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ABSTRACT 
 
Can we predict the diffusion behavior of molecules in confinement by looking at the match 
between the molecule and the structure of the confinement? This question has proven difficult 
to answer for many decades. As a case study, we use methane and a simple model of 
ellipsoids to arrive at a molecular picture that allows us to make a classification of pore 
topologies and to explain their diffusion behavior as a function of loading. Our model is 
surprisingly simple: regarding a structure as consisting of interconnected ellipsoids is enough 
to understand the full loading dependence. 
 
1. INTRODUCTION  
 
The pores of nanoporous materials have sizes similar to the dimensions of molecules 
adsorbed in them and therefore impose a tight confinement. Well-studied though these 
systems are, their diffusion properties remain poorly understood. Over the last decades, 
several techniques have been developed to measure or compute the diffusion in these systems. 
Although it is now often possible to determine the diffusion as a function of adsorbate loading 
rather accurately, a proper understanding of diffusion behavior is still lacking. 

In an elaborate study, comparing the diffusion of four gases in four zeolite topologies, 
Skoulidas and Sholl found widely varying diffusion trends, showing the potential of tuning 
diffusion for industrial processes by adjusting the loading[1,2]. Despite the importance for 
many applications, conventional methods cannot explain when and why, for a given system, 
the diffusion will increase, decrease, or remain constant as a function of loading. In this work, 
we make use of a new Transition-State Theory method in combination with a very simple 
model based on ellipsoids, to present a fundamental understanding of the loading dependence, 
and analyze the molecular factors causing the observed behavior. The methodology applied 
here to methane in various zeolite structures, can be used for any combination of adsorbent 
and adsorbate, including cation-containing structures [3]. 
 
2. METHODS 
 
Diffusion can be considered an activated process, in which the particle hops from one cage to 
the next, and the actual crossing time is negligible compared to the time a particle spends 
inside the cage. One can exploit the large separation in time scales using rare-event simulation 
techniques. We consider a system which can be in two stable states, A and B, with a dividing 
free energy barrier between them. We define a reaction coordinate q, that indicates the 
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progress of the diffusion event from cage A to cage B, as the Cartesian coordinate along the 
axis parallel to the line connecting the center points of A and B. The location of the dividing 
barrier is denoted by q*. In the Bennett-Chandler approach [4-6], one computes the hopping 
rate over the barrier in two steps. First, the relative probability P(q*) is computed to find a 
particle on top of the barrier, given that it is in state A, and subsequently the averaged velocity 
at the top of the barrier mTkB 2/  (assuming that the particle velocities follow a Maxwell-
Boltzmann distribution) and the probability  that the system ends up in state B. 

The transmission rate kA B from cage A to cage B is then given by  
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where  = 1/kBT, kB is the Boltzmann constant, T the temperature, m the mass involved in the 
reaction coordinate, and F(q) the free energy as a function of q. In first order approximation, 
TST assumes that all particles that reach the barrier with a velocity towards B do end up in B, 
i.e.  = 1. 

In dynamically corrected TST (dcTST), the transmission coefficient  corrects for 
recrossing events, i.e. it corrects for trajectories which cross the transition state from A but fail 
to end up in B. In general, the reaction coordinate q is a function of the configuration of the 
whole system, i.e. q = q(r1,  …, rN). However, we can choose q as the position of one of the 
atoms of the diffusing molecules[7]. This choice of order parameter underestimates the free 
energy of the true transition state, but the dynamical correction  is the exact correction 
compensating our choice of reaction coordinate[5]. The recrossings are fast events and can be 
computed using MD as the fraction of particles coming from the initial state A that 
successfully reaches the final state B out of those that cross the dividing surface at t=0. The 
transmission coefficient reaches a clear plateau value as a function of time, indicating all short 
time scale recrossings have been eliminated. 

In the limit of infinite dilution there are no inter-particle correlations and the particles 
perform a random walk on a lattice spanned by the cage-centers. The transmission rates are 
then easily converted to self-diffusion coefficients by: 
 
DS = kA B

2 = 1/6 k 2     (3) 
 
with  the center-to-center lattice distance of the LTA cages (12.2775 ). Because we 
calculate the hopping rate from A to B in one direction only, kA B  = 1/6 k. 

We compute the self-diffusion coefficient directly. This is done by computing the 
hopping rate of a molecule over a typical length-scale  given by the smallest repeating 
zeolite-structure (i.e. from the center of cage A to the center of cage B, implicitly integrating 
over all adsorption sites in the cage, