i, j ≤ d) with A 0 given in (60). Then, for UHn+1 = ũH,0n+1, w

H ∈ S1
0(Ω, TH)

and 0 ≤ n ≤ N − 1, there exists an H0 > 0 such that for all H < H0 we have∣∣B0(u0(·, tn+1);wH)−B0(UHn+1;wH)
∣∣ ≤ CLA0H2

∥∥u0
∥∥2

C0([0,T ],W 2,∞(Ω))

∥∥∇wH∥∥
L2(Ω)

,

where LA0 = ess supx∈Ω ‖DξA0(x, ·)‖W 1,∞(Rd;Rd) and C is independent of ∆t and H.
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Proof. Using the Taylor formula (57) and the definition of the elliptic projection (59) we derive

B0(u0(·, tn+1);wH)−B0(ũH,0n+1;wH) =

∫
Ω

[
A0(x,∇u0(x, tn+1))−A0(x,∇ũH,0n+1)

]
· ∇wHdx

= =

∫
Ω

DξA0(x,∇u0(x, tn+1))(∇ũH,0n+1 −∇u0(x, tn+1)) · ∇wHdx︸ ︷︷ ︸
Bπ(tn+1;ũH,0n+1−u0(·,tn+1),wH)=0

+

∫
Ω

∫ 1

0

{
DξA0

(
x,∇u0(x, tn+1) + τ

[
∇ũH,0n+1 −∇u0(x, tn+1)

])
−DξA0

(
x,∇u0(x, tn+1)

)}
dτ
[
∇ũH,0n+1 −∇u0(x, tn+1)

]
· ∇wHdx

≤ LA0

∥∥∥u0(·, tn+1)− ũH,0n+1

∥∥∥2

W 1,4(Ω)

∥∥∇wH∥∥
L2(Ω)

,

where we used the estimate (58). The maximum norm bounds of Lemma 5.15 conclude the proof.

Quadrature error for smooth A0. Finally, a quadratic convergence H2 can as well be obtained for
the quadrature error (41f) when higher regularity of A0 is available.

Lemma 5.18. Let p = 2. Assume that A0 satisfies the hypothesis (37b) for µ = 2. Let B0 and B̂0 be
given by (14) and (15), respectively. Then, the error due to the quadrature (6) is bounded by∣∣∣B0(vH ;wH)− B̂0(vH ;wH)

∣∣∣ ≤ CH2(L0 +
∥∥∇vH∥∥

L2(Ω)
)
∥∥∇wH∥∥

L2(Ω)
,

for any vH , wH ∈ S1
0(Ω, TH) and where C is independent of H.

Proof. An application of [17, Theorem 6] yields∣∣∣B0(vH ;wH)− B̂0(vH ;wH)
∣∣∣ ≤ CH2

∥∥A0(x,∇vH)
∥∥
H̄2(Ω)

∥∥∇wH∥∥
L2(Ω)

,

where ‖ · ‖2
H̄2(Ω)

=
∑
K∈TH ‖ · ‖

2
H2(K) denotes a broken Sobolev norm. Let the k-th coordinate function

of A0 be denoted by A0
(k), for 1 ≤ k ≤ d. Then, for 1 ≤ i, j, k ≤ d and a.e. x ∈ Ω, the (weak) derivatives

of A0(x,∇vH) are given by

∂xi

[
A0

(k)(x,∇v
H(x))

]
= ∂xiA0

(k)(x,∇v
H(x)), ∂xjxi

[
A0

(k)(x,∇v
H(x))

]
= ∂xjxiA0

(k)(x,∇v
H(x)),

as ∇vH is piecewise constant. We conclude the proof by observing that for any K ∈ TH we have
‖A0(x,∇vH(xK))‖H2(K) ≤ C(L0 + |∇vH(xK)|)

√
|K| due to (37b).

Remark. For a linear problem A0(x, ξ) = a0(x)ξ, with a0 ∈ (L∞(Ω))d×d, the regularity assumption
of (37b) with µ = 2 becomes a0 ∈ W 2,∞(Ω), which is used for FEM based on numerical integration for
linear problems, see [43]. Then, the bounds of (37b) are valid for L0 = 0.

With the Lemma 5.18 at hand, the term (41f) can be estimated immediately.

Corollary 5.19. Let p = 2, assume that A0 satisfies (A0−2) with α = 1, β = 2 and A0(x, ·) ∈ C1(Rd;Rd)
for a.e. x ∈ Ω. Let u0 be the solution of the homogenized problem (4), ũH,0 its elliptic projection (59)
and consider the maps B0 and B̂0 given by (14) and (15). If A0 satisfies the hypothesis (37b) for µ = 2

and u0 ∈ C0([0, T ], H1(Ω)), then we have for UHn+1 = ũH,0n+1∣∣∣B0(UHn+1;wH)− B̂0(UHn+1;wH)
∣∣∣ ≤ CH2(L0 +

∥∥u0
∥∥
C0([0,T ],H1(Ω))

)
∥∥∇wH∥∥

L2(Ω)
,

for 0 ≤ n ≤ N − 1 and every wH ∈ S1
0(Ω, TH) with a constant C independent of ∆t and H.

