
Reduction and Abstraction Techniques for BIP

Mohamad Noureddine2?, Mohamad Jaber2, Simon Bliudze1, and
Fadi A. Zaraket2

1 Ecole Polytechnique Fédérale de Lausanne, Station 14, CH-1015, Lausanne,
Switzerland; E-mail: simon.bliudze@epfl.ch

2 American University of Beirut, Beirut, Lebanon;
E-mails: {man17,mj54,fz11}@aub.edu.lb

Abstract. Reduction and abstraction techniques have been proposed to
address the state space explosion problem in verification. In this paper,
we present reduction and abstraction techniques for component-based
systems modeled in BIP (Behavior, Interaction and Priority). Given
a BIP system consisting of several atomic components, we select two
atomic components amenable for reduction and compute their prod-
uct. The resulting product component typically contains constants and
branching bisimilar states. We use constant propagation to reduce the
resulting component. Then we use a branching bisimulation abstraction
to compute an abstraction of the product component. The presented
method is fully implemented. Our results show a drastic improvement in
verifying BIP systems.

1 Introduction

As systems become more complex, verifying their correctness becomes harder,
especially in the presence of state explosion. Researchers have proposed reduction
and abstraction techniques to address this problem [14, 17, 11]. We discuss and
compare to them in Sect. 6.

We target component-based systems (CBS) expressed in the BIP (Behavior,
Interaction and Priority) framework [2]. BIP uses a dedicated language and tool-
set supporting a rigorous design flow. The BIP language allows to build complex
systems by coordinating the behavior of a set of atomic components. Behavior
is described with Labeled Transition Systems (LTS) where transitions are anno-
tated with data and functions written in C. Coordination between components
is layered. The first layer describes the interactions between components that
allow synchronization and data transfer. The second layer describes dynamic
priorities between the interactions to express scheduling policies. The combi-
nation of interactions and priorities characterizes the overall architecture of a
system. Moreover, BIP has rigorous operational semantics: the behavior of a
composite component is formally described as the composition of the behaviors

? The presented work was partially realised while this author was at EPFL for a
summer internship.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/148006226?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

of its atomic components. This allows a direct relation between the underlying
semantic model and its (automatically synthesized) implementation.

The BIP framework uses: (1) DFinder [3], a compositional and incremental
verification tool-set, and (2) NuSMV [8] model checker, to verify BIP system
invariants.

In this paper, we present reduction and abstraction techniques for
component-based systems modeled in BIP. Given a BIP system consisting of
several atomic components, our method automatically selects a pair of can-
didate components that have a high reduction potential based on their data
dependencies and their synchronization. Our methods uses component selec-
tion heuristics similar to [19, 9, 10] and provides a user-defined selection API.
Then, our method computes the product of the selected pair of atomic compo-
nents which renders the interaction data transfer operations into transition data
transfer operations. This often uncovers opportunities for constant propagation
in the product component that were hidden before. Moreover, the product oper-
ation results in product transitions of two types: (1) non-observable transitions
involved only in a singleton interaction (i.e., a singleton interaction involves
only one component) and with no actions; (2) observable transitions involved
in either multiparty interactions or in a singleton interaction but with actions.
Non-observable transitions form a branching bisimilar equivalence relation that
partitions the state space. Our Method detects and merges equivalence classes
into representative states resulting in an abstraction of the product component.

The presented techniques are fully implemented. We evaluate our method us-
ing (1) traffic light controller case study and (2) medium to large configurations
of an Automatic Teller Machine (ATM). The results show that our method dras-
tically reduces the state space and enables verifying invariants more efficiently.
In this paper, we make the following contributions:

– We abstract a BIP system with a branching bisimulation equivalence that
we formalize and that leverages observable and non-observable transitions
in the BIP context.

– We provide structural heuristics for selecting candidate pairs of components
amenable for reduction and abstraction.

– We also provide an API for user-defined component selection criteria.
– We formalize the product operation between two BIP components and embed

constant propagation in it.

The rest of the paper is structured as follows. Section 2 discusses needed
background information about BIP. We present the merging and constant prop-
agation techniques in Sect. 3, and the branching bisimulation reduction in Sect. 4.
Section 5 illustrates the results obtained from verifying models reduced using our
method. We summarize related work in Sect. 6 and conclude in Sect. 7.

2 BIP - Behavior, Interaction, Priority

We recall the necessary concepts of the BIP framework [2]. BIP allows to con-
struct systems by superposing three layers of modeling: Behavior, Interaction,

and Priority. The behavior layer consists of a set of atomic components repre-
sented by transition systems. Atomic components are Labeled Transition Sys-
tems (LTS) extended with C functions and data. Transitions are labeled with
sets of communication ports. The interaction layer models the collaboration be-
tween components. Interactions are described using sets of ports. The priority
layer is used to specify scheduling policies applied to the interaction layer, given
by a strict partial order on interactions.

Atomic Components. An atomic component is endowed with a finite set of
local variables X taking values in a domain Data. Atomic components synchro-
nize and exchange data with each others through ports. Below, we will denote by
B[X] the set of boolean predicates over X and by Exp[X] the set of assignment
expressions of the form X := f(X).

Definition 1 (Port). A port p[Xp], where Xp ⊆ X, is defined by a port iden-
tifier p and some data variables in a set Xp (referred to as the support set). We
will also denote this set of variables by p.X.

