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A complete single-neuron model must correctly reproduce the firing of spikes and bursts.
We present a study of a simplified model of deep pyramidal cells of the cortex with active
dendrites. We hypothesized that we can model the soma and its apical dendrite with only
two compartments, without significant loss in the accuracy of spike-timing predictions.
The model is based on experimentally measurable impulse-response functions, which
transfer the effect of current injected in one compartment to current reaching the other.
Each compartment was modeled with a pair of non-linear differential equations and a small
number of parameters that approximate the Hodgkin-and-Huxley equations. The predictive
power of this model was tested on electrophysiological experiments where noisy current
was injected in both the soma and the apical dendrite simultaneously. We conclude that
a simple two-compartment model can predict spike times of pyramidal cells stimulated in
the soma and dendrites simultaneously. Our results support that regenerating activity in
the apical dendritic is required to properly account for the dynamics of layer 5 pyramidal
cells under in-vivo-like conditions.
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1. INTRODUCTION
Partially neglected for a long time, dendrites have been recently
shown to treat synaptic input in a surprising variety of modes
(Stuart et al., 2007). Indeed, experiments have revealed that den-
drites are excitable and that they can generate either sodium
(Golding and Spruston, 1998), NMDA (Schiller et al., 2000) or
calcium (Llinas and Sugimori, 1980) spikes. One particularly
striking example is found in pyramidal cells of deep cortical
layers. In these cells, a coincidence between a back-propagating
action potential and dendritic input can trigger voltage-sensitive
ion channels situated on the apical dendrite more than 300 μm
from the soma (Larkum et al., 1999, 2001). The somatic mem-
brane potential increases only after the activation of dendritic
ion channels. This often resulting in a burst of action potentials.
Bursts in these cells can therefore signal a coincidence of input
from the soma (down) with inputs in the apical dendrites (top).
Such top-down coincidence detection is one computation that is
attributed to dendritic processes. Other allegedly dendritic com-
putations include subtraction (Gabbiani et al., 2002), direction
selectivity (Taylor et al., 2000), temporal sequence discrimination
(Branco et al., 2010), binocular disparity (Archie and Mel, 2000),
gain modulation (Larkum et al., 2004) and self-organization of
neuron networks (Legenstein and Maass, 2011). These computa-
tions rely on the dendrite acting as an excitable subunit (Polsky
et al., 2004; Stuart et al., 2007).

Models of large pyramidal neurons with active apical dendrites
were first described by Traub et al. (1991) for the hippocam-
pus. This model of the large CA3 pyramidal neurons included

voltage-dependent conductances on the dendrites. It is a model
based on the Hodgkin-Huxley description of ion channels. Cable
properties of dendrites are taken into account by segmenting the
dendrite into smaller compartments. The resulting set of equa-
tions is solved numerically. A simplified version of this model
was advanced by Pinsky and Rinzel (1994). They have reduced
the model to a dendritic compartment and a somatic compart-
ment connected by an effective conductance. The model has a
restricted set of five ion channels and accounts for bursting of CA3
pyramidal cells.

Models specific to deep cortical cells have been described by
extending the approach of Traub et al. (1991); Schaefer et al.
(2003) used morphological reconstruction to define compart-
ments. This model could reproduce the top-down coincidence
detection.

Using a simplified approach similar to Pinsky and Rinzel
(1994), Larkum et al. (2004) have modeled dendrite-based gain
modulation. The parameters in the model could be tuned to
quantitatively reproduce the firing rate response of layer 5 pyra-
midal cells stimulated at the soma and the dendrites simultane-
ously. Larkum et al. (2004) concluded that a two-compartment
model was sufficient to explain the time-averaged firing rate.

A more stringent requirement for neuron model validation,
however, is to predict spike times (Keat et al., 2001; Pillow
et al., 2005; Jolivet et al., 2006, 2008a,b; Gerstner and Naud,
2009). Given the low spike-time reliability of pyramidal neu-
rons, spike time prediction is compared to the intrinsic reliability
(Jolivet et al., 2006). This approach can be seen as predicting
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the instantaneous firing rate (Naud et al., 2011). Generalized
integrate-and-fire models can predict instantaneous firing rate
of layer 5 pyramidal neurons with substantial precision (Jolivet
et al., 2008a; Gerstner and Naud, 2009; Naud et al., 2009) in the
absence of dendritic stimulation. The question remains whether
a neuron model can predict the spike times of layer 5 pyrami-
dal neurons when both the dendrites and the soma are stimulated
simultaneously.