Proof of C0(L2) estimate from Theorem 4.4. Recall that θHn = uHn − UHn for 0 ≤ n ≤ N . For
µ = 2, we set UHn = ũH,0n . By estimating the terms (41d), (41e) and (41e) using Lemmas 5.16, 5.17 and
Corollary 5.19 (instead of Lemmas 5.5, 5.7, 5.8), we obtain the estimate (56) with a term of order H2

instead of H. Then the result is obtained by combining that with Lemma 5.14.
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5.3.2 Explicit estimates for the HMM upscaling error

In this section, for p = 2 and α = 1, β = 2 in (A1−2), we prove explicit estimates for the upscaling error
decomposed into micro and modeling error, which are studied in separate paragraphs.
Micro error. In a first part, we bound the micro error rmic defined in (35a) which is due to the
finite element approximation of the micro problems (10). Under classical regularity assumptions on
χ̄ξK solving (12), see (H1), we derive a robust linear convergence rate, see Lemma 5.20. Introducing
an auxiliary adjoint problem (65) and assuming regularity (H1∗) of its solution, a robust quadratic
convergence can be shown in Lemma 5.21.

We start by deriving a first estimate for the micro error rmic.

Lemma 5.20. Let p = 2, assume that Aε satisfies (A0−2) with α = 1, β = 2 and that (H1) holds. For any
vH ∈ S1

0(Ω, TH) and either periodic coupling W (Kδ) =W1,2
per(Kδ) or Dirichlet coupling W (Kδ) = H1

0 (Kδ)

for the micro problems (10), the micro error rmic(∇vH), see (35a), can be estimated by

rmic(∇vH) ≤ Ch
ε

(
L0 +

∥∥∇vH∥∥
L2(Ω)

)
,

where C is independent of H,h, δ and ε.

Proof. Let ξ ∈ Rd, K ∈ TH and χ̄ξK ∈ W (Kδ) and χξ,hK ∈ S1(Kδ, Th) be the solution of (12) and (11),
respectively, with the same coupling condition. Observing that β − α = 1, choosing zh = Ihχ̄ξK (the
nodal interpolant on Kδ) and using the interpolation estimate (44a) and (H1) we get from (47) that∥∥∥∇χ̄ξK −∇χξ,hK ∥∥∥

L2(Kδ)
≤ Ch

ε
(L0 + |ξ|)

√
|Kδ|. (64)

Choosing then zh = χξ,hK with ξ = ∇vH(xK) in Lemma 5.9 on every K ∈ TH and observing that
γ = α/(β − α) = 1, we conclude the proof by applying (64).

In [1, 2, 10] a convergence of the order (h/ε)2 has been shown for linear micro problems (10), i.e.,
for data Aε(x, ξ) = aε(x)ξ. Thus, the estimate of Lemma 5.20 is in general non-optimal. We note that
an adjoint micro problem was used to prove the quadratic convergence for non-symmetric tensors aε(x),
see [10, Lemma 4.6] for a short proof. In this view, we introduce the following linear auxiliary micro
problems: for ξ ∈ Rd, 1 ≤ j ≤ d and K ∈ TH , find X̄ξ,j

K ∈W (Kδ) such that∫
Kδ

(
DξAε(x, ξ +∇χ̄ξK)

)T
(ej +∇X̄ξ,j

K ) · ∇z dx = 0, ∀ z ∈W (Kδ), (65)

where Kδ is the sampling domain associated to K and χ̄ξK solves the cell problem (12). We note that
problem (65) admits a unique solution if Aε satisfies (A0−2) and Aε(x, ·) ∈ C1(Rd;Rd), as then the
Jacobian DξAε is uniformly bounded and elliptic, see Remark 5.11.
Remark. We note, that for a linear map Aε(x, ξ) = aε(x)ξ the derivative DξAε is simply given by
DξAε(x, ξ) = aε(x). Thus, the auxiliary micro problem (65) reduces to∫

Kδ

aε(x)T (ej +∇X̄j
K) · ∇z dx = 0, ∀ z ∈W (Kδ), (66)

which is independent of ξ and the corrector χ̄ξK . Indeed, we recover the adjoint micro problem used to
analyze linear homogenization problems, e.g., see [10].

Lemma 5.21. Let p = 2, assume that Aε satisfies (A0−2) with α = 1, β = 2, Aε(x, ·) ∈ W 2,∞(Rd;Rd)
and (H1), (H1∗) hold. For any vH ∈ S1

0(Ω, TH) and either periodic coupling W (Kδ) = W1,2
per(Kδ) or

Dirichlet coupling W (Kδ) = H1
0 (Kδ) for the micro problems (10), the micro error rmic(∇vH), see (35a),

can be estimated by

rmic(∇vH) ≤ C
(
h

ε

)2(
L0 + L2

0 +
∥∥∇vH∥∥

L2(Ω)
+
∥∥∇vH∥∥2

L4(Ω)

)
,

where C is independent of H,h, δ and ε.
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Proof. Like in Lemma 5.9, we estimate the difference A0,h
K (ξ) − Ā0

K(ξ) for ξ ∈ Rd and K ∈ TH (with
associated sampling domain Kδ), where Ā0

K(ξ) and A0,h
K (ξ) are given by (13). They are based on the

solutions χ̄ξK and χξ,hK to the micro problems (12) and (11), respectively, solved with the same coupling
condition. Let 1 ≤ j ≤ d, then

Ā0
K(ξ) · ej −A0,h

K (ξ) · ej =
1

|Kδ|

∫
Kδ

[
Aε(x, ξ +∇χ̄ξK)−Aε(x, ξ +∇χξ,hK )

]
· ej dx

=
1

|Kδ|

∫
Kδ

[
Aε(x, ξ +∇χ̄ξK)−Aε(x, ξ +∇χξ,hK )

]
·
(
ej +∇IhX̄ξ,j

K

)
dx,

where the Galerkin orthogonality for monotone FEM is used and IhX̄ξ,j
K ∈ S1(Kδ, Th) is the nodal

interpolant of X̄ξ,j
K on Kδ. Further, we apply the Taylor formula (57) and use that X̄ξ,j

K solves (65)

