
Accelerating Parser Combinators with Macros

Eric Béguet Manohar Jonnalagedda

EPFL, Switzerland
{first.last}@epfl.ch

ABSTRACT
Parser combinators provide an elegant way of writing parsers:
parser implementations closely follow the structure of the
underlying grammar, while accommodating interleaved host
language code for data processing. However, the host lan-
guage features used for composition introduce substantial
overhead, which leads to poor performance.

In this paper, we present a technique to systematically
eliminate this overhead. We use Scala macros to analyse the
grammar specification at compile-time and remove composi-
tion, leaving behind an efficient top-down, recursive-descent
parser.

We compare our macro-based approach to a staging-based
approach using the LMS framework, and provide an expe-
rience report in which we discuss the advantages and draw-
backs of both methods. Our library outperforms Scala’s
standard parser combinators on a set of benchmarks by an
order of magnitude, and is 2x faster than code generated by
LMS.

Categories and Subject Descriptors
D.3.4 [Software]: Programming Languages—Parsing, Op-
timization

General Terms
Languages, Performance

Keywords
Parser combinators, macros, Scala, optimization

1. INTRODUCTION
Parser combinators [27, 14, 15] are an intuitive way to

write parsers. In functional languages such as Scala, they
are implemented as higher-order functions that map an in-
put into a structured representation of this input. Parsers
written in such a way closely mirror their formal grammar

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from Permissions@acm.org.
Scala’14 July 28–29, 2014, Uppsala, Sweden
Copyright 2014 ACM 978-1-4503-2868-5/14/07 ...$15.00.
http://dx.doi.org/10.1145/2637647.2637653.

description. Moreover, as they are embedded in a host
language, they are modular, composable, and readily exe-
cutable.

The main reason why parser combinators are not widely
adopted is that they suffer from extremely poor performance
(see Section 4). This is because the abstractions that allow
for expressivity have a high running time overhead. Despite
its declarative appearance, a grammar description is inter-
leaved with input handling, and so while input is processed,
parts of the grammar description are rebuilt over and over
again.

Let us note, however, that parser composition is mostly
static. Before running a parser on an input, we have full
knowledge about the structure of the parser itself. If we
are able to dissociate composition from input processing at
compile time, we can eliminate the overhead of the former
away, leaving behind an efficient parser that will simply run
on the input. In other words, we should be able to turn a
parser combinator into a parser generator at compile-time.
This gives us the best of both worlds: the composability,
modularity and expressiveness of a host language coupled
with the performance of a generator approach.

In the Scala ecosystem, there are two main approaches
to compile-time optimizations and rewrites. The traditional
way is to implement a compiler plugin. The main disad-
vantage of such an approach is that it exposes the full in-
ternals of the Scala compiler. A developer needs to know
a lot about Scala’s compiler trees, which are more general
(less domain-specific) than the production rules of a gram-
mar description. This also makes other domain-specific opti-
mizations (for example grammar rewrites for left recursion)
more cumbersome to implement.

An alternate approach is to use metaprogramming tech-
niques, such as multi-stage programming (staging) [26, 19]
or macros [5]. Such techniques allow us to operate with a
much more high-level description of a parser program, ren-
dering the implementation a lot easier and extensible.

In this paper, we present an implementation of parser
combinators that uses Scala macros to eliminate the over-
head of composition at compile-time. From a user’s point of
view, a parser can be written as easily as when using Scala’s
standard parser combinator library. In particular, we make
the following contributions:
• We use Scala macros to separate static composition of

parser combinators from the dynamic input processing
at compile time. This is done in a two-phase transform.
A parser is written inside a FastParser context, a macro,
that closes the parser world. During the first phase,

7

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/148006288?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

we analyse the parser structure and inline production
rules so that the parser is simplified to contain a chain
of elementary combinators (Section 3.1).
• During the inlining step, we also handle recursive parsers

and parser calls across different FastParser contexts. In
the second phase, we expand the definitions of elemen-
tary combinators, using quasiquotes [23] (Section 3.2).
• This transformation is not trivial for higher-order com-

binators like flatMap. We analyse the body of the func-
tion passed to the combinator and expand it as nec-
essary (Section 3.4). We also handle production rules
that take parameters (Section 3.5).
• We evaluate our macro-based library on a HTTP parser,

a CSV parser and a JSON parser. We compare our
performance against 3 implementations: the standard
library, a staging based implementation in the LMS
framework [11] and Parboiled2 [6], a parser combina-
tor library that also uses macros (Section 4).
• We provide an extended experience report on improv-

ing parser combinator performance with Scala macros,
and using staging and the LMS framework [19, 20].
We discuss advantages and drawbacks of both meth-
ods (Section 5).

Section 6 discusses related work, and we conclude in Sec-
tion 7. Before delving into the macro-based implementation,
we give some background on parser combinators and Scala
macros.

2. BACKGROUND
Before describing our macro-based implementation, we

quickly introduce parser combinators and macros.

2.1 Parser Combinators
Parser combinators are functions from an input to a parse

result. A parse result is either a success or a failure. Figure 1
shows an implementation for parser combinators in Scala.
We create a Parsers trait that acts as the context in which
parser combinators are implemented. Note that we abstract
over the element type (Elem), and the input type (Input). Input

is itself a type alias for a Reader, which is an interface for
accessing tokens in a sequence or a stream. A simple Reader

can be defined over an array of characters, or a string. The
basic element type is a Char in this case.

Some of the important combinators include flatMap, which
binds a parse result to a parser. This is the monadic bind
operator for parser combinators; it allows us to make deci-
sions based on the parse result of a previous parser. The
alternation combinator ‘|’ parses the right-hand side parser
only if the left side parser fails. The map combinator trans-
forms the value of a parse result. Finally, the ‘~’ combinator
does sequencing, where we are interested in the results of
the left and the right hand side. We also define a helper
function for creating parsers more easily.