We present a study of a simplified model of layer 5 pyra-
midal cells of the cortex with dendrites excitable with cal-
cium spikes (Larkum et al., 2004, 2009). Following Larkum
et al. (2004), we hypothesized that we can model the soma
and its apical dendrite with two compartments, without sig-
nificant loss in the accuracy of spike-timing predictions. We
introduce experimentally measurable impulse-response func-
tions (Segev et al., 1995), which transfer the effect of current
injected in one compartment to current reaching the other. The
impulse-response functions replace the instantaneous connec-
tion used in previous two-compartment models (Pinsky and
Rinzel, 1994; Larkum et al., 2004) and acts as a third, passive,
compartment. Each compartment was modeled with a pair of
non-linear differential equations with a small number of param-
eters that approximate the Hodgkin-and-Huxley equations. The
predictive power of this model was tested on electrophysiolog-
ical experiments where noisy current was injected in both the
soma and the apical dendrite simultaneously (Larkum et al.,
2004).

2. METHODS
Methods are separated in four parts. First we present the model,
second the experimental protocol, then fitting methods and
finally the analysis methods.

2.1. DESCRIPTION OF THE MODEL
Figure 1 shows a schematic representation of the two-
compartment model. In details, the model follows the system of
differential equations:

Cs
dVs

dt
= −gs(Vs − Es) + αm + Is

+
∑

{t̂i}
IA(t − t̂i) + εds ∗ Id (1)

Cd
dVd

dt
= −gd(Vd − Ed) + g1m + g2x + Id

+
∑

{t̂i}
IBAP(t − t̂i) + εsd ∗ Is (2)

τm
dm

dt
= 1

1 + exp
(
−Vd−Em

Dm

) − m (3)

τx
dx

dt
= m − x (4)

τT
dVT

dt
= −(VT − ET) + DT

∑

{t̂i}
δ(t − t̂i) (5)

FIGURE 1 | Schematic representation of the two-compartment

model. (A) Somatic and dendritic compartment communicate through
passive and active propagation. Passive communication filters through a
convolution (denoted by an asterisk) the current injected in the other
compartment. Active communication in the soma introduces a
perturbation proportional to the dendritic current ICa. Active
communication to the dendrites introduces a stereotypical
back-propagating action potential current (BAPC). The somatic
compartment has spike-triggered adaptation and a moving threshold.
The dendritic compartment has an activation current and recovery
current. (B) Associated experimental protocol with current injection both
in soma and apical dendrite of layer 5 pyramidal cells of the rat
somato-sensory cortex. Variables are defined in the main text.

where Is is the current injected in the soma, Id the current
injected in the dendrites, Vs is the somatic voltage, Vd is the
dendritic voltage, m is the level of activation of a putative cal-
cium current (ICa = g1m), x is the level of activation of a puta-
tive calcium-activated potassium current (IK(Ca) = g2x), VT is
the dynamic threshold for firing somatic spikes, IA is a spike-
triggered current mediating adaptation, IBAP is the the current
associated with the back-propagating action potential, εsd is the
filter relating the current injected in the soma to the current
arriving in the dendrite and εds is the filter relating the cur-
rent injected in the dendrite to the current arriving in the soma.
The spikes are emitted if Vs(t) > VT(t) which results in t̂(last) =
t while Vs → Er and t → t + τR. The parameters are listed in
Table 1.

As a control, we also consider an entirely passive model of
dendritic integration. In this model, the current injected in the
dendrite is filtered passively to reach the soma. The generalized
passive model has an instantaneous firing rate:

λ(t) = λ0 exp

⎛
⎝κs ∗ Is + κds ∗ Id +

∑

{t̂i}
ηA(t − t̂i)

⎞
⎠ (6)

where λ0 is a constant related to the reversal potential, κs somatic
membrane filter, κds is the filter relating the current injected in the
dendrite to the voltage change in the soma, and ηA is the effective
spike-triggered adaptation.
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Table 1 | List of parameters and their fitted value for the

two-compartment model.