[A0,h
K (ξ)− Ā0

K(ξ)] · ej =
1

|Kδ|

∫
Kδ

DξAε(x, ξ +∇χ̄ξK)(∇χξ,hK −∇χ̄
ξ
K) · (ej +∇IhX̄ξ,j

K )dx

+
1

|Kδ|

∫
Kδ

∫ 1

0

DξAε(x, ξ +∇χ̄ξK + τ(∇χξ,hK −∇χ̄
ξ
K))−DξAε(x, ξ +∇χ̄ξK)dτ

× (∇χξ,hK −∇χ̄
ξ
K) · (ej +∇IhX̄ξ,j

K )dx

=
1

|Kδ|

∫
Kδ

DξAε(x, ξ +∇χ̄ξK)(∇χξ,hK −∇χ̄
ξ
K) · (∇IhX̄ξ,j

K −∇X̄
ξ,j
K )dx

+
1

|Kδ|

∫
Kδ

∫ 1

0

DξAε(x, ξ +∇χ̄ξK + τ(∇χξ,hK −∇χ̄
ξ
K))−DξAε(x, ξ +∇χ̄ξK)dτ

× (∇χξ,hK −∇χ̄
ξ
K) · (ej +∇IhX̄ξ,j

K )dx.

Then, the uniform boundedness and the Lipschitz continuity of DξAε(x, ·) yield∣∣∣Ā0
K(ξ) · ej −A0,h

K (ξ) · ej
∣∣∣ ≤ L

|Kδ|

∥∥∥∇χξ,hK −∇χ̄ξK∥∥∥
L2(Kδ)

∥∥∥∇IhX̄ξ,j
K −∇X̄

ξ,j
K

∥∥∥
L2(Kδ)

+
C

|Kδ|

∥∥∥∇χξ,hK −∇χ̄ξK∥∥∥2

L2(Kδ)

(
1 +

∣∣∣IhX̄ξ,j
K

∣∣∣
W 1,∞(Kδ)

)
≤ C

(
h

ε

)2

(L0 + L2
0 + |ξ|+ |ξ|2)

(
1 +

∣∣∣IhX̄ξ,j
K

∣∣∣
W 1,∞(Kδ)

)
,

where we applied estimate (64) (using assumption (H1)) and the standard H1 interpolation error esti-
mate (44a) for the nodal interpolation operator Ih on Kδ (using assumption (i) from (H1∗)). Further,
the bound (44b) for Ih and hypothesis (ii) from (H1∗) yield |IhX̄ξ,j

K |W 1,∞(Kδ) ≤ C. Then, the result
follows from the definition (35a) of rmic.

Proof of Theorem 4.5. We combine the results of Theorem 4.4 with the estimates of Lemma 5.20 and
Lemma 5.21, with vH = UHn for 1 ≤ n ≤ N , for linear and quadratic micro convergence, respectively. We
note that ‖∇UHn ‖L2(Ω) and ‖∇UHn ‖L4(Ω) are bounded for both UHn = IHu0(·, tn) the nodal interpolant
of the homogenized solution u0 and UHn = ũH,0n the elliptic projection (59). In particular, we have
‖∇IHu0(·, tn)‖L4(Ω) ≤ C‖u0(·, tn)‖H2(Ω), from classical interpolation results, see [16, Theorem 3.1.6],
and Lemma 5.15 yields ‖∇ũH,0n ‖L4(Ω) ≤ C‖u0(·, tn)‖W 1,∞(Ω).

Modeling error. In the second part, for locally periodic maps Aε, we prove explicit bounds for the
modeling error rmod defined in (35b) including the influence of the boundary conditions chosen forW (Kδ)
in (9), the sampling domain size δ and the absence of collocation of A(x, x/ε, ξ) in the slow variable x.
Periodic homogenization. As we are considering locally periodic maps Aε independent of the time
variable t, we can use the representation of A0 derived in the case of monotone elliptic problems
−div(Aε(x,∇uε)) = f in Ω, see [44, Theorem 8.1]. Assume that Aε(x, ξ) = A(x, x/ε, ξ) where A(x, y, ξ)
is Y -periodic in y, i.e., Aε is locally periodic. Then, see [33, Section 3], the homogenized map A0 is
explicitly given by

A0(x, ξ) =

∫
Y

A(x, y, ξ +∇χξ(x, y))dy, (67)
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where x ∈ Ω, ξ ∈ Rd and χξ(x, ·) ∈ W1,2
per(Y ) solves the cell problem: find χξ(x, ·) ∈ W1,2

per(Y ) such that∫
Y

A(x, y, ξ +∇χξ(x, y)) · ∇z dy = 0, ∀ z ∈ W1,2
per(Y ). (68)

Collocation in the slow variable. If the decomposition A(x, x/ε, ξ) between macro and micro scale is
explicitly known, we can collocate the map Aε in the slow variable x at the quadrature nodes xK . Then,
for ξ ∈ Rd and K ∈ TH , the collocated micro problem reads as: find χ̃ξK ∈W (Kδ) such that∫

Kδ

A(xK ,
x
ε , ξ +∇χ̃ξK) · ∇z dx = 0, ∀ z ∈W (Kδ), (69)

and, analogously to (13), the homogenized map Ã0
K can be defined

Ã0
K(ξ) =

1

|Kδ|

∫
Kδ

A(xK ,
x
ε , ξ +∇χ̃ξK)dx. (70)

If a locally periodic map Aε is not collocated in the slow variable, a modeling error of order O(δ) is
introduced. In particular, if Aε(x) satisfies (H2), one can show that∣∣∣Ã0

K(ξ)− Ā0
K(ξ)

∣∣∣ ≤ Cδ(L0 + |ξ|), (71)

where the homogenized maps Ā0
K and Ã0

K are given in (13) and (70), respectively. To obtain estimate (71),
we first prove (similar to the upper bound of Lemma 3.4) the bound ‖∇χ̃ξK‖L2(Kδ) + ‖∇χ̄ξK‖L2(Kδ) ≤
C(L0 + |ξ|)

√
|Kδ| for the solution χ̃ξK and χ̄ξK to (69) and (12), respectively, and we then show (using

the Lipschitz continuity assumed in (H2)) that ‖∇χ̃ξK −∇χ̄
ξ
K‖L2(Kδ) ≤ Cδ(L0 + |ξ|)

√
|Kδ|.