Definition 2 (Atomic component). An atomic component B is defined as
a tuple (P,L,X, T), where P is a set of ports,3 L is a set of control locations,
X is a set of variables and T ⊂ L × P × B[X] × Exp[X] × L is a transition
relation, such that, for each transition τ = (l, p[Xp], gτ , fτ , l

′) ∈ T , gτ ∈ B[X] is
a Boolean guard over X and fτ ∈ Exp[X] is a partial mapping associating to
some x ∈ X the corresponding expression fxτ (X).

For τ = (l, p[Xp], gτ , fτ , l
′) ∈ T a transition of the LTS, l (resp. l′) is referred

to as the source (resp. destination) location and p is a port through which an
interaction with another component can take place. Transition τ can be executed
only if the guard gτ evaluates to true, and fτ is a computation step: a set of
assignments to local variables in X.

In the sequel we use the dot notation. Given a transition τ =
(l, p[Xp], gτ , fτ , l

′), τ.src, τ.port , τ.guard , τ.func, and τ.dest denote l, p, gτ , fτ ,
and l′, respectively. Also, the set of variables used in a transition is defined as
var(fτ) = {x ∈ X | x := fx(X) ∈ fτ}. Given an atomic component B, B.P
denotes the set of ports of the atomic component B, B.L denotes its set of lo-
cations, etc. Given a set X of variables, we denote by X = {σ : X → Data} the
set of valuations of the variables X.

Semantics of Atomic Components. The semantics of an atomic component is an
LTS over configurations and ports, formally defined as follows:

Definition 3 (Semantics of Atomic Components). The semantics of the
atomic component B = (P,L,X, T) is defined as the LTS SB = (QB , PB ,−→
),4 where QB = L × X, PB = P × X denotes the set of labels, that is, ports

3 All sets are finite
4 Here and below, we omit the index on −→, since it is always clear from the context.

augmented with valuations of variables and −→=
{(

(l, v), p(vp), (l
′, v′)

)
| ∃τ =

(l, p[Xp], gτ , fτ , l
′) ∈ T : gτ (v) ∧ v′ = fτ (vp/v)

}
, where vp is a valuation of the

variables Xp.

Transition (l, v)
p(vp)−−−→ (l′, v′) is possible iff there exists a transition

(l′, p[Xp], gτ , fτ , l), such that gτ (v′) = true. As a result, the valuation of vari-
ables X is updated to v′ = fτ (vp/v), i.e. the values of variables Xp are updated
to vp before the application of f .

Creating composite components. Atomic components interact by synchro-
nizing transitions. Upon synchronization, data values can be transferred between
components.

Definition 4 (Interaction). An interaction a is a tuple (Pa, Ga, Fa), where
Pa ⊆

⋃n
i=1Bi.P is a nonempty set of ports that contains at most one port

of every component, that is, ∀i : 1 ≤ i ≤ n : |Bi.P ∩ Pa| ≤ 1. Denoting by
Xa =

⋃
p∈Pa

Xp the set of variables available to a, Ga ∈ B[Xa] is a boolean
guard and Fa : Xa → Xa is an update function. Pa is the set of connected ports
called the support set of a.

Definition 5 (Semantics of Composite Components). Let B =
{B1, . . . , Bn} be a set of atomic components with their respective semantic LTS
SBi = (QBi , PBi ,−→) (recall, Def. 3, that the states QBi and labels PBi comprise
valuations of data variables); let γ be a set of interactions. The composition of
B with γ is the LTS γ(B) = (Q, γ,→), where Q = QB1

× . . . × QBn
and −→ is

the least set of transitions satisfying the following rule

a =
(
{pi}i∈I , Ga, Fa

)
∈ γ Ga({vpi}i∈I)

∀i ∈ I, qi
pi(vi)−−−−→i q

′
i ∧ vi = F ia({vpi}i∈I) ∀i 6∈ I, qi = q′i

(q1, . . . , qn)
a−→ (q′1, . . . , q

′
n)

where vpi denotes the valuation of the variables attached to the port pi and F ia
is the partial function derived from Fa restricted to the variables associated with
pi.

The meaning of the above rule is the following: if there exists an interaction a
such that all its ports are enabled in the current state and its guard evaluates to
true, then the interaction can be fired. When a is fired, all involved components
evolve according to the interaction and not involved components remain in the
same state.

Finally, we consider systems defined as a parallel composition of components
together with an initial state.

Definition 6 (System). A BIP system S is a tuple (B, Init , v) where B is a
composite component, Init ∈ B1.L × . . . × Bn.L is the initial state of B, and
v ∈ XInit where XInit ⊆

⋃n
i=1Bi.X.

3 Merging and Constant Propagation

In this section we present two techniques merging and constant propagation
in order to reduce the state space of the system. First, we select candidate
components for merging based on a set of heuristics. Then, we apply a constant
propagation technique [16] that will reduce the state space by removing some
data variables.

3.1 Merging components

Throughout this paper, we assume that the input BIP systems have no priority
rules and that all the automata in the BIP atomic components are complete.
An automaton is complete iff in any location, the disjunction of guards of the
outgoing transitions evaluates to true.