Variable Value Units

Somatic leak conductance gs 22 nS

Somatic capacitance Cs 379 pF

Somatic reversal potential Es −73 mV

Threshold baseline ET −53 mV

Spike-triggered jump in threshold DT 2.0 mV

Time-constant of dynamic threshold τT 27 ms

Maximum “Ca” current g1 567 pA

Maximum effect of “Ca” current in soma α 337 n.u.

Dendritic leak conductance gd 22 nS

Dendritic capacitance Cd 86 pF

Dendritic reversal potential Ed −53 mV

Time-constant for variable m τm 6.7 ms

Time-constant for variable x τx 49.9 ms

Sensitivity of “Ca” Current Dm 5.5 ms

Maximum “K(Ca)” Current g2 −207 pA

Half-activtion potential of “Ca” current Em −0.6 mV

2.2. EXPERIMENTAL PROTOCOL
Animal handling was in strict accordance with the guidelines
given by the veterinary office of the canton Bern-Switzerland.
Parasagittal brain slices of the somato-sensory cortex (300–350 m
thick ) were prepared from 28–35 day-old Wistar rats. Slices were
cut in ice-cold extracellular solution (ACSF), incubated at 34◦C
for 20 min and stored at room temperature. During experiments,
slices were superfused with in ACSF at 34◦C. The ACSF con-
tained (in mM) 125 NaCl, 25 NaHCO3, 25 Glucose, 3 KCl, 1.25
NaH2PO4, 2 CaCl2 , 1 MgCl2 , pH 7.4, and was continuously
bubbled with 5% CO2/95% O2. The intracellular solution con-
tained (in mM) 115 K+-gluconate, 20 KCl, 2 Mg-ATP, 2 Na2-ATP,
10 Na2-phosphocreatine, 0.3 GTP, 10 HEPES, 0.1, 0.01 Alexa 594
and biocytin (0.2%), pH 7.2.

Recording electrodes were pulled from thick-walled (0.25 mm)
borosilicate gla-ss capillaries and used without further modifi-
cation (pipette tip resistance 5–10 M	 for soma and 20–30 M	

for dendrites). Whole-cell voltage recordings were performed at
the soma of a layer V pyramidal cell. After opening of the cel-
lular membrane a fluorescent dye, Alexa 594 could diffuse in
the entire neuron allowing to perform patch clamp recordings
on the apical dendrite 600–700 μm from the soma. Both record-
ings were obtained using Axoclamp Dagan BVC-700A amplifiers
(Dagan Corporation). Data was acquired with an ITC-16 board
(Instrutech) at 10 kHz driven by routines written in the Igor
software (Wavemetrics).

The injection waveform consisted of 6 blocks of 12 s. Each
block is made of three parts: (1) one second of low-variance
colored noise injected only in the soma, (2) one second of low-
variance colored noise injected only in the dendritic injection site,
(3) ten seconds of high-variance colored noise whose injection
site depends on the block: In the first block, the 10-s stimulus is
injected only in the dendritic site, the second block delivers the
10-s stimulus in the soma only, and the four remaining blocks
deliver simultaneous injections in the soma and the dendrites.

The colored noise was simulated with MATLAB as an Ornstein-
Uhlenbeck process with a correlation time of 3 ms. The six
blocks make a 72 s stimulus that was injected repeatedly with-
out redrawing the colored noise (frozen-noise). Noise is frozen
across repetitions to estimate intrinsic reliability, but not across
blocks to ensure independent test set and training set. Twenty
repetitions of the 72-s stimulus were carried out, separated by
periods of 2–120 s. Out of the twenty repetitions, a set of seven
successive repetitions were selected on the basis of high intrinsic
reliability.

2.3. FITTING METHODS
Each kernel (κs, κds, ηA, εds, εsd, IA, IBAP) is expressed as a lin-
ear combination of non-linear basis (i.e., κs(t) = ∑

i aifi(t)). The
rectangular function was chosen as the non-linear basis. The
parameters weighting the contributions of the different rectan-
gular functions are then linear in the derivative of the membrane
potential for the two-compartment model and generalized linear
for the passive model.