Periodic boundary conditions. We next show that periodic coupling with a sampling domain size δ
taken as an integer multiple of ε is optimal for locally periodic data.

Let ξ ∈ Rd and K ∈ TH and let χξ(xK , ·) and χ̃ξK be the solution to (68) and (69), respectively. We
observe that χξ(xK , x/ε) = ∇χ̃ξK(x) on Kδ (if δ > ε, χξ(xK , ·) is periodically extended) and thus

A0(xK , ξ) = Ã0
K(ξ), ξ ∈ Rd,K ∈ TH , (72)

for the maps A0(xK , ·) and Ã0
K defined in (67) and (70), respectively.

Dirichlet boundary conditions. In contrast to the optimal periodic coupling with δ/ε ∈ N, using
Dirichlet coupling with δ ≥ ε leads to resonance errors due to the artificial boundary conditions.

Lemma 5.22. Let p = 2 and assume that Aε satisfies (A0−2) with α = 1, β = 2 and (H2). Let ξ ∈ Rd,
K ∈ TH and the maps Ã0

K and A0(xK , ·) be given by (70) and (67), respectively. Further, assume that the
exact corrector χξ(xK , ·) solving the cell problem (68) satisfies χξ(xK , ·) ∈W 1,∞(Y ). Then, for Dirichlet
coupling W (Kδ) = H1

0 (Kδ) and a sampling domain size δ > ε it holds∣∣∣A0(xK , ξ)− Ã0
K(ξ)

∣∣∣ ≤ C(ε
δ

)1/2(
L0 + |ξ|+

∥∥χξ(xK , y)
∥∥
W 1,∞(Y )

)
,

where C is independent of ξ, δ and ε.

Proof. We use the techniques used to analyze the resonance error for linear homogenization problems,
see [24, Theorem 1.2]. Let n ∈ N be given by n = bδ/εc (if δ/ε /∈ N), or n = δ/ε − 1 (if δ/ε ∈ N \{0}).
Further, we define KΓ = Kδ \Knε and we observe that |KΓ| ≤ Cεδd−1. Then we decompose the difference
Ã0
K −A0(xK , ξ) into two terms according to

Ã0
K(ξ)−A0(xK , ξ) =

1

|Kδ|

∫
Kδ

A(xK ,
x
ε , ξ +∇χ̃ξK)−A(xK ,

x
ε , ξ +∇χξ(xK , xε ))dx

+
1

|Kδ|

∫
Kδ

A(xK ,
x
ε , ξ +∇χξ(xK , xε ))dx− 1

|Knε|

∫
Knε

A(xK ,
x
ε , ξ +∇χξ(xK , xε ))dx,

where χξ(xK , y) is extended periodically to Rd and the first and second line is denoted by I1 and I2,
respectively. First, we estimate I2 similarly as for the linear case

I2 =
1

|Kδ|

∫
KΓ

A(xK ,
x
ε , ξ +∇χξ(xK , xε ))dx+

(
1

|Kδ|
− 1

|Knε|

)∫
Knε

A(xK ,
x
ε , ξ +∇χξ(xK , xε ))dx

≤ C
(
|KΓ|
|Kδ|

+
|KΓ|

|Kδ||Knε|
|Knε|

)
(L0 + |ξ|+ |χξ(xK , y)|W 1,∞(Y ))

≤ C ε
δ

(L0 + |ξ|+ |χξ(xK , y)|W 1,∞(Y )), (73)

26



using the estimate (19) for A(x, ξ) and the assumption χξ(xK , ·) ∈ W 1,∞(Y ). To estimate the term I1
we define the function θξ(x) = χ̃ξK(x)− εχξ(xK , x/ε) on Kδ (using the periodic extension of χξ(xK , ·)).
As χ̃ξK |∂Kδ = 0 (in the sense of traces), we decompose θξ into

θξ(x) = θξ0(x)− εχξ(xK , xε )(1− ρε(x)), x ∈ Kδ, (74)

where θξ0 ∈ H1
0 (Kδ) and ρε : Kδ → R is a smooth cut-off function satisfying ρε ≡ 1 in Knε, ρε|∂Kδ ≡ 0

and |∇ρε| ≤ Cε−1 in KΓ (where C is independent of δ and ε). Using the strong monotonicity (A2) of A
and the decomposition (74) of θξ we obtain

λ
∥∥∥∇χ̃ξK(x)−∇χξ(xK , xε )

∥∥∥2

L2(Kδ)

≤
∫
Kδ

[
A(xK ,

x
ε , ξ +∇χ̃ξK(x))−A(xK ,

x
ε , ξ +∇χξ(xK , xε ))

]
·
(
∇χ̃ξK(x)−∇χξ(xK , xε )

)
dx

=

∫
Kδ

A(xK ,
x
ε , ξ +∇χ̃ξK(x)) · ∇θξ0dx−

∫
Kδ

A(xK ,
x
ε , ξ +∇χξ(xK , xε )) · ∇θξ0dx

+

∫
Kδ

[
A(xK ,

x
ε , ξ +∇χ̃ξK(x))−A(xK ,

x
ε , ξ +∇χξ(xK , xε ))