Let B be a set of atomic components and γ be an interaction model. Consider
two atomic componentsB1, B2 ∈ B and denote I(B1, B2) = {a ∈ γ | Pa ⊆ B1.P∪
B2.P} the set of interactions involving only B1 and B2; P12 =

⋃
a∈I(B1,B2)

Pa
the set of all ports that are part of some interaction a ∈ I(B1, B2) and pa a
new port corresponding to an interaction a ∈ I(B1, B2). Assume further that all
ports involved in interactions between B1 and B2 are not involved in interactions
with any other atomic components, i.e., for any a ∈ γ, either a ∈ I(B1, B2), or
Pa ∩ P12 = ∅.

Definition 7 (Product Component). Let B1 and B2 be two atomic compo-
nents as above. Their product component is defined by putting prod(B1, B2) =
(P,L,X,−→), where:

– P = B1.P ∪B2.P ∪ {pa | a ∈ Int(B1, B2)} \ Pkl,
– X = B1.X ∪B2.X,
– −→ is the minimal transition relation induced by the following rules,

a ∈ Int(B1, B2) Pa = {p1, p2} l1
(p1,g1,f1)−−−−−−→ l′1 l2

(p2,g2,f2)−−−−−−→ l′2

(l1, l2)

(
pa, g1∧g2∧Ga, (f1∪f2)◦Fa

)
−−−−−−−−−−−−−−−−−−−→ (l′1, l

′
2)

,

{i, j} = {1, 2} p ∈ Bi.P \ P12 li
(p,g,f)−−−−→ l′i l′j = lj

(l1, l2)
(p,g,f)−−−−→ (l′1, l

′
2)

,

– L =
{

(l1, l2) ∈ B1.L×B2.L | ∃(l′1, l′2) ∈ B1.L×B2.L : (l1, l2) −→ (l′1, l
′
2)
}

.

Definition 8 (Component Merging). Let γ(B) be a composite component
and B1, B2 be two atomic components as above. We define the component merg-
ing operation merge(γ(B)) = γ′(B′) with B′ = B ∪ {prod(B1, B2)} \ {B1, B2}
and

γ′ =
(
γ \ I(Bk, Bl)

)
∪
{(
{pa}, true, id

) ∣∣ a ∈ I(Bk, Bl)
}

Several heuristics for selecting candidate components have been presented for
LTS systems with no data transfer [19, 9, 10]. These heuristics consider merging
pairs of components and favor the ones that result in smaller components. Our
method selects candidate components for merging based on a set of heuristics
that take data transfer and component synchronization into consideration.

The first heuristic favors the pairs of components with the largest amount
of date transfer. Intuitively, larger data transfer operations offer more room for
stuck at constant variables that we detect and eliminate using constant prop-
agation. The width of the data transfer considers the type of data variables
(integers are wider than Boolean variable). The second heuristic favors the com-
ponents that are highly synchronized since they produce more compact products.
Intuitively, the product of highly synchronized components results in a large un-
reachable state space that is easily detected.

Our method also supports a merge selection API that users can implement
to rank candidate component pairs. The API passes a pair of components to the
user implementation and the implementation evaluates the pair and returns a
merging rank value. The pair with highest rank is considered for merging.

Product components can be very large which is a problem to compositional
model checking techniques in DFinder and NuSMV. Our method considers the
product of components B1 and B2 if the maximum number of possible transitions
of B1 ×B2 is smaller than a threshold value n1 × n2 ≤ nt where n1 and n2 are
the number of transitions in B1 and B2, respectively.

3.2 Constant propagation

We remove stuck-at-constant data variables by following the basic definition
of constant propagation from [16, 20]. A variable is stuck-at-constant if it is
constant on all possible control locations of an atomic component. Applying
constant propagation as an intermediate step in compositional verification tools
is not novel [15, 12], but up to our knowledge, we are the first to apply it in the
context of BIP systems.

Given a composite component γ({Bi}i∈I) and an atomic component Bk such
that k ∈ I, we construct the composite component γ({Bj}j∈J , B′k) where J = I\
{k} and B′k is an atomic component such that B′k.L = Bk.L, B′k.X = Bk.X\Xc

where Xc ⊆ Bk.X is the set of stuck-at-constant variables in Bk, and B′k.T = T ′

where T ′ is T with each constant variable x ∈ Xc is replaced by its constant
value appropriately.

Definition 9 (Control Flow Graph). The control flow graph (CFG) of an
atomic component B is a directed graph (V,E) where:

– V is a set of vertices, each representing a control location l ∈ B.L and a set
of computational steps in B. We denote by v.l and v.f the control location
and the set of computational steps in v ∈ V , respectively.

– E is a set of edges, such that (v1, v2) ∈ E iff ∃(τ ∈ B.T). (v1.l = τ.src ∧
v2.l = τ.dest) ∧ (v1.f = τ.f ∨ v2.f = τ.f)

Algorithm 1 Algorithm for building CFG of an atomic component

l0 ← initial location of B
finit ← initialization computational steps of B if any
Create vertex vinit s.t. vinit.l = l0 and vinit.f = finit

Create vertex vl0 s.t. vl0 .l = l0 and vl0 .f = φ
Create vertex (vinit, vl0)
V ertices[l0]← vl0
Push l0 on stack
while stack not empty do

l← pop(stack)
Set l as visited
vl ← V ertices[l]
for all τ s.t. τ.src = l do

Create vertex v s.t. v.l = l and v.f = τ.f
Create edge (vl, v)
if τ.dest visited then

Create edge (v, V ertices[τ.dest])
else

Create vertex vdest s.t. v.dest.l = τ.dest and vdest.f = φ
Create edge (v, vdest)
V ertices[τ.dest]← vdest
Push τ.dest on stack

end if
end for

end while

Listing 1 shows the algorithm used for constructing the CFG of an atomic
component B. We create an empty vertex for each control location in B. We
denote by vl the empty vertex corresponding to control location l ∈ B.L. Then
we perform a depth first traversal of the LTS of B. For each control location l,
for every outgoing transition τ , we create a vertex vτ such that vτ .l = l and
vτ .f = τ.f , and create edges (vl, vτ) and (vτ , vτ.dest). The empty vertices can be
easily discarded, but we keep them to simplify the constant propagation step.