In the rest of this paper, in addition to the combinators
present in Figure 1, we will use the following combinators:
• lhs ~> rhs succeeds if both lhs and rhs succeed, but we

are only interested in the parse result of rhs

• lhs <~ rhs succeeds if both lhs and rhs succeed, but we
are only interested in the parse result of lhs

• rep(p) repeatedly uses p to parse the input until p fails.
The result is a list of the consecutive results of p.
• repN(n,p) uses p exactly n times to parse the input. The

result is a list of the n consecutive results of p.

trait Parsers {
type Elem
type Input = Reader[Elem]
abstract class ParseResult[T]

case class Success(res: T, next: Input)
extends ParseResult[T] {

def isEmpty = false
}
case class Failure(next: Input) extends ParseResult[T] {
def isEmpty = true

}

abstract class Parser[T]
extends (Input => ParseResult[T]) {

def | (that: Parser[T]) = Parser[T] { pos =>
val tmp = this(pos)
if(tmp.isEmpty) that(pos)
else tmp

}

def flatMap[U](f: T => Parser[U]) = Parser[U] { pos =>
val tmp = this(pos)
if(tmp.isEmpty) Failure(pos)
else f(tmp.res)(tmp.next)

}

def map[U](f: T => U) = Parser[U] { pos =>
val tmp = this(pos)
if(tmp.isEmpty) tmp
else Success(f(tmp.res), tmp.next)

}

def ~[U](that: Parser[U]) : Parser[(T,U)] =
for(
r1 <- this;
r2 <- that
) yield (r1, r2)

}

def Parser[T](f: Input => ParseResult[T]) =
new Parser[T] {
def apply(pos: Input) = f(pos)

}
}

abstract class Reader[T] {
def first: T
def next: Reader[T]
def atEnd: Boolean

}

Figure 1: An implementation of parser combinators

8

• repsep(p,q) repeatedly uses p interleaved with q to parse
the input, until p fails. The result is a list of the results
of p. For example, repsep(term, ",") parses a comma-
separated list of terms, yielding a list of these terms.

We can now define an elementary parser for characters,
which accepts a character based on a predicate.

trait CharParsers extends Parsers {
def acceptIf(p: Char => Boolean) = Parser[Char] {

in =>
if (!in.atEnd && p(in.first))

Success(in.first, in.rest)
else Failure(in)

}

def accept(c:Char) = acceptIf(x => x == c)
}

We give a short example for parsing a sequence of string
literals separated by commas, and enclosed in square brack-
ets. An example input would be ["hello", "world"] :

object StringParser extends Parsers with CharParsers
{
def repToString(p: Parser[Char]): Parser[String]
= rep(p) map { xs => xs.mkString }

def stringLit: Parser[String] = (
’"’ ~> repToString(acceptIf(_ != ’"’))
<~ ’"’) map(x => ’\"’ + x + ’\"’)

def stringList: Parser[List[String]] =
’[’ ~> repsep(double, ",") <~ ’]’

}

We first create an instance of the Parsers trait and mix in
CharParsers to be able to use combinators that parse charac-
ters, specifically. Parsing a string literal amounts to parsing
the opening quote, repeatedly parsing non-quote characters,
and finally the closing quote. To parse a sequence of literals,
we make use of the repsep combinator.

Abstraction Penalties.
The functional implementation shown in Figure 1 leads to

poor performance, because:
• The execution of a parser goes through many indirec-

tions. First and foremost, every parser is a function.
Functions being objects in Scala, function application
amounts to method calls. A composite parser, com-
posed of many smaller parsers, when applied to an
input, not only constructs a new parser at every ap-
plication, but also chains many method calls, which
incurs a huge cost due to method dispatch. The use of
higher-order functions incurs this cost as well.
• We construct many intermediate parse results during

the execution of a parser: for every combinator, we box
the parse, plus the position, into a ParseResult object,
before manipulating its fields. Inlining by itself will not
rid us of these intermediate data structures: for one,
recursive parsers are very common, and the control
flow of a parser has many split and join points in the
form of conditionals.

In summary, it is precisely the language abstraction mecha-
nisms that enable us to compose combinators that are hin-
dering our performance.

2.2 Scala Macros
Scala Macros [5] bring meta-programming capabilities to

the Scala language. Just like in other languages like Lisp

import MyParsers._

val jsonParser = FastParser {
def value: Parser[Any] = obj | arr | stringLit |

decimalNumber | "null" | "true" | "false"
def obj: Parser[Any] = "{" ~> repsep(member, ",") <~ "}"
def arr: Parser[Any] = "[" ~> repsep(value, ",") <~ "]"
def member: Parser[Any] = stringLit ~ (":" ~> value)
}

Figure 2: A simple JSON parser

and Racket, a macro is a metaprogram that is executed at
compile time. When a macro is invoked, it exposes internals
of the Scala compiler API, thereby allowing us to manipulate
and transform expression trees. There are many different
flavors of Scala macros, which enable manipulation of types
as well as terms. In this paper, we are concerned only with
the most basic form, def macros. Here is an example of a
def macro:

def mul(a: Int, b: Int) = macro mul_impl
...
def mul_impl(c: Context)(a: c.Tree, b: c.Tree) = b match {
case q"2" => q"$a << 1"
case _ => ...

}

The mul function defers its implementation to the mul_impl

function, which is a macro, as the preceding keyword in-
dicates. This function gets a context as a parameter, in
addition to the two operands, which are now in AST form.
We then pattern match the tree using quasiquotes (string
literals of form q""), and provide an optimized implemen-
tation using quasiquotes. Quasiquotes simplify expression
matching and rewriting by allowing us to use Scala syntax.