]
· ∇[εχξ(xK ,

x
ε )(1− ρε(x))]dx

=: J1 − J2 + J3. (75)

First, as χ̃ξK solves the cell problem (69) in the space W (Kδ) = H1
0 (Kδ) we have J1 = 0. To show that

the second term J2 vanishes as well we define θξper ∈ W1,2
per(K(n+1)ε) by

θξper(x) = θξ0(x)− cξθ, (if x ∈ Kδ), θξper(x) = −cξθ, (if x ∈ K(n+1)ε \Kδ),

with cξθ = 1
|K(n+1)ε|

∫
Kδ
θξ0(x)dx. Thus, we observe that∇θξper = ∇θξ onKδ and∇θξper = 0 onK(n+1)ε\Kδ.

Hence, when scaling and periodically extending (68) we get

J2 =

∫
K(n+1)ε

A(xK ,
x
ε , ξ +∇χξ(xK , xε )) · ∇θξper(x)dx = 0.

Further, using the Lipschitz continuity (A1) of A, we estimate the term J3 as

|J3| ≤ L
∥∥∥∇χ̃ξK(x)−∇χξ(xK , xε )

∥∥∥
L2(Kδ)

∥∥∇χξ(xK , xε )(1− ρε(x))− ε∇ρε(x)χξ(xK ,
x
ε )
∥∥
L2(KΓ)

≤ C
√
|KΓ|

∥∥∥∇χ̃ξK(x)−∇χξ(xK , xε )
∥∥∥
L2(Kδ)

∥∥χξ(xK , y)
∥∥
W 1,∞(Y )

, (76)

where we used the properties of ρε, in particular, 1 − ρε(x) ≡ 0 on Knε and ∇ρε ≤ Cε−1. Combining
that J1 = J2 = 0 and the estimate (76) of J3 with the inequality (75) leads to∥∥∥∇χ̃ξK(x)−∇χξ(xK , xε )

∥∥∥
L2(Kδ)

≤ C
√
|KΓ|

∥∥χξ(xK , y)
∥∥
W 1,∞(Y )

.

Thus, I1 can be estimated by the previous estimate and the Lipschitz continuity (A1)

|I1| ≤
L√
|Kδ|

∥∥∥∇χ̃ξK(x)−∇χξ(xK , xε )
∥∥∥
L2(Kδ)

≤ C
(ε
δ

)1/2∥∥χξ(xK , y)
∥∥
W 1,∞(Y )

. (77)

Combining the estimates (77) and (73) for I1 and I2, respectively, concludes the proof.

Proof of Theorem 4.6. The Theorem 4.6 is proved by combining the estimates from (71) (collocation
error), (72) (periodic coupling) and Lemma 5.22 (Dirichlet coupling).

6 Implementation and numerical results
In this section, we comment on the implementation of the multiscale method (7), illustrate the appli-
cability to a test problem from material sciences and, for p = 2 and α = 1, β = 2 in (A1−2), we give
numerical studies of the convergence rates as well as the modeling error.
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6.1 Implementation
In this section, we briefly discuss an implementation of the multiscale method (7). As the macroscopic
equation (7) and the micro problems (10) are both nonlinear and coupled together, some care is needed.
We thus describe how uHn+1 ∈ S1

0(Ω, TH) solving (7) is obtained for given uHn ∈ S1
0(Ω, TH) and n ∈ N.

At the macro level, the unknown uHn+1 is approximated by a sequence {uH,(j)n+1 }j∈N obtained by a
Newton iteration for the macro equation (7) with the initial guess uH,(0)

n+1 = uHn . As the macro equation
involves the nonlinear map BH given in (8), a set of constrained micro problems (10) has to be solved (at
each macro iteration) and the Fréchet derivative of BH(vH ;wH) with respect to vH has to be computed.
We follow the ideas from [31].
Newton’s method for micro problems. Let vH ∈ S1

0(Ω, TH) be a macro function and K ∈ TH
with associated sampling domain Kδ. The solution vhK to the micro problem (10) is then computed by
a Newton’s method at microscopic level. In particular, for a given initial guess vh,(0)

K , the micro solution
vhK is approximated by the sequence {vh,(j)K }j∈N with vh,(j)K − vH ∈ S1(Kδ, Th) solving

N h
K(v

h,(j)
K ; v

h,(j+1)
K − vh,(j)K , wh) = −BhK(v

h,(j)
K ;wh), ∀wh ∈ S1(Kδ, Th), j ∈ N, (78)

where the linear map BhK(zH + qh; ·) and the bilinear map N h
K(zH + qh; ·, ·) are given by

BhK(zH + qh;wh) =

∫
Kδ

Aε(x,∇zH +∇qh) · ∇whdx, (79)

N h
K(zH + qh; vh, wh) =

∫
Kδ

DξAε(x,∇zH +∇qh)∇vh · ∇whdx, (80)

for zH ∈ S1
0(Ω, TH) and qh, vh, wh ∈ S1(Kδ, Th).

Further, the local contribution to the Fréchet derivative of BH is computed via an auxiliary micro
problem, see [31]. For zH ∈ S1

0(Ω, TH) and zhK its associated micro solution to (10), the auxiliary micro
function vh,z

H

K solves: find vh,z
H

K − vH ∈ S1(Kδ, Th) such that

N h
K(zhK ; vh,z

H

K , wh) = 0, ∀wh ∈ S1(Kδ, Th), (81)

where N h
K is defined in (80). As the auxiliary micro problem (81) is linear it only leads to additional

computational cost comparable to one iteration of the micro Newton’s method (78).
Newton’s method for macro scheme. For j ∈ N, the (j+1)-th iterate uH,(j+1)

n+1 of the macro Newton’s
method to approximate uHn+1 solves∫

Ω

u
H,(j+1)
n+1 − uHn

∆t
wHdx+NH(u

H,(j)
n+1 ;u

H,(j+1)
n+1 − uH,(j)n+1 , w

H)

=

∫
Ω

f wHdx−BH(u
H,(j)
n+1 ;wH), ∀wH ∈ S1

0(Ω, TH),

(82)

where BH is given by (8) and NH is defined for vH , wH , zH ∈ S1
0(Ω, TH) by

NH(zH ; vH , wH) =
∑
K∈TH

|K|
|Kδ|

∫
Kδ

DξAε(x,∇zhK)∇vh,z
H

K dx · ∇wH(xK),

where zhK is the micro solution to (10) associated to zH and vh,z
H

K is the solution to the auxiliary micro
problem (81) constrained by vH .

Remark 6.1. In practice, convergence up to machine precision is not needed for the micro Newton
iterations. Instead, the stopping criterion for the micro Newton cycles should be adapted to the accuracy
which is expected for the next macro iterate.

Further, if p = 2 and α = 1, β = 2 in (A0−2), it holds that DξAε is uniformly bounded and elliptic,
see Remark 5.11. Thus, the problems (78) and (81) on the micro scale as well as the macro Newton
iteration (82) admit a unique solution.
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6.2 Simulation of a laminated iron core
In this section, we use the multiscale method (7) for a problem inspired by laminated iron cores. We refer
to [40, 41] for multiscale simulations of the magnetostatics and magnetodynamics of such iron cores.
Setting. Let Ω = (0, 0.2)2 and T = 2. We consider a layered material modeled by the locally periodic
map Aε(x, ξ) = µε(x, ξ)ξ = µ(x, x/ε, ξ)ξ, where for x = (x1, x2)T , y = (y1, y2)T

µ(x, y, ξ) =

{
1
2c(x)(1 + |ξ|2)(p−2)/2, y2 ∈ [0, 3

4 ],

µr, y2 ∈ ( 3
4 , 1),

, with c(x) = 10000µ0(1.03− cos( 5π
4 x1)), (83)

p = 1.03, µ0 = 4π · 10−7, µr = 0.05 and take ε = 1/5 · (50 + 3/4)−1 ≈ 0.0039, see Figure 1.(a). Thus,
the magnetic law is linear in the 50 insulation layers and nonlinear in the 51 lamination layers. The
map Aε is discontinuous in space and satisfies (A0−2) for p = 1.03, α = 0.03, β = 2, see [12, Remark
2.1]. We then solve (1) with – instead of zero Dirichlet conditions – Dirichlet data uD(x1, x2, t) on
ΓD = [0, 0.2]×{x2 = 0, 0.2}, zero Neumann conditions on ΓN = ∂Ω\ΓD and initial data g(x1, x2), where

uD(x1, 0.2, t) = 1
100 (cos(π4 t)−

1
2 ), uD(x1, 0, t) = −uD(x1, 0.2, t), g(x1, x2) = 1

100 (5x2 − 1
2 ).

Reference solution. We compare the results obtained by the multiscale method (7) to a reference
solution uref calculated by standard FEM (on a mesh resolving the small scale ε) combined with the
implicit Euler integrator (at 160 equidistant time steps), see Figure 1.(b) for uref at final time T = 2.
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(a) µε(x, ξ) for ξ = (1/5, 1/5). Insulation layers de-
picted as white areas.
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(b) Finescale solution at T = 2. 106 spatial degrees
of freedom, 160 time steps.

Figure 1: Test problem with layered material of Section 6.2. Finescale solution obtained by standard
FEM combined with implicit Euler method.

Numerical results. We use the multiscale method (7) on macro and micro meshes with Nmac = 32
and Nmic ∈ N \ {0} elements, respectively, in each spatial dimension and N = 160 equidistant time
steps. For the upscaling, we collocate the data (83) in the slow variable x and employ Dirichlet coupling
W (Kδ) = H1

0 (Kδ). As we use different values for δ ≥ ε, we adapt Nmic such that h ∼ δ/Nmic is constant.
In Table 1 we compare the FE-HMM solutions for δ = 2kε, 0 ≤ k ≤ 5, to uref by calculating the error

in the spatial L2 norm (using eC0(L2) defined in (88a)) and comparing the energy norms using eenergy via

eenergy =
(

max0≤n≤N
∣∣∥∥uref (·, tn)

∥∥
E
−
∥∥uHn ∥∥E∣∣)(max0≤n≤N

∥∥uref (·, tn)
∥∥
E

)−1
, with∥∥uref (·, t)

∥∥2

E
= 1

2

∥∥uref (·, t)
∥∥2

L2(Ω)
+
∫ t

0

∫
Ω
Aε(x,∇uref (x, τ)) · ∇uref (x, τ)dxdτ,∥∥uHn ∥∥2

E
= 1

2

∥∥uHn ∥∥2

L2(Ω)
+
∑′ n
k=0 ∆t

∑
K∈TH |K|A

0,h
K (∇uHk (xK)) · ∇uHk (xK),

(84)

where
∑′ indicates the trapezoidal rule in time. Note that for linear homogenization problems eC0(L2) is

known to be of order O(ε) and that the energy of uε converges to the energy of u0, while the error in the
spatial H1 norm is at least of order O(1). We observe that eC0(L2) and eenergy decrease monotonically
when δ is increased (eenergy decays as O(δ−1)), i.e., a sufficiently large δ is needed for reliable results.
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δ = ε δ = 2ε δ = 4ε δ = 8ε δ = 16ε δ = 32ε

eC0(L2) 0.4832 0.3224 0.1971 0.1150 0.0682 0.0435
eenergy 0.2411 0.1274 0.0657 0.0334 0.0169 0.0083

Table 1: Comparison of the FE-HMM solutions to the standard FEM finescale solution uref for the test
problem of Section 6.2. Study of the influence of the size δ of the sampling domains Kδ for Dirichlet
coupling. Error measured by eC0(L2) and eenergy, see (88a) and (84), respectively.