Definition 10 (Lattice element). A lattice element is a representation of
static knowledge of the value of a variable x during the execution of a constant
propagation algorithm [20]. A lattice element can have one of three types:

– >: x is likely to have a yet to be determined constant value.
– ⊥: x’s value cannot be determined statically.
– ci: x has the value i.

Definition 11 (Lattice element meet). The meet (t) operation of two lattice
elements is an operation such that: (1) > t any = any; (2) ⊥ t any = ⊥; (3)
ci t cj = ci if i = j; and (4) ci t cj = ⊥ if i 6= j.

Listing 2 shows the constant propagation algorithm. Given an atomic com-
ponent B, we start by constructing the CFG G(B) = (V,E). At each vertex

v ∈ V , a variable is associated with two lattice elements, an entry element and
an exit element. We initialize all variables to have the > lattice element. Vari-
ables that take part in any interaction are directly assigned the ⊥ element since
their values cannot be predicted from the component itself. Visiting a vertex v
consists of computing the entry lattice elements for each variable x ∈ var(v.f).
This is done by performing a meet operation on the exit lattice elements of all
vertices v′ such (v′, v) ∈ E. We then evaluate v.f based on the new entry ele-
ments. The rules for the evaluation of the addition operator on lattice elements
are: (1) >+ (> or ci) = >; (2) ⊥+ any = ⊥; and (3) ci + cj = ci+j . The rules
for the rest of operators follow similarly.

If the evaluation of v.f causes a change in the exit lattice element
of any variable x ∈ B.X, all vertices v′′ such that (v, v′′) ∈ E are
marked for visiting. A fixed point is reached once no further exit el-
ements are changes and no vertices are still marked for visiting. After
reaching the fixed point, we form the set of stuck at constant variables
Xc = {x : x ∈ B.Xand ∀v ∈ V. Entry[v][x] is constant} that have constant
lattice elements at the entry of every vertex. Finally, we construct T ′ =
{(l, p, g′τ , f ′τ , l′) | (l, p, gτ , fτ , l

′) ∈ T} where g′τ and f ′τ are the new guards and
actions. We substitute the Xc variables with their corresponding constant val-
ues in the guards g′τ = gτ [x ∈ Xc/Entry[v][x]] where v.f = fτ . We do the same
for the actions f ′τ = (fτ\ {x := fx(X) | x ∈ Xc})[x ∈ Xc/Entry[v][x]] but after
removing the assignment statements corresponding to Xc variables.

Algorithm 2 Constant propagation algorithm

G← CFG(B)
for all v ∈ G.V do

for all x ∈ var(v.f) do
Entry[v][x]← Exit[v][x]← >

end for
end for
v0 ← G.vinit

Worklist.push(v0)
while Worklist.hasElements do

v ←Worklist.pop()
for all x ∈ var(v.f) do

Entry[v][x]← meet(Exit[v′][x] ∀v′ ∈ G.V s.t (v′, v) ∈ G.E)
end for
for all x ∈ var(v.f) do

Exit[v][x] = evaluate(v.f)
end for
if Exit[v][x]changed then

for all v′′ s.t. (v, v′′) ∈ E do
Worklist.push(v′′)

end for
end if

end while

4 Branching Bisimulation Abstraction

To cope with the increase in the number of control locations introduced by the
component merging process, we apply a branching bisimulation based abstrac-
tion [13]. A branching bisimulation equivalence relation partitions the control
locations into disjoint sets of locations that are branching bisimilar [21]. We re-
call the definition of branching bisimulation for LTS systems from [13] and [5]
and apply it in the BIP context.

Definition 12 (Partition of control locations). Given an atomic component
B, π ⊆ 2B.L is partition of the set of control locations B.L iff (1)

⋃
L∈π L = B.L;

and (2) ∀L′, L′′ ∈ π, L′ 6= L′′ ⇒ L′ ∩ L′′ = ∅

We denote by π(l) the block L ∈ π containing the control location l.

Definition 13 (Non-observable transition). Given a composite compo-
nent γ({Bi}i∈I), an atomic component Bk for k ∈ I, a transition τ =
(l, p, gτ , fτ , l

′) ∈ Bk.T is a non-observable transition iff (1) fτ = ∅; and (2)
∀a = (Pa, Ga, Fa) ∈ γ, p ∈ Pa ⇒ (Pa = {p} ∧ Fa = ∅)

Let ε = {(l1, l2) | ∃τ ∈ Bk.T and τ is non-observable}. The set ε∗ denotes

the reflexive transitive closure of ε. We use the notation l
p−→ l′ for τ =

(l, p, gτ , fτ , l
′) ∈ B.T .