There are two variants of def macros [3]:
• Blackbox macros act like any ordinary Scala function.

They are well typed, in that the macro has to respect
the signature of the declaration. For a user, there is
no difference between calling an ordinary function and
a blackbox macro.
• Whitebox macros are more powerful. They differ from

blackbox macros in that they are not bound to a spe-
cific type signature. They have a return type but they
can refine it. This allows us to generate new types
at compile time. For example, they can be used to
implement Type Providers [5, §4.2].

Current implementation restrictions in Scala Macros force
us to separate macro implementations and their usage into
different compilation units. Hence, in the rest of the paper,
we will refer to these two worlds as the macro world and the
external world, respectively.

3. MACRO-BASED COMBINATORS
We now describe the implementation of our macro-based

parser combinator library. Let us first look at an example
use case of this library. Figure 2 shows an implementation
of a JSON parser. We import functionality from a MyParser

object, which gives us access to the combinators, as well
as a FastParser scope. We then declare our parser inside a
FastParser scope. This parser looks very similar to a stan-
dard parser combinator implementation [16, Chapter 31]. A
JSON object is either:
• a primitive value, such as a decimal, string literal, a

9

//the interface
object MyParsers extends BaseParsers[Char, String]
with TokenParsers with RepParsers ... {
def FastParser(rules: => Unit): FinalFastParser =
macro MyParsersImpl.FastParser

}

//BaseParsers contains basic combinators
trait BaseParsers[Elem, Input] {
...
implicit class BaseParserHelpers[T](p1: Parser[T]) {
@compileTimeOnly("can’t be used outside FastParser")
def ~[U](p2: Parser[U]): Parser[(T, U)] =
throw new NotImplementedError

}
}

//interface for token parsers
trait TokenParsers { ... }

//the implementation
class MyParsersImpl(val c: Context) extends BaseParsersImpl
with TokenParsersImpl with RepParsersImpl
with RulesTransformer with RulesInliner
with FlatMapImpl with RuleCombiner
with StringInput with IgnoreParseError {

def FastParser(rules: c.Tree): FinalFastParser = ...
}

trait ParserImplBase {
def expand(tree: c.Tree, rs: ResultsStruct): c.Tree = ...

}
trait BaseParsersImpl extends ParserImplBase { ... }
trait TokenParsersImpl extends ParserImplBase { ... }
...

Figure 3: Interface and Implementation

boolean or the null value.
• or an array of values (the arr function).
• or an associative table of key-value pairs (the obj func-

tion).
We can then call the value production rule (hence referred to
as rule) as follows:

val cnt = "{\"firstName\": \"John\"," +
"\"age\": 25}"

jsonParser.value(cnt) match {
case Success(result) =>
println("success :" + result)

case Failure(error) =>
println("failure : " + error)

}

The separation between external and macro worlds men-
tioned in the previous section drives our architecture. We
distinguish between what a user of the library sees, the inter-
face, and the macro world where combinators are optimized,
the implementation. Figure 3 shows this separation. The
MyParsers object is the entry point to the interface. We mix
in, among many traits, the BaseParsers and the TokenParsers, as
we want to work with input strings, where single elements
are Chars. This is reminiscent of the StringParser object in the
previous section.

Each interface trait we mix in provides access to var-
ious combinators. The BaseParsers trait, for instance, de-
fines the sequence combinator ‘~’. Note that this throws
a NotImplementedError: it is just a dummy declaration. Such
declarations are present solely to allow a user to compose

parsers in a type-safe manner. The @compileTimeOnly annota-
tion ensures that a user will get an error message at compile
time if this combinator is not used in the FastParser context,
and that the error will never be thrown.

This FastParser scope is where all the magic happens. It
is a whitebox macro that takes a set of rules, transforms
and optimizes them, and finally returns an object which
is a subtype of FinalFastParser. This object contains opti-
mized implementations for every rule defined in the FastParser

scope. Using a whitebox macro allows us to refine the type
of this object, so that its rules can be called from outside.
Had we used blackbox macros instead, calling the value rule
from jsonParser in the above example would have resulted in
a compile-time error.

In the implementation layer, the MyParsersImpl class also
mixes in functionality for transforming parsers and expand-
ing combinators:
• traits RulesTransformer and RulesInliner contain implemen-

tations for preprocessing rules (Section 3.1).
• traits BaseParsersImpl, TokenParsersImpl, RepParsersImpl and

FlatMapImpl contain rule expansion functionality (Sec-
tion 3.2). They extend the ParserImplBase trait, which
defines an expand function.
• the RuleCombiner trait combines rules defined in the FastParser

macro into a final object (Section 3.3).
• the StringInput trait indicates that we will work with

inputs in the form of strings. For discussion of other
forms of input, we refer the reader to Section 3.6.
• the IgnoreParseError trait shows that we ignore any form

of error reporting. Our implementation also contains
a basic modular error reporting facility which can be
turned on by mixing in a DefaultParseError trait.

In short, the macro-based library consists of an interface,
which users declare their parsers against, and an implemen-
tation corresponding to the interface. The main restriction
is that parsers must be declared inside a FastParser context.
We now delve into how we optimize the rules inside the
FastParser macro.

3.1 Rule Transformation
We have seen that the above interface contains dummy

declarations of combinators. Intuitively, we want to imple-
ment these combinators in the macro world, using quasiquotes.
A simple, local replacement of combinators by more efficient
code is not sufficient, however. Consider parser1 in Figure 4.
If, for rule2, we simply expand the sequence combinator, we
are still left with a call to rule1. While running the parser,
this will still result in performance overhead due to a func-
tion call. It is preferable for the body of rule1 to be expanded
here.