Finally, we compare Dirichlet coupling with δ = 32ε to periodic coupling with parameter δ = ε, see
Figure 2. While both solutions accurately capture the effective behavior of uref , the computation with
periodic coupling and δ = ε needs much less micro degrees of freedom as the sampling domain is smaller.
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(a) FE-HMM with Dirichlet coupling, δ = 32ε and
Nmic = 1024.
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(b) FE-HMM with periodic coupling, δ = ε and
Nmic = 32.

Figure 2: Test problem with layered material of Section 6.2. FE-HMM solutions at final time T = 2
computed with multiscale method (7) using Dirichlet or periodic coupling. Simulations with N = 160
time steps, Nmac = 32 macro elements per spatial dimension and constant micro error.

Setting with non-periodic, random data. Let us next illustrate that the method (7) is applicable
beyond the setting of (locally) periodic maps Aε. Therefore, we replace c(x) in (83) by the realization
of a log-normal stochastic field (based on a normal distribution with zero mean and variance σ2 = 0.5)
with local correlation lengths εx1 = 0.002 and εx2 = 0.004 obtained by averaging via a moving ellipse,
e.g., see [8, Section 4.2]. Such data can be used, e.g., to model impurities in the ferromagnetic material.

First, analogously to Figure 1.(b), we compute a finescale reference solution uref plotted in Fig-
ure 3.(a). Second, we apply the multiscale method (7) with parameters N = 160, Nmac = 32, Nmic = 256
and Dirichlet coupling with δ = 8ε ≈ 0.0315, see Figure 3.(b). Comparing Figures 3.(a) and 3.(b), we
observe that the FE-HMM solution indeed reliably predicts the effective behavior of uref .

6.3 Convergence rates
We next validate the convergence rates (for p = 2 and α = 1, β = 2 in (A1−2)) stated in Section 4.2.
Setting. For Ω = (0, 1)2 and T = 2, we consider (1) with maps Aε and source f chosen such that

u0(x, t) = Φ(t)(x2
1 − x1)(x2

2 − x2), Φ(t) = 21 · (10 cos(π2 t) + 11)−1, (85)

is the homogenized solution u0. Similar to Hoang [33], we construct a locally periodic map Aε using the
ansatz Aε(t;x, ξ) = Ap(x/ε, ξ) + c(t;x, x/ε) where Ap(·, ξ) and c(t;x, ·) are Y -periodic. We then take

Ap(y, ξ) =
[
1 + sin(2π(y1 + y2)) + ( 9

8 + sin(2πy1 + π
3 ))( 9

8 + cos(2πy2))(1 + |ξ|2)−1/2
]
ξ, (86)

which satisfies assumptions (A0−2), and derive (using Maple) that

f(x, t) = Φ′(t)(x2
1 − x1)(x2

2 − x2), c(t;x, y) = −Ap(y, [e1(t;x, y), e2(t;x, y)]T ), (87)
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(a) Finescale solution uref . 106 spatial degrees of
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(b) FE-HMM solution. Nmac = 32, Nmic = 256,
N = 160 and Dirichlet coupling with δ = 8ε.

Figure 3: Test problem with layered random material of Section 6.2. Reference solution (left) and FE-
HMM solution computed with multiscale method (7) (right) at final time T = 2.

where Φ′(t) is the derivative of Φ(t) from (85) and ei(t;x, y), for i = 1, 2, is given by

ei(t;x, y) = Φ(t)[(2xi − 1)(x2
3−i − x3−i) + (x1 + x2) cos(2πyi) sin(2πy3−i)].

Note that div(c(t;x, x/ε)) cannot be integrated into the source f , as it oscillates and grows as O(ε−1).
Further, the results of Section 4.2 can be extended to data Aε, f (like (86–87)) smoothly varying in time.
Error measure. To measure the difference u0 − uHn , we use the relative error measures

eC0(L2) = max
0≤n≤N

(∑
K∈TH

∥∥u0(·, tn)− uHn
∥∥2

L2(K)

)1/2∥∥u0
∥∥−1

C0([0,T ],L2(Ω))
, (88a)

eL2(H1) =
(∑′N

n=0 ∆t
∑
K∈TH

∥∥∇u0(·, tn)−∇uHn
∥∥2

L2(K)

)1/2∥∥u0
∥∥−1

L2(0,T ;H1
0 (Ω))

, (88b)

where
∑′ indicates the trapezoidal rule in time and a high-order quadrature rule is used for ‖ · ‖L2(K).

Numerical results. We use (7) on uniform triangular meshes on Ω and Kδ with Nmac and Nmic
elements in each direction, respectively. Further, we choose periodic coupling with δ = ε = 10−4 and
collocate A(t;x, x/ε, ξ) in x. Thus, the modeling error vanishes and we expect the convergence rates (40).