Definition 14 (Branching bisimilarity relation). Given a composite com-
ponent γ({Bi}i∈I), an atomic component Bk for k ∈ I, a relation B =
Bk.L×Bk.L is a branching bisimilarity relation on Bk iff :

– B is symmetric
– Given l, ` ∈ Bk.L, (l, `) ∈ B iff ∀(τ = (l, p, gτ , fτ , l1) ∈ Bk.T),

(l, l1) ∈ ε ∧ (l1, `) ∈ B

∨
∃(l2, `1 ∈ Bk.L), (`1

p−→ l2) ∧ (`, `1) ∈ ε∗ ∧ (l, `1) ∈ B ∧ (l1, l2) ∈ B

We write l1 ∼ l2 when (l1, l2) ∈ B. We denote by πb the partition under the
branching bisimilarity equivalence.

Definition 15 (Quotient branching bisimilar component). Given a com-
posite component γ({Bi}i∈I), and an atomic component Bk for k ∈ I, let B be
the largest branching bisimulation relation over Bk, an atomic component B is
the quotient branching bisimilar component of Bk iff B is the atomic component
with the smallest number of states such that

1. B.L = πb

2. B.T = {(πb(l), p, g, f, πb(l′)) | (l, p, g, f, l′) ∈ Bk.T ∧
(
(l ∼ l′)⇒ ((l, l′) /∈ ε)

)
}

3. B.P = {p | ∃τ = (l, p, g, f, l′) ∈ B.T}

Definition 16 (Branching bisimulation abstraction). Given a composite
component γ({Bi}i∈I) and an atomic component Bk for k ∈ I, we define the
branching bisimulation abstraction operation

abstract(γ({Bi}i∈I)) = γ({Bi}i∈I)|Bk=B

where B is the quotient branching bisimilar component of Bk.

Construction. We follow the signature refinement approach for branching
bisimulation abstraction as presented in [21, 5]. It is based on computing a signa-
ture for each control location l ∈ B.L. At the end of the algorithm, control loca-
tions with the same signature sig(l) are bisimilar with respect to the branching
bisimilarity relation B. Given an atomic component B, we start from an initial
partition π0 = {B.L}. We then keep refining the partition π w.r.t. B until a
fixed point is reached and we are left with a minimal partition πb of B.L.

Definition 17 (Branching bisimulation signature function). Given an
atomic component B and a partition π of B.L, the branching bisimulation
signature function of a control location l ∈ B.L is defined as: sig(l) =

{(p, π(l1)) | ∃l2 ∈ B.L s.t (l, l2) ∈ ε∗ ∧ l2
p−→ l1 ∧

(
(l2, l1) /∈ ε ∨ π(l1) 6= π(l)

)
}

Listing 3 shows the algorithm we used for computing the minimal partition
πb of the control locations B.L; it is a direct adaptation of the single threaded
algorithm presented in [5]. Constructing the quotient atomic component from
the computed partition is a direct translation of Definition 15.

Correctness. Our transformations are readily branching bisimilar by construc-
tion on the LTS level. The work in [4] cites [6] to establish that interactions
(referred therein to as “BIP glue operators”) preserve simulation and bisimu-
lation orders and relations. Our abstraction only considers and removes transi-
tions that do not alter data variables as internal transitions. Thus it preserves
the interactions between the components in the system. Therefore, branching
bisimulation is preserved by our abstraction.

The branching bisimulation abstraction introduces new behaviors as follows.
Observable transitions are allowed to introduce changes to the state of the com-
ponent by changing the values of the internal variables. The branching bismi-
larity relation only considers ports as transition labels and ignores differences in
actions. Thus grouping locations and building the quotient component may in-
troduce new sequences of transitions, especially in the cases where guards on the
transitions are not mutually exclusive. Nevertheless, the interactions between the
different components in the system are preserved, i.e., synchronization between
the components is not affected.

5 Results

We illustrate our method using a traffic light controller case study and evaluate
it using several configuations of medium to large ATM systems .

Algorithm 3 Branching bisimulation abstraction algorithm

BranchingBisimilarityAbstraction(B)
π ← B.L
repeat

π = π′

π′ = refinePartition(B, π)
until π′ = π

refinePartition(B, π)
for all l ∈ B.L do

sig ← ∅
for all l′ ∈ B.L s.t (l, p, g, f, l′) ∈ B.T do

if ((l, p, l′) 6= ε) ∨ (π(l′) 6= π(l)) then
sig ← sig ∪ (p, π(l′))

end if
end for
insertSignature(l, sig)

end for
return {{l′ ∈ B.L | sig(l′) = sig(l)} | l ∈ B.L}

insertSignature(B, π, l, sig)
sig(l)← sig(l) ∪ (sig \ (sig ∩ sig(l))
for all l′ ∈ B.L s.t l′

ε−→ l do
if π(l) == π(l′) then

insertSignature(B, π, l′, sig)
end if

end for

We use the NuSMV [8] model checker to verify the BIP systems before and
after reduction. We report on the number of BDD nodes allocated, and on the
execution time taken to perform the verification. Moreover, we also report on the
execution time taken by DFinder [3] to prove the deadlock freedom of the ATM
design. All experiments are run on a machine with an Intel Core i7 processor
and 4GB of physical memory. We set a time-out for verification of 5000 seconds,
and do not set a limit on the memory usage other than the physical limit of the
machine. We use the default configuration of NuSMV and do not add any further
optimizations. We use the command check fsm to verify deadlock freedom of the
designs.