For the two-compartment model, we use a combina-
tion of regression methods and exhaustive search to max-
imize the mean square-error of the voltage derivative. The
regression methods are similar to those previously used for
estimating parameters with intracellular recordings. These
methods are described in more details in Jolivet et al.
(2006); Paninski et al. (2005); Mensi et al. (2012); Pozzorini
et al. (2013). First, we distinguish two types of parame-
ters, the parameters that can be expressed as a linear func-
tion of the observables and the parameters that cannot. For
instance, the parameter gs is linear in the observable dVs/dt
(Equation 1). Similarly, the amplitudes ai defining the fil-
ters are also linear parameters. There is a total of four non-
linear parameters in the two-compartment model, namely τm,
Dm, Em, τx.

The fit of the somatic compartment essentially follows (Jolivet
et al., 2006) but using multi-linear regression to fit the linear
parameters. The fit of the dendritic compartment needs to iter-
ate through the restricted set of non-linear parameters. All fits
are performed only on the part of the data restricted for train-
ing the model. Each step in the fitting procedure uses the entire
training set.

1: Fit of the dendritic compartment, knowing the injected cur-
rents and the somatic spiking history:

1a: Compute the first-order estimate of dVd/dt;
1b: Find the best estimates of the dendritic parameters lin-

ear in dVd/dt given a set of non-linear parameters (τm,
Dm, Em, τx). The best estimates are chosen through
multi-linear regression to minimize the mean square error
of dVd/dt.

1c: Compute iteratively step 1b on a grid of the non-linear
parameters (τm, Dm, Em, τx) and find the non-linear
parameters that yield the minimum mean square error of
dVd/dt.

2: Fit of the somatic compartment using the fitted dendritic
compartment.
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2a: Compute the first-order estimate of dVs/dt.
2b: Find the best estimates of the somatic parameters linear in

dVs/dt given a set of non-linear parameters (DT , τT , ET).
The best estimates are chosen through linear regression to
minimize the mean square error of dVs/dt.

2c: Compute iteratively step 2b on a grid of the non-linear
parameters and simulate the model with each set of non-
linear parameters in order to compute the coincidence rate

 (see Section 2.4).

2d: Take the parameters that yield the maximum 
 coincidence
factor.

For the generalized linear model, we use maximum likelihood
methods (Paninski, 2004; Pillow et al., 2005). Expressing the ker-
nels as a linear combination of rectangular bases we recover the
generalized linear model. Here the link-function is exponential so
that the likelihood is convex. We therefore performed a gradient
ascent of the likelihood to arrive at the optimal parameters.

2.4. ANALYSIS METHODS
When one focuses on spike timing, one may want to apply meth-
ods that compare spike trains in terms of a spike-train metric

(Victor and Purpura, 1996) or the coincidence rate (Kistler et al.,
1997). Both measures can be used to compare a recorded spike
train with a model spike train. A model which achieve an optimal
match in terms of spike-train metrics will automatically account
for global features of the spike train such as the interspike interval
distribution.

Here we used the averaged coincidence rate 
 (Kistler et al.,
1997). The coincidence rate, like most other spike time met-
rics, can be related to the coefficient of correlation between the
instantaneous firing rate of the model and the neuron (Naud
et al., 2011). It can be seen as a similarity measure between pairs
of spike trains, averaged on all possible pairs. To compute the
pairwise coincidence rate, one first finds the number of spikes
from the model that fall within an interval of � = 4 ms after
or before a spike from the real neuron. This is called the num-
ber of coincident events Nnm between neuron repetition n and
model repetition m. The coincidence rate is the ratio of the num-
ber of coincident events over the averaged number of events
0.5(Nn + Nm), where Nn is the number of spikes in the neu-
ron spike train and Nm is the number of spikes in the model
spike train. This ratio is then scaled by the number of chance
coincidences NPoisson = 2�NmNn/T. This formula comes from

FIGURE 2 | The two-compartment model fits qualitatively and

quantitatively the electrophysiological recordings. (A,B) Overlay of the
model (red) and experimental (black) somatic voltage trace. The dashed
box indicates an area stretched out for higher precision. (C,D) The
overlay of model (red) and experimental (blue) dendritic voltage is shown
for the stretched sections in (A,B). Left (A,C) and right (B,D) columns
show two different injection regimes contrasting by the amount of
dendritic activity which is high for (A,C) and medium for (B,D). (E)

Residuals from the linear regression are shown for the somatic (black)

and dendritic (blue) compartment. (F) For each repetition the 


Coincidence factor is plotted against the intrinsic reliability of the cell.
Gray points show the performance of the model on the test set and
black points show the performance of the model on the training set. (G)