In order to permit a more global optimization for combi-
nators, before the macro expansion step (see Section 3.2),
we first perform a preprocessing step. This step consists of
walking through each rule in a depth-first manner. When-
ever we encounter a rule on the path, we inline its right-hand
side. After this phase, rule2 is rewritten as

def rule2 = ’d’ ~ (’a’ ~ ’b’)

Of course, we need to be careful with recursive parsers. We
use the classic technique of tracking rules that we have seen
so far. The decision to inline a rule is then based on whether
we have seen it before (recursive call) or not. Mutually re-
cursive parsers are handled in the same way, as we perform

10

val parser1 = FastParser {
def rule1 = ’a’ ~ ’b’
def rule2 = ’d’ ~ rule1
def rule3 = ’y’ ~ rule4
def rule4 = rule3 | ’x’

}

val parser2 = FastParser {
def rule1 = ’c’ ~ parser1.rule2

}

Figure 4: Calling external rules

this preprocessing step for every rule. Therefore, rule3 and
rule4 in figure 4, being mutually recursive, are left untouched.

External Calls.
A rule could call a production defined in another FastParser

scope. In Figure 4, rule1 in parser2 calls rule2 defined in parser1

because we prefix rule2 by parser1. This functionality is very
useful if we want to reuse optimized parsers different in dif-
ferent libraries: parser1 could be defined in a completely dif-
ferent package.

During, the preprocessing phase, we take such external
calls into account. When we encounter code with the pattern
parser.rule(args) we do the following:
• We check whether parser is a subtype of FinalFastParser.

Recall that the FastParser macro will expand parser1 into
an instance of this class.
• We then check that rule is defined on this object, and

whether it has been given the right arguments. More-
over we obtain its transformed AST which is contained
in a @saveAST annotation (see section 3.3).
• When both conditions above hold, we can inline the

body of rule as per the conditions described above. In
the running example, parser2.rule will get transformed
into

def rule1 = ’c’ ~ (’d’ ~ (’a’ ~ ’b’))

When replacing a call to an external rule by its AST,
one has to be careful to also prefix each rule call prop-
erly so that the correct rule is called: parser1.rule1 is
different from parser2.rule1. So we rewrite the right-
hand side ’d’ ~ rule1 as ’d’ ~ parser1.rule1 first.

Note that parser1 has to be expanded before parser2. This
is because we need access to a real type in order to call
the rules, otherwise parser1 would only see an object of type
FinalFastParser which does not contain any methods. FastParser

being a whitebox macro, the real type is revealed only after
macro expansion. Thus the Scala compiler would not even
let us compile code where parser1 called a rule defined in
parser2. This is also the reason why mutually recursive calls
between parsers in different FastParser scopes are disallowed.

3.2 Rule Rewriting
Now that the preprocessing and rule inlining step is done,

we can expand the implementation of primitive combinators.
The meat of the rewriting is done by the expand function given
in Figure 3. This function takes as arguments the tree of the
code to be expanded, and a ResultsStruct, which handles parse
results (see below for more details). Recall that we want to
minimize variable creation for each parse result, and that a
parse result also contains a flag indicating success or failure

trait BaseParsersImpl extends ParserImplBase {

override def expand(tree: c.Tree, rs: ResultsStruct):
c.Tree = tree match {
case q"$lhs ~[$_] $rhs" => q"""
${expand(lhs, rs)}
if (success) {
${expand(rhs, rs)}

}
"""

case q"$lhs | [$_] $rhs" => ...
...

}
...

}

Figure 5: Implementation of expand for the ‘~’ combi-
nator

var success = false
var result1 = ’ ’
var result2 = ’ ’
...
if (inputpos < inputsize && input(inputpos) == ’a’){
result1 = ’a’
inputpos += 1
success = true
}
else {
success = false
error = "expected ’a’ at " + inputpos
}
if (success){
if (inputpos < inputsize && input(inputpos) == ’b’){
result2 = ’b’
inputpos += 1
success = true
}
else {
success = false
error = "expected ’b’ at " + inputpos
}
}

Figure 6: Expanded code for ’a’ ~ ’b’

of a parse. We manually separate both concerns here. The
ResultsStruct contains parse result information. For indicating
success or failure we generate a global success variable.

During the expansion of combinator implementations, the
success variable needs to be set to true or false based on the
success of the current parser. Figure 5 shows the implemen-
tation of expand for the sequence combinator. Note that we
use quasiquotes to match this combinator. We recursively
expand the left-hand side $lhs, which will produce a result.
If the result is a success, we match the recursively expanded
right-hand side $rhs. If the result is an error, the parser
stops, and propagates the error upstream. For a parser that
parses the letter ‘a’ followed by the letter ‘b’ (‘a’ ~ ‘b’), we
get the expanded code as shown in Figure 6. We assume a
String input type, thus we also generate variables needed to
handle this type of input:
• inputsize is the length of the input.
• input is the input itself, here of type String.
• inputpos is the current position we are at in the input.

Naturally, it is possible for a user to define his own spe-

11

case q"$a map[$t] $f" =>
r = new ResultsStruct
q"""
${expand(a, results_tmp)}
if (success)
${rs.assignNew(q"$f(${r.combine})", $t)}
"""

Figure 7: Implementation of expand for the map combi-
nator, involving ResultsStruct

cific expansions, if he desires to add some specific optimized
version of a combinator. All that is required is to extend
the ParserImplBase trait and override the expand function.