5.1 Traffic Light Controller

Fig. 1 shows a traffic light controller system modeled in BIP. It is composed of
two atomic components, timer and light. The timer counts the amount of time
for which the light must stay in a specific state (i.e. a specific color of the light).
The light component determines the color of the traffic light. Additionally, it
informs the timer about the amount of time to spend in each location through
a data transfer on the interaction a between the two components.

The interaction a between the components creates a data dependence be-
tween the two. This data dependence hides the fact that the variable n has a
constant value at each location in the timer component. Fig. 2a shows the prod-
uct component of the light and timer components. Since the done ports of the
two components are synchronized, we replace them by a single port donedone.
Subsequently, the interaction a is replaced by an interaction a′ based solely on
the newly created port. Note that this synchronization between the two done

ports renders some transitions in the product automaton obsolete, i.e. they can
never be taken and are thus removed.

Performing constant propagation on the resulting product yields to detecting
that both the variables n and m are constants at each control location. We
replace these variables by their constant values at each control location, and
remove them from the component as shown in Fig. 2b.

t := 0

timer done

[true] done.n := done.m

done
[true] [true]

done
m := 5

done
m := 10

G

YR

m := 3
[true]

done

[t ≥ n]

t := t+ 1

s0

[t < n]
timer

done

Fig. 1: Traffic light in BIP

s0, Ytimer
t := t+ 1

[t < n]

timer

[t < n]
timer
t := t+ 1

[t ≥ n]
donedone

[t ≥ n]
donedone

timer donedone

n := m;m := 5; t := 0;

t := t+ 1

[t < n]

n := m;m := 10; t := 0;

n := m;m := 3; t := 0;
donedone
[t ≥ n]

s0, G

s0, R

(a) Before constant propagation

t := 0;

timer
t := t+ 1

[t < 5]

timer

[t < 3]
timer
t := t+ 1

[t ≥ 10]
donedone

[t ≥ 3]
donedone

timer donedone
t := t+ 1

[t < 10]

donedone
[t ≥ 5]

s0, G

s0, R s0, Y

t := 0;t := 0;

(b) After constant propagation

Fig. 2: The product of the timer and light components

Table 1 shows the results of running NuSMV on the translated BIP models
before and after applying our reduction techniques. The Locations and Transi-
tions columns show the total number of control locations and transitions in the
BIP system, respectively. The BDD Nodes and Time columns show the num-

Before Reduction After Reduction

Locations Transitions BDD nodes Time(s) Locations Transitions BDD nodes Time(s)

4 5 8589 0.0088 1 6 1425 0.0016

Table 1: Results for traffic light controller

ber of allocated BDD nodes and the time taken for verification, respectively.
Using branching bisimulation reduction, we are able to reduce the number of
control locations from 4 to a single location. Although the component merging
operation introduced an increase in the number of transitions, this addition did
not affect neither the number of allocated BDD nodes nor the verification time.
Our method reduced the verification time by a factor of 5 and the number of
allocated BDD nodes by a factor of 6.

5.2 Automatic Teller Machine

An ATM is a computerized system that provides financial services for users
in a public space. Figure 3 shows a structured BIP model of an ATM system
adapted from the description provided in [7]. The system is composed of four
atomic components: (1) the User, (2) the ATM, (3) the Bank Validation and
(4) the Bank Transaction. It is the job of the ATM component to handle all
interactions between the users and the bank. No communication between the
users and the bank is allowed.

l0 l1 l2

l3

l4

l5

l6l7

insert enter

validated
invalid

amount

eject

accept

cancel

success

withdraw

fail fiat

veto transaction

non−authorized validate

authorized

transaction

a
u
th
o
riz

e
d

n
o
n
−
a
u
th
o
riz

e
d

fia
t

v
e
to

validate

insert

eject fail cancel

enter validated amount

a
c
c
e
p
t

su
c
c
e
ss

w
ith

d
ra
w

insertentervalidatedamount

cancel fail eject

w
it
h
d
ra
w

su
c
c
e
ss

a
c
c
e
p
t

l0 l1
validate

x=0

x=x+1

x<2
tick

authorized
x>=1

l0 l1

tick

y<4
y=y+1

fiat
y>=2

y>=2

l0

l1

l2 l3 l4

l5

l6

l7 l8

l9

l10

l11l12

l13

insert

enter

t1=0

t1>1

validate

accept

veto

fiat

successwithdraweject

invalid

fail

non−authorized
t2>=3

amountvalidatedauthorized

t2>=3

tick

t2=0

t1=t1+1

t1<5

tick

cancel

User

ATM
veto

transaction

Bank_Transaction

transaction

t2=t2+1
t2<6

x>=1
non−authorized

Bank_Validation

y=0

Fig. 3: Modeling of ATM system in BIP

The ATM starts from an idle location and waits for the user to insert his
card and enter the confidential code. The user has 5 time units to enter the code
before the counter expires and the card is ejected by the ATM. Once the code
is entered, the ATM checks with the bank validation unit for the correctness of
the code. If the code is invalid, the card is ejected and no transaction occurs.
If the code is valid, the ATM waits for the user to enter the desired amount of
money for the transaction. The time-out for entering the amount of money is of
6 time units.

Once the user enters the desired transaction amount, the ATM checks with
the bank whether the transaction is allowed or not by communicating with the
bank transaction unit. If the transaction is approved, the money is transferred
to the user and the card is ejected. If the transaction is rejected, the user is
notified and the card is ejected. In all cases, the ATM goes back to the idle
location waiting for any additional users. In our model, we assume the presence
of a single bank and multiple ATMs and users.