Comparison of the inter-spike interval histogram for the model (red) and
the experiment (black). (H) Comparison of the generalized passive (Pas),
and the full two-compartment model (Full) with the intrinsic reliability (R)
of the neuron in terms of the 
 coincidence factor. The averaged 


factor is shown for the training set (black) and test set (Gray).
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the number of expected coincidences assuming a Poisson model
at a fixed rate Nm/T where T is the time length of each individual
spike trains. The scaled coincidence rate is


nm = Nnm − NPoisson

0.5(1 − NPoisson/Nn)(Nn + Nm)
. (7)

The pairwise coincidence rate 
nm is then averaged across all pos-
sible pairings of spike trains (trials) generated from the model
with those from the neuron and gives the averaged coincidence
rate 
. Averaging across all possible pairings of spike trains from
the neuron with a distinct repetition of the same stimulus given
to the same neuron gives the intrinsic reliability R.

3. RESULTS
Dual patch-clamp recordings were performed in L5 Pyramidal
cells of Wistar rats (see Experimental Methods). A simplified
two-compartment model (see Model Description) was fitted on
the first 36 s of stimulation for all repetitions. The rest of the
data (36 s) was reserved to evaluate the model’s predictive power.
The predictive power of the two-compartment model with active
dendrites was then compared to a model without activity in
the dendrites (see Section 2.1), the generalized linear passive
model.

Figure 2 summarizes the predictive power of the two-
compartment model. The somatic and dendritic voltage traces
are well captured (Figures 2A–D). The main cause for erroneous
prediction of the somatic voltage trace is extra or missed spikes

(Figures 2A,B lower panels). The dendritic voltage trace of the
model follows the recorded trace both in a low dendritic-input
regime (Figure 2C) and in a high dendritic-input regime with
dendritic “spikes” (Figure 2D). The greater spread of voltage-
prediction-error (Figure 2) is mainly explained by the larger
range of voltages in the dendrites (somatic voltage prediction is
strictly subthreshold whereas dendritic voltage prediction ranges
from −70 to + 40 mV). The interspike interval distribution is well
predicted by the model (Figure 2G).

The generalized passive model does not predict as many spike
times (Figure 2H). The intrinsic variability in the test set was
68% and the two-compartment model predicted 50%. The pre-
diction falls to 36% in the absence of a dendritic non-linearity
(Figure 2H).

The fitted kernels show that spike triggered adaptation is
a monotonically decaying current that starts very strongly
and decays slowly for at least 500 ms (Figure 3A). The back-
propagating action potential is mediated by a strong pulse of
current lasting 2–3 ms (Figure 3B). The coupling εds from den-
drite to soma has a maximal response after 2–3 ms and then
decays so as to be slightly negative after 35 ms (Figure 3C).
The coupling εsd from soma to dendrite follows qualitatively
εds with smaller amplitudes and slightly larger delays for the
maximum and minimum peaks (Figure 3D), consistent with
the larger membrane time-constant in the soma than in the
dendrites.

The two-compartment model can reproduce qualitative fea-
tures associated with the dendritic non-linearity in the apical

FIGURE 3 | Fitted kernels of the two-compartment model. (A) The
kernel IA(t) for spike-triggered adaptation is negative and increases
monotonically between 6 and 600 ms. (B) The back-propagating current
IBAP(t)reaching the dendrites is a short (2 ms) and strong (900 pA) pulse.

(C) The convolution kernel εds(t) linking the current injected in the
dendrite to the current reaching the soma. (D) The convolution kernel
εsd (t) linking the current injected in the soma to the current reaching the
dendrite.
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dendrite of L5 pyramidal neurons. We study two of these fea-
tures: the critical frequency (Larkum et al., 1999) and the gain
modulation (Larkum et al., 2004). The first relates to the criti-
cal somatic firing frequency above which a non-linear response is
seen in the soma, reflecting calcium channel activation in the den-
drites. To simulate the original experiment, we force 5 spikes in
the soma at different frequencies and plot the integral of the den-
dritic voltage. The critical frequency for initiating a non-linear
increase in summed dendritic voltage is 138 Hz (Figure 4A).
Pérez-Garci et al. (2006) reported a critical frequency of 105 Hz
while (Larkum et al., 1999) reported 85 Hz. This appears to vary
across different cells and pharmacological conditions.