Managing Parse Results.
As seen in Figure 6 we need to store each temporary re-

sult in a fresh variable. These results must be tracked during
macro expansion, lest they are accessed further in the pars-
ing process. With the sequence combinator, for instance,
we generate two result variables for the left and right hand
sides. But we don’t need to construct the resulting tuple (re-
call that ‘~’ a Parser[(T,U)]) until it is actually used. We track
these dependencies during macro expansion in an instance of
the ResultsStruct class. This class contains methods to create,
combine, assign and track variables for parse results. As the
sequence combinator does not explicitly require any variable
generation (this is done in the recursive expansion of the left
and right hand sides), we show an example use of ResultsStruct
for the expansion of the map combinator in Figure 7. We need
to create a new ResultsStruct before expanding the left hand
side a. This ResultsStruct will collect results produced by a.
If the parse is successful (the success variable will have been
set to true), we first combine the results tracked so far, us-
ing the combine method. We then assign this combined result
to a new result variable (assignNew). If a was a sequencing
of other combinators, the resulting tuple creation would be
generated at the point where the combine function is called.

3.3 Putting it all together
At this point, we have expanded each rule defined in the

FastParser scope. In essence, from a parser description at
the interface level, we have generated an efficient recursive-
descent parser. The final step involves bundling these rules
together in an object, so that the code can be called from
the external world, as in the JSON parser example given at
the beginning of Section 3. As hinted before, we use the
whitebox capabilities of Scala macros to generate a subtype
of FinalFastParser. In this object, we generate a method for
each rule at the interface level. For each rule of the form
def rule(args: ...), we generate a new method with the same
name, adding two extra parameters:

def rule(in: Input,args: ..., offset: Int):
ParseResult[T]

The in parameter represents the input on which the parser
will be applied, and offset is the position of the input from
where the parsing should begin. The return type is ParseResult[T],
where T is the return type of the original rule.

We also need to anticipate any external calls to the rules
we are generating. Recall that in section 3.1, we use the
@saveAST(tree) annotation to get the original tree of the rule.
This annotation is added during the packing up phase to

new FinalFastParser {
//original definitions, preserved for composition
@compileTimeOnly("can’t be used outside FastParser")
def rule1: Parser[(Char, Char)] =

throw new NotImplementedError
@compileTimeOnly("can’t be used outside FastParser")
def rule2: Parser[(Char, (Char, Char))] =

throw new NotImplementedError

//expanded definitions
def rule1(input: Array[Char],offset: Int):
ParseResult[(Char, Char),String] @saveAST(’a’ ~ ’b’) = ...

def rule2(input: Array[Char],offset: Int):
ParseResult[(Char, (Char, Char)),String]

@saveAST(’a’ ~ rule1) = ...
}

Figure 8: The resulting FinalFastParser from expanding
parser1 in Figure 4

each expanded rule. The tree parameter contains the code
of the transformed rule (before expansion). This way when
we identify an external call we can obtain its inlined AST.
Figure 8 shows the final generated object for the parser de-
fined in Figure 4.

We now describe how to handle non-trivial combinators,
such as flatMap, and rules that take extra parameters.

3.4 The flatMap Combinator
The flatMap combinator, as seen in Section 2, produces a

new parser by taking a function from a result to a parser.
It allows for context-sensitive parsers, such as a parser that
reads an integer n, followed by n characters:

FastParsers {
def rule = number flatMap { n => take(n) }

}

Applying rule on the input ”5abcdefg” will return ”abcde”.
Naturally, we would like to apply transformations to the
function passed as argument to the flatMap combinator as
well. The above example would trigger a compileTimeOnly error
otherwise.

Recall the signature of flatMap:

def flatMap[U](f: T => Parser[U]): Parser[U]

In our implementation, we restrict f to be either an anony-
mous lambda function, or a partial function. In either case,
the last statement of a lambda, or the last statements of
each case in a partial function are of type Parser[U]. Using
this knowledge, we can expand the use of a flatMap combina-
tor. When we encounter a pattern of the form
a.flatMap{ params => body; ret }, we do the following:
• We expand a, by recursively calling the expand function

on it.
• We expand ret: if it is a simple lambda function, we

expand it. If it is a partial function, we recursively
expand the last expression of each case. We create a
new function of the form { params => body; expand(ret) }.
• Finally we apply the result of a to the resulting func-

tion.

3.5 Rules with Parameters
Rules defined in the external world can have parameters,

of course. They are simply Scala methods, taking extra

12

FastParser {
//rules with parameters
def rule1(x: Int) = repN(x, ’b’)
def rule2 = ’a’ ~ rule1(5)

//mutually recursive rules with parameters
def rule3(p: Parser[List[Char]], y: Int): Parser[Any]
= ’a’ ~ p ~ rule4(y)
def rule4(x: Int): Parser[Any]
= rule3(repN(x, ’c’), x + 1) | ’b’

}

Figure 9: Rules with parameters

arguments. Figure 9 shows examples of such rules. Note,
however, that when rules with parameters are called, the
parameters are concrete, or specified. In the example above,
rule2 calls rule1 with a specific parameter (in this case 5).
Therefore, during the preprocessing phase we forward the
concrete arguments to the combinators where they are used.
As a result rule2 is transformed to the following:

def rule2 = ’a’ ~ repN(5, ’a’)

Once again, recursive rules make things more complicated,
as shown with rule3 and rule4. First of all, we cannot pass
primitive combinators like repN(x, ’c’) as is. Recall that their
interface type is Parser[T], and expanded code cannot contain
this type (a @compileTimeError would be raised).

The solution is to first convert rules taking Parser param-
eters into rules that take values of the equivalent expanded
type. The signature of rule3 now becomes

def rule3(in: InputType,
p: (InputType, Int) => ParseResult[List[Char]],
y: Int,
offset: Int = 0): ParseResult[Any]
= ...