NuSMV DFinder
Locations Transitions BDD nodes Time (s) Time (s)

ATMs Orig. Red. Orig. Red. Orig. Red. Orig. Red. Orig. Red.

2 50 18 68 32 977,712 542,901 1.4 0.2 3 2

3 73 25 98 44 6,183,118 921,076 142.6 10.3 4 3

4 96 32 128 56 18,630,028 1,893,192 3,360.9 281.3 6 4

5 119 39 158 68 N/A N/A N/A N/A 7 5

10 234 74 308 128 N/A N/A N/A N/A 24 8

50 1,154 354 1,508 608 N/A N/A N/A N/A 267 37

Table 2: Results for ATM system

Table 2 shows the improvement obtained by applying our reduction method
on the ATM design for a number of ATMs ranging from 2 to 50. We show
the number of control locations and transitions before and after applying our
reduction method. We also present the number of allocated BDD nodes and the
verification time in seconds in each case for NuSMV, and the verification time
taken by DFinder to prove deadlock freedom. Note that in all cases, the results
were conclusive and no spurious counter-examples were generated. Our method
reduced by 3 times the number of control locations in the design and by 2 times
the number of transitions. Under NuSMV, it introduced large improvements in
both the number of allocated BDD nodes and the verification time, achieving
10 times reduction for the case of 4 ATMs and 4 users. For number of ATMs
and users higher than 4, NuSMV reached the time-out limit for both designs.
As for DFinder, our method achieved high improvement reaching a speedup of
10 in the case of 50 ATMs and users. Note that in all cases, the time needed to
reduce the designs is negligible.

6 Related Work

Much work has been done on the automatic compositional reduction of com-
municating processes [1, 10, 9, 19]. The techniques revolve around incrementally
composing and minimizing individual components of an input system modulo
an equivalence relation. Most of the techniques focus on finding heuristics for
selecting components to be composed in a way that minimizes the size of the
largest intermediate composed component.

The work in [9] presents a comparative study of three component selection
heuristics. The first is proposed in [19] and aims at finding components such

that the number of transitions that can be removed (hidden) after their parallel
composition is as high as possible. The authors in [9] improve on the heuristics
defined in [19] by introducing metrics to estimate the number of the transitions
that can be removed after parallel composition. Our transformations can make
use of the aforementioned heuristics to select candidate components for merging.
In fact, our supporting tool provides an easy to use programming interface for
adding and testing selection heuristics.

The work in [10] uses the concept of networks of LTSs introduced in [18]
to support compositional reduction using different compositional operators. The
authors use a heuristic similar to the ones presented in [9] to estimate the number
of internal transitions that can be removed after the applying the composition
operators, and compare the obtained metric for possible compositions. Our tech-
nique differs from the work in [10] in that our transformations are solely targeted
towards BIP systems, and need not be as general as the techniques presented
in [10].

Additionally, the idea of computing the product of communicating finite state
machines and then reducing them using a notion of state equivalence is presented
in [1]. The authors propose a method to iteratively multiply the components of
a given design and reduce the product at each iteration using a notion of input-
output equivalence. This leads to the construction of a minimal product finite
state machine representing the entire input system, on which verification is to
be performed. We follow a similar approach to that presented in [1], but we do
not compute the product of the entire system, component merging is based on
a set of user defined heuristics and is done while considering the state explosion
introduced by the product operation.

In [11], the authors address the problem of using program analysis in order to
assist reduction techniques, mainly symmetry reduction, in limiting state-space
explosion in systems composed of multiple communicating processes. Such a sys-
tem is symmetric if its transition relation is invariant under some given permu-
tations of the communicating processes. States in the system that are identical
up to these permutations are considered equivalent, and lead to generating a
reduced system that is bisimilar to the original system. The authors argue that
symmetry reduction is affected by local state explosion in the each of the pro-
cesses, and propose the usage of static analysis techniques such as static local
reachability analysis in order to benefit the efficiency of symmetry reduction. In
our work, we also make use of constant propagation, a static program analysis
technique, in the benefit of reducing the number of internal variables and thus
help the model checker in deciding the problem.

Graf and Steffen [14] focus on presenting a compositional minimization tech-
nique for finite state concurrent systems. This technique makes use of interface
specifications to remove unreachable transitions of the system. Interface speci-
fications are provided by the user and are used to define sets of observable se-
quences at the interfaces between communicating processes. The authors present
a method that takes interface specifications into consideration when performing
iterative composition and minimization, thus avoiding the state-space explo-

sion at the intermediate composition levels. We resemble the aforementioned
approach in that we consider port synchronization between components when
performing merging, thus leading to removing unreachable transitions from the
product component.

Compositional minimization via static analysis (CMSA) [22] selects candi-
date components for minimization using a mincut based algorithm such that the
number of component outputs is significantly smaller that the number of inputs.
CMSA then partitions the state space into equivalence classes relevant to the
outputs, selects representative states of the equivalence classes, and computes
a reduced circuit using a bisimulation based transformation that targets state
space reduction. CMSA is applicable to circuit designs only. Our method dif-
fers in that it works on BIP systems, and resembles CMSA in that it considers
merged components as candidate components, and applies a branching bisimula-
tion abstraction with respects to the ports of the resulting product component.