To confirm the spatial convergence rates of Theorem 4.5, we plot in Figure 4.(a) the measures eC0(L2)

and eL2(H1) versus Nmac ∼ 1/H for a small ∆t = 10−3. Indeed, for fixed Nmic = 4, 8, 16, 32, we get
quadratic and linear convergence of eC0(L2) and eL2(H1), respectively, for small Nmac and saturation levels
for large Nmac, which decrease by a factor around 4 when doubling Nmic (quadratic micro convergence).

In Figure 4.(b) we plot the measures eC0(L2) and eL2(H1) versus the number of time steps N ∼ 1/∆t
for fine spatial meshes with Nmac = Nmic = 128. While eL2(H1) already saturates for N > 16 (due to a
large spatial macro error), we observe that eC0(L2) converges linearly in ∆t as predicted by Theorem 4.5.

6.4 Influence of the sampling domain size δ

For p = 2, α = 1, β = 2 in (A1−2), we next study the modeling error for Dirichlet and periodic coupling.
As in practice, the value of ε is often not known, a common strategy is to use Dirichlet coupling (with

δ larger than some available upper bound of ε) combined with oversampling techniques, e.g., see [30].
Interestingly, experimental studies however show that periodic coupling still performs well for general
δ > ε (usually better than Dirichlet coupling), see [51, 8, 5].
Setting. We modify the data of Section 6.3 by replacing Φ(t) and Ap in (85) and (86), respectively, by

Φ(x, t) = cos(π2 tx2), Ap(x, y, ξ) =
[
1 + (2 + sin(2π(y1 + y2)))(1 + |ξ|2)−1/2

]
ξ.

and compute then c(t;x, y) and f(x, t) in (87) like in Section 6.3. This modification of the data allows a
qualitatively better illustration of the effects.
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(b) Time discretization error. Macro and micro
space discretization with constant meshes Nmac =
Nmic = 128. Number of time steps N =
4, 6, 8, 11, 16, 23, 32, 45, 64.

Figure 4: Test problem of Section 6.3. Relative error measures eC0(L2) (solid line) and eL2(H1) (dashed
line), see (88), as a function of Nmac (in part (a)) and N (in part (b)), respectively.

Numerical results. We take N = 40 time steps, Nmac = 32 macro elements in each direction in Ω,
collocate A(x, x/ε, ξ) in x and choose ε = 10−4. To keep the micro error constant for different δ we adapt
the micro meshes such that h ∼ δ/Nmic is constant (starting with Nmac = Nmic for δ = ε).

For Dirichlet coupling, we plot eC0(L2) and eL2(H1) from (88) in Figure 5.(a) versus δ/ε for δi =
(10 + i)/10 · ε, i = 1, . . . , 40. We get an overall decrease with local peaks at δ/ε ∈ N (resonance values).
The envelopes for eC0(L2) suggest a decay of O(ε/δ) (like for linear problems, see [24]) rather than
O(
√
ε/δ) as predicted in Theorem 4.6. The test problem however is a quasi 1D homogenization problem.
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(a) Dirichlet coupling W (Kδ) = H1
0 (Kδ) and 1.1 ≤

δ/ε ≤ 5.
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(b) Periodic coupling W (Kδ) = W1,2
per(Kδ) and 1 ≤

δ/ε ≤ 5.

Figure 5: Test problem of Section 6.4. Relative error measures eC0(L2) (solid line) and eL2(H1) (dotted
line), see (88), as a function of the sampling domain size δ. Constant number of time steps N = 40 and
Nmac = 32 macro elements per spatial dimension. Microscopic mesh size h chosen such that h/ε = H,
i.e., remains constant for different sampling domain sizes δ.

For periodic coupling and δi = (10 + i)/10 · ε, i = 0, . . . , 40, we discover in Figure 5.(b) a similar
oscillating behavior coupled to a global decrease (again O(δ−1) for eC0(L2)). Optimal accuracy is obtained
for δ/ε ∈ N (see Theorem 4.6) and the local maxima at δ = (k + 1/2)ε for k ∈ N.

Finally, a fair comparison of Dirichlet and periodic coupling only makes sense if the overall error is
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essentially dictated by the modeling error (this can be checked using periodic coupling and δ/ε ∈ N, as
then rmod = 0). While this is the case for eC0(L2), the temporal and spatial errors, which are identical in
all experiments, dominate for eL2(H1). Comparing then the measure eC0(L2) reveals that periodic coupling
is more accurate for all δi. Similar results are known for linear homogenization problems, see [51].

7 Conclusion
We have proposed a multiscale method to solve nonlinear monotone parabolic homogenization problems
by combining the implicit Euler integrator (in time) with a numerical homogenization procedure (based
on the heterogeneous multiscale method) coupling macro and micro finite element simulations (in space).

First, we have proved in the general Lp(W 1,p) setting, that the multiscale approximations converge
towards the exact homogenized solution, for which only minimal regularity is assumed, if the effective
model is well-approximated by the upscaling strategy and the mesh sizes of the macro and micro spatial
discretizations as well the time step size tend to zero. Second, in the L2(H1) setting, we derived optimal
a priori error estimates for the contributions of time and space discretization on macro and micro scale
without any structural assumptions on the microscopic heterogeneities. Further, if we assume local
periodicity of the data Aε, the modeling error has been explicitly estimated as well. We note that the
error analysis can be generalized without any difficulties to different boundary conditions in (1) as well
as maps Aε and source terms f smoothly varying in time.

Finally, we have shown that the computational cost of the multiscale method is independent of the
small characteristic size of the micro structure. Thus, the method is well-suited for practical engineering
problems if the quantity of interest involves the homogenized solution. However, the implementation
of the proposed multiscale method still involves systems of nonlinear equations, see Section 6.1. As a
remedy, a linearized variant of the FE-HMM is available in [7], see Section 1 for discussion.
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