For every location where rule3 is called with a specific com-
binator, we create an expanded/optimized function for this
combinator. For the current example, we need to create a
function that contains the expanded equivalent of repN:

def anonymous1(in: InputType, x: Int, offs: Int)
= expanded code for repN(x,’c’)

Finally, we call the modified rule3 function with the gen-
erated function:

rule3(in,
(in: InputType, offs: Int) =>
anonymous1(in, x, offs),
x + 1,
offs)

3.6 Changing the Input Type
It is important to be able to abstract over the type of

input we parse over, as standard parser combinators do, with
type members Elem and Input(Section 2). In our library, the
support for additional input types is also deferred to the
macro world, because we are interested in inlining access to
a current, or next element.

For example if we want to enable parsing over arrays of
integers, we have to create an input trait which extends the
ParserInput trait. We then redefine its functions inputElemType

and the inputType methods. Additionally we can also override
methods defined in ParserInput to modulate the way the input
is accessed. Figure 10 shows a stub implementation of an

trait IntArrayInput extends ParseInput {
import c.universe._

def inputElemType = typeOf[Int]
def inputType = typeOf[Array[Int]]

def initInput(startpos: c.Tree, then: c.Tree) =
q"""
var inputpos = $startpos
val inputsize = input.size
$then

"""

def currentInput = q"input(inputpos)"
...

}

Figure 10: Implementation of IntArrayInput

class InputWindow[Input](val in: Input,
val start: Int,val end: Int){

override def equals(x: Any) = x match {
case s: InputWindow[Input] =>

s.in == in &&
s.start == start &&
s.end == end

case _ => super.equals(x)
}

}

Figure 11: An implementation of InputWindow

input abstraction over arrays of integers.

3.7 Handling Strings
A very common use case for parsers is to parse, and collect,

a copy of part of the input. For example, the combinators
take(n: Int), takeWhile(f: Char => Boolean) or stringLit check that
a part of the input satisfies a certain property, and return
this part of the input. We don’t however need the result un-
til we do something with it. Creating a copy of the input is
therefore a tremendous, and unnecessary, performance over-
head. We can compute this result lazily with what we call an
InputWindow. An InputWindow works exactly like an older version
of the subString method in Java 1.6. It keeps a reference to
the original input as well as the start and end position of the
sliced section. An implementation is presented in figure 11.

4. EVALUATION
Our macro-based library is available online at [2]. We

evaluated it against Scala’s standard parser combinators, a
parser combinator library based on LMS [11] Parboiled2, a
macro-based PEG parser generator [6].

We used Scalameter [18] for benchmarking. This library
handles JVM warmup, and runs tests until stability of per-
formance times. We ran the tests on a laptop with an i7-
3610QM core and 8 GB of RAM running on Windows 7 64
bits with Oracle’s JVM version 1.7. We use the -optimize flag
on the Scala compiler. We tested three different parsers:
• A HTTP header parser that parses 100 headers.
• A CSV parser, specialized for two different type of val-

ues: booleans, doubles and strings.
• A JSON parser, where we run tests on 4 small JSON

files (from 8 to 80kb) and one larger file (898kb)

13

Figure 12: Performance of parsers for JSON

Figure 13: Performance of parsers for HTTP

All files are first loaded into an Array[Char] and passed to all
the parsers.

The Scala’s parser combinators library uses by default a
CharSequence to read its input. This class makes extensive
use of the substring method which is in O(n) starting from
JVMs version 7. Obviously, using this version of CharSequence
would completly skew the results as substring is called a very
large number of times during the parsing. This is why we
use a modified version of CharSequence which mimics the old
implementation of String.substring [1].

Our results are presented in Figures 12, 13 and 14. We
measure the throughput of parsing in each case. As we can
see, our macro-based implementation performs on average
19 times better than Scala’s Parser combinators, more than
3 times better than Parboiled2 and even 2 times faster than
the LMS version.

While Parboiled2 is also a macro-based solution, we be-
lieve our better performance is mainly due to the prepro-
cessing step (Section 3.1). Optimized handling of string lit-
erals, as well as removal of error handling, help us as well.
Moreover, in Parboiled2, results are stored in an explicit
stack, implemented as a VectorBuilder[Any]. Accessing values
on this stack involves casting, which induces an overhead

Figure 14: Performance of parsers for CSV

Figure 15: Performance breakdown with respect to
various features

14

not present in our implementation.
LMS is also a code generation framework as well, so tech-

nically we should be able to get similar performance with
LMS as with our macro-based library. This is indeed the
case when parsing CSV files. Because we operate closer to
the generated code with macros (see Section 5 for more
details) we are able to fine-tune performance more easily.

Figure 15 gives a breakdown of how different optimiza-
tions affect the performances of our JSON parser. Disabling
error reporting doubles the performance. This is normal as
we track less information while parsing. On top of that, we
gain an extra 30% with the preprocessing phase. Finally,
using Array[Char] instead of String gives us a gain of 15%.

5. STAGING AND MACROS
As Burmako et al. point out [5, §4.1], the staging approach

and the macros approach share many interesting similarities,
beyond the fact that they are two approaches to metapro-
gramming, and that one is a runtime code generation ap-
proach while the other does compile-time code generation.
We illustrate and compare some of the similarities and dif-
ferences between both approaches in the context of parser
combinators, with respect to DSL development, closed vs.
open worlds and code generation guarantees.

5.1 Lightweight Modular Staging
Lightweight Modular Staging (LMS) is a type-directed

staging framework for developing embedded DSLs in Scala.
Running an LMS program generates an optimized program
(runtime code generation), which in turn runs efficiently on
dynamic input. Staged and unstaged computations are dis-
tinguished by a Rep[T] type constructor. An expression of
type T will be executed at staging time, while an expression
of type Rep[T] will be generated. As an example, consider the
following functions:

def add1(a: Int, b: Int) = a + b
def add2(a: Rep[Int], b: Rep[Int]) = a + b

The add1 function gets executed during code generation,
producing a constant in the generated code, while add2 rep-
resents a computation that will eventually yield a value of
integer type, and is represented as an intermediate node
Add(a,b).