The model also appears to perform gain modulation as in
Larkum et al. (2004) (Figure 4B). The relation between somatic
firing rate and mean somatic current depends on the dendritic
excitability. The firing threshold but also the gain (or slope)
of the somatic frequency vs. somatic current curve depend on
the mean dendritic current. The gain modulation is attributed
to a greater presence of bursts (Figure 4B) caused by dendritic
calcium-current activation at higher dendritic input. The link
between burst and dendritic activity is reflected in the burst- and
spike-triggered average injected current (Figures 4C,D) similar
to Larkum et al. (2004). The burst-triggered current is greater
for the dendritic injection, whereas the spike-triggered current is

larger for somatic injection. Therefore bursts signal a higher den-
dritic current that was concomittant with an increased somatic
current. This can be interpreted as a top-down coincidence
detection.

4. DISCUSSION
A dendrite is said active when it sustains either sodium, calcium
or NMDA spikes. Our model reflects calcium spikes in the den-
dritic compartment, but not dendritic sodium spikes or NMDA
spikes. The parameters fitted (Table 1) are in agreement with
voltage-activated calcium channels. An activation sensitivity Dm

of 5 mV is typical of many ion channels, and the time constant
τx of about 50 ms is slower than the high-voltage activated cal-
cium channel which has a time constant of about 10 ms (Gerstner
et al., 2014). The current injection in the apical dendrite presum-
ably does not solicit NMDA spikes known to occur in the apical
tuft (Larkum et al., 2009).

Even if the spike-time prediction is high, the fitted parame-
ters may differ from the real biophyical parameters for various
reasons. First, the fitting method we used avoids local min-
ima combining convex fitting procedures with exhaustive search.
Even if the steps in the procedure are convex, the sequence of
such steps may not be convex. Therefore the fitted parameters
may reflect a local minimum. Also, the drop in coincidence rate

FIGURE 4 | The model reproduces the qualitative features of active

dendrites reported in Larkum et al. (1999) and Larkum et al. (2004). (A)

Dendritic non-linearity is triggered by somatic spiking above a critical
frequency. Somatic spike-trains of 5 spikes are forced in the soma of the
mathematical model at different firing frequencies. The normalized integral of
the dendritic voltage is shown as a function of the somatic spiking frequency.
(B) Dendritic injection modulates the slope of the somatic spiking-frequency
vs. current curve. The slope of the frequency vs mean somatic current as

measured between 5 and 50 Hz is plotted as a function of the mean dendritic
current. Both somatic and dendritic currents injected are Ornstein-Uhlenbeck
processes with a correlation time of 3 ms and a standard deviation of 300 pA.
(C) Spike-triggered average of the current injected in the soma (black) and in
the dendrites (blue). (D) Burst-triggered average of the current injected in the
soma (black) and in the dendrites (blue). The fact that the blue curve is higher
than the black curve, and that this relation is inverted in (C), may be
interpreted as a top-down coincidence detection by bursts.
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between the training set and the test set indicate that overfit-
ting is present. This could be avoided by using a smaller number
of non-linear bases for the filters, or the use of raised cosine
functions instead of the rectangular ones. Lastly, the filters and
reduced model parameters may lump together different biophys-
ical processes. The particular shape of the filter will depend
on the average membrane potential and the average firing rate.
This is one reason why we did not estimate the filters empir-
ically with a separate set of experiments, but instead we fitted
the model on current injection designed to imitate the natural
condition.

5. CONCLUSION
Using a two-compartment model interconnected with temporal
filters, we were able to predict a substantial fraction of spike times.
The predicted spike trains achieved an averaged coincidence rate
of 50%. The scaled coincidence rate obtained by dividing by the
intrinsic reliability (Jolivet et al., 2008a; Naud and Gerstner, 2012)
was 72%, which is comparable to the state-of-the performance for
purely somatic current injection which reaches up to 76% (Naud
et al., 2009). Comparing with a passive model for dendritic cur-
rent integration, we found that the predictive power decreased
to a scaled coincidence rate of 53%. Therefore we conclude that
regenerating activity in the apical dendrite is required to prop-
erly account for the dynamics of layer 5 pyramidal cells under
in-vivo-like conditions.
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