7 Conclusion

Our work makes contributions to efficiently verify component-based systems
modeled in BIP. First, we select pairs of components amenable for reduction and
abstraction using structural heuristics. Then we merge the selected components
using a product operation and we reduce the resulting component using constant
propagation. Finally, we use abstraction techniques based on merging branch-
ing bisimilar states in order to reduce the size of the system and its complexity.
Spurious counterexamples are detected by translating the counterexample to the
original system and simulating it. Our contributions are complementary to tools
that are used to verify BIP systems such as DFinder and BIP-to-NuSMV. Our
reduction and abstraction techniques are completely implemented in a support-
ing tool that provides an API to specify user defined merging heuristics.

In the future, we plan to extend our work to handle priorities in the BIP
context. We also plan to define feedback guidance to refine the abstraction in
case a spurious counterexample is generated. We also plan to use the component
selection heuristics defined in the literature in our tool, compare them on dif-
ferent designs and propose new heuristics that are targeted towards the efficient
compositional reduction of BIP systems.

References

1. Aziz, A., Singhal, V., Swamy, G., Brayton, R.K.: Minimizing interacting finite state
machines: A compositional approach to language to containment. In: ICCD. pp.
255–261 (1994)

2. Basu, A., Bensalem, S., Bozga, M., Combaz, J., Jaber, M., Nguyen, T.H., Sifakis,
J.: Rigorous component-based system design using the bip framework. IEEE Soft-
ware 28(3), 41–48 (2011)

3. Bensalem, S., Bozga, M., Nguyen, T.H., Sifakis, J.: D-finder: A tool for compo-
sitional deadlock detection and verification. In: Computer Aided Verification. pp.
614–619. Springer (2009)

4. Bliudze, S., Sifakis, J.: A notion of glue expressiveness for component-based sys-
tems. In: CONCUR 2008-Concurrency Theory, pp. 508–522. Springer (2008)

5. Blom, S., Orzan, S.: Distributed branching bisimulation reduction of state spaces.
Electronic Notes in Theoretical Computer Science 89(1), 99 – 113 (2003), {PDMC}
2003, Parallel and Distributed Model Checking (Satellite Workshop of {CAV} ’03)

6. Bloom, B.: Ready simulation, bisimulation, and the semantics of CCS-like lan-
guages. Ph.D. thesis, Massachusetts Institute of Technology (1989)

7. Chaudron, M., Eskenazi, E., Fioukov, A., Hammer, D.: A framework for formal
component-based software architecting. In: OOPSLA. pp. 73–80 (2001)

8. Cimatti, A., Clarke, E., Giunchiglia, E., Giunchiglia, F., Pistore, M., Roveri, M.,
Sebastiani, R., Tacchella, A.: Nusmv 2: An opensource tool for symbolic model
checking. In: Computer Aided Verification. pp. 359–364. Springer (2002)

9. Crouzen, P., Hermanns, H.: Aggregation ordering for massively compositional mod-
els. In: Application of Concurrency to System Design (ACSD), 2010 10th Interna-
tional Conference on. pp. 171–180. IEEE (2010)

10. Crouzen, P., Lang, F.: Smart reduction. In: Fundamental Approaches to Software
Engineering, pp. 111–126. Springer (2011)

11. Emerson, E.A., Wahl, T.: Efficient reduction techniques for systems with many
components. Electr. Notes Theor. Comput. Sci. 130, 379–399 (2005)

12. Garavel, H., Sifakis, J.: Compilation and verification of lotos specifications. In:
PSTV. vol. 10, pp. 359–376 (1990)

13. van Glabbeek, R.J., Weijland, W.P.: Branching time and abstraction in bisimula-
tion semantics. J. ACM 43(3), 555–600 (May 1996)

14. Graf, S., Steffen, B.: Compositional minimization of finite state systems. In: CAV.
pp. 186–196 (1990)

15. Groote, J.F., Ponse, A.: The syntax and semantics of µCRL. Springer (1995)
16. Kildall, G.A.: A unified approach to global program optimization. pp. 194–206.

POPL ’73, ACM, New York, NY, USA (1973)
17. Komuravelli, A., Gurfinkel, A., Chaki, S., Clarke, E.M.: Automatic abstraction in

smt-based unbounded software model checking. In: CAV. pp. 846–862 (2013)
18. Lang, F.: Exp. open 2.0: A flexible tool integrating partial order, compositional,

and on-the-fly verification methods. In: Integrated Formal Methods. pp. 70–88.
Springer (2005)

19. Tai, K.C., Koppol, P.V.: Hierarchy-based incremental analysis of communication
protocols. In: Network Protocols, 1993. Proceedings., 1993 International Confer-
ence on. pp. 318–325. IEEE (1993)

20. Wegman, M.N., Zadeck, F.K.: Constant propagation with conditional branches.
ACM Trans. Program. Lang. Syst. 13(2), 181–210 (Apr 1991)

21. Wimmer, R., Herbstritt, M., Hermanns, H., Strampp, K., Becker, B.: Sigref a
symbolic bisimulation tool box. In: Automated Technology for Verification and
Analysis, LNCS, vol. 4218, pp. 477–492. Springer Berlin Heidelberg (2006)

22. Zaraket, F.A., Baumgartner, J., Aziz, A.: Scalable compositional minimization via
static analysis. In: ICCAD. pp. 1060–1067 (2005)