5.2 DSL Development
Both the macro and LMS implementations distinguish be-

tween interface and implementation. This is very natural:
we are essentially creating a deep embedding for a parser
combinator DSL, and this involves separating what a user
sees from how the library is optimized. The core LMS li-
brary provides interfaces, IR nodes and code generation for
many common programming constructs. These constructs
include conditionals, boolean expressions, arithmetic expres-
sions and array operations, and can be used out of the box.

As a result, staged parser combinators are implemented
entirely at the interface level: for instance the sequence com-
binator’s implementation mirrors the standard implementa-
tion (Figure 1). At code generation time, the for expression
is converted into a conditional expression structure similar
to the quasiquotes implementation.

The important benefit of being able to write implemen-
tations at the interface level is that we stay in the same
language, or domain. Though quasiquotes enable rewriting

trees using Scala syntax, they have the syntactic overhead
of quotes and splicing which are avoidable at the library
level. Moreover, a user could introduce his own optimized
combinators directly at the interface level: this potentially
increases his flexibility and productivity.

5.3 Closed vs. Open Worlds
The benefits above are largely due to the fact that LMS

operates under the assumption of a fully closed world. Every
construct used at the interface level in LMS either uses a
corresponding implementation, or defines one, along with
appropriate code generation. Such an approach allows for
many advanced optimizations, such as inlining of higher-
order function calls (for instance the map combinator), or even
target heterogeneous hardware, through cross-language code
generation [4]. This also means, however, that external code
cannot be called easily from an LMS DSL. One could not,
for instance, use a special HashMap unless we first define its
interface, implementation, and code generation.

The macros approach allows to cross the open and closed
world borders much more easily. As, in addition, quasiquotes
target Scala trees, it is much easier to replace unstaged holes
in a program with implementations from a Scala library. For
example, the LMS parser combinator library uses the con-
cept of staged records [11, §3.4]; there is currently no equiva-
lent in the macro world. We can nonetheless use simple case
classes, and forego this specific optimization, in the macro
world. In essence, macros allow us to optimize locally, and
defer to Scala trees when we do not know how to treat a cer-
tain computation. This allows not only for flexibility when
developing with macros, but also enables re-use of external
tools and libraries.

An interesting solution to bridge the gap between open
and closed worlds is to use a front-end such as Yin-Yang [12],
where shallow embeddings (libraries) are mapped to their
deep embeddings (embedded performance-oriented DSLs) in
a macro. Yin-Yang transforms code whenever it can find a
deep embedding, and generates a default Scala tree when a
deep embedding cannot be found.

5.4 Code Generation Guarantees
From a DSL developer perspective, the LMS framework’s

IR is extremely powerful. As mentioned before, DSL expres-
sions are not immediately executed, but first converted into
an IR. This IR guarantees preservation of evaluation order
of expressions. A DSL developer using macros would have
to handle such issues himself. For parser combinators such
properties are easy to ensure, but it would not be so simple
for other DSLs. This is because macros provide a lot more
liberty to a developer, and as the adage says, with great
power comes great responsibility. It is conceivable, however,
to build abstractions on top of macros to help preserve these
guarantees. In other words, macros could be considered as
the code generation component on top of which a staging
framework like LMS could be built.

6. RELATED WORK

Parsing.
Parser combinators and their implementations are popu-

lar in functional programming. They were initially proposed
by Wadler to illustrate monads, and are of the more general
sort, as they produce a list of possible parses [27]. They

15

have since been incorporated into programming languages
as libraries, like Parsec [14] in Haskell and the libary in
Scala [14]. These libraries focus on producing a single re-
sult. Koopman et al [13] use a continuation-based approach
to eliminate intermediate list creation. Such combinator li-
braries have been extended to handle a bigger class of gram-
mars: packrat parsers support left recursion [8, 28], and
there are also combinators that do GLL parsing [21, 25].

On the other hand are parser generators like Yacc [10],
Antlr [17] and Happy [9]. While such tools are good in
terms of performance, they do not easily support context-
sensitivity, which is required in protocol parsing.

Just like the staged parser combinator approach [11], the
macro-based approach bridges the gap between both worlds
in terms of features for a parser: ease of use, context-sensitivity,
composability, specializability and performance.

Metaprogramming and Compiler Technology.
To match performance of lower-level implementations, high-

level languages require compiler technology. The staged
parser combinator approach makes use of multi-stage pro-
gramming [26] to evaluate overhead away. Sperber et al.
also use partial evaluation for optimising LR parsers which
are implemented as a functional-style library [24].

Using macros to generate parsers is not a new idea. A
lot of work has been done in the Scheme world: for instance
Owens et al. generate lexers and parsers at compile time
using DFA and LALR tables [22]. The main difference with
our approach is that we use of reified ASTs to enable split-
ting a grammar across multiple parser blocks.

As stated before Parboiled2 [6] also use macros to pro-
duce an efficient parser which speeds-up parsing consider-
ably compared to Scala’s standard parser combinators. Their
macro expansion, however, is local to a single rule, while we
can optimize a whole parser.

7. CONCLUSION AND FUTURE WORK
We have shown how to use Scala Macros for improving

the performance of Parser Combinators. For a library user,
the expressivity of using standard combinators is preserved.
At compile time, parsers declared inside a macro scope are
transformed so as to generate an efficient parser from the
declaration. Performance evaluation shows that we outper-
form the standard implementation, and also beat a staging-
based implementation. We also explored the differences be-
tween the macro and the staging approaches, from an im-
plementation, and architecture point of view.

In terms of future work we see the following possibilities:
• Macros open up possibilities for better error handling

for parser combinators. Since the structure of parsers
can be explored at compile time, we can generate more
meaningful error messages, and also perform better er-
ror recovery.
• Macros can also be used to inject profiling for parser

combinators. Because we are interested in profiling af-
ter all, a domain-specific profiler would come in handy.
• We can naturally extend the approach to other classes

of parsers, such LR, LALR, GLL [21] or Earley [7]
parsers.
• In terms of DSL development, it would also be interest-

ing to explore the sweet spot between open and closed
world approaches more closely. Building better ab-
stractions around macros could be a way of restricting

certain types of unsafe behaviour but allowing more
flexibility when using optimized libraries.

Acknowledgements
We would like to thank our colleagues at the programming
methods lab (LAMP) at EPFL for many discussions and
insightful comments regarding Scala Macros. We thank the
anonymous reviewers whose remarks helped us improve the
quality of the paper. This research was sponsored by ERC
under the DOPPLER grant (587327).

8. REFERENCES
[1] FastCharSequence: Mimics java 1.6 substring in a

charsequence.
https://issues.scala-lang.org/browse/SI-7710.

[2] FastParsers: A macro-based parser combinators
libraray. https:
//github.com/begeric/FastParsers/tree/experiment.

[3] Macros: Blackbox vs whitebox.
http://docs.scala-lang.org/overviews/macros/

blackbox-whitebox.html.

[4] K. Brown, A. Sujeeth, H. Lee, T. Rompf, H. Chafi,
and K. Olukotun. A heterogeneous parallel framework
for domain-specific languages. In 20th International
Conference on Parallel Architectures and Compilation
Techniques (PACT), 2011.

[5] E. Burmako. Scala Macros: Let Our Powers Combine!
In 4th Annual Workshop Scala 2013, 2013.

[6] M. Doenitz and A. Myltsev. Parboiled2: A
macro-based peg parser generator for scala 2.10+.
http://parboiled2.org/.

[7] J. Earley. An efficient context-free parsing algorithm.
Commun. ACM, 13(2):94–102, Feb. 1970.

[8] B. Ford and M. F. Kaashoek. Packrat parsing: a
practical linear-time algorithm with backtracking,
2002.

[9] A. Gill and S. Marlow. Happy: The parser generator
for haskell, 2010.

[10] S. C. Johnson. Yacc: Yet another compiler-compiler.
Technical report, 1979.

[11] M. Jonnalagedda, T. Coppey, S. Stucki, T. Rompf,
and M. Odersky. On Staged Parser Combinators for
Efficient Data Processing. Technical report, 2014.

[12] V. Jovanovic, V. Nikolaev, N. D. Pham, V. Ureche,
S. Stucki, C. Koch, and M. Odersky. Yin-yang:
Transparent deep embedding of dsls, 2013.

[13] P. Koopman and R. Plasmeijer. Efficient combinator
parsers. In In Implementation of Functional
Languages, LNCS, pages 122–138. Springer-Verlag,
1998.

[14] D. Leijen and E. Meijer. Parsec: Direct style monadic
parser combinators for the real world. Technical
report, 2001.

[15] A. Moors, F. Piessens, and M. Odersky. Parser
combinators in scala, 2008.

[16] M. Odersky, L. Spoon, and B. Venners. Programming
in Scala: A Comprehensive Step-by-step Guide.
Artima Incorporation, USA, 1st edition, 2008.

[17] T. J. Parr and R. W. Quong. Antlr: A predicated-ll(k)
parser generator. Software Practice and Experience,
25:789–810, 1994.

16

[18] A. Prokopec. Scalameter: Automate your performance
testing today. http://scalameter.github.io/.

[19] T. Rompf and M. Odersky. Lightweight modular
staging: a pragmatic approach to runtime code
generation and compiled dsls. In GPCE, pages
127–136, 2010.

[20] T. Rompf, A. K. Sujeeth, N. Amin, K. J. Brown,
V. Jovanovic, H. Lee, M. Jonnalagedda, K. Olukotun,
and M. Odersky. Optimizing data structures in
high-level programs: New directions for extensible
compilers based on staging. In Proceedings of the 40th
Annual ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, POPL ’13,
pages 497–510, New York, NY, USA, 2013. ACM.

[21] E. Scott and A. Johnstone. Gll parse-tree generation.
Sci. Comput. Program., 78(10):1828–1844, Oct. 2013.

[22] O. S. Scott Owens, Matthew Flatt and B. McMullan.
Lexer and parser generators in scheme.

[23] D. Shabalin, E. Burmako, and M. Odersky.
Quasiquotes for Scala. Technical report, 2013.

[24] M. Sperber and P. Thiemann. The essence of lr
parsing. In In Proceedings of the ACM SIGPLAN
Symposium on Partial Evaluation and
Semantics-Based Program Manipulation, pages
146–155. ACM Press, 1995.

[25] D. Spiewak. Generalized parser combinators, 2010.

[26] W. Taha and T. Sheard. Metaml and multi-stage
programming with explicit annotations. Theor.
Comput. Sci., 248(1-2):211–242, 2000.

[27] P. Wadler. Monads for functional programming. In
Advanced Functional Programming, First
International Spring School on Advanced Functional
Programming Techniques-Tutorial Text, pages 24–52,
London, UK, UK, 1995. Springer-Verlag.

[28] R. Warth, J. R. Douglass, T. Millstein, A. Warth,
J. R. Douglass, and T. Millstein. T.: Packrat parsers
can support left recursion. In In: Proc. PEPM, ACM,
pages 103–110, 2008.

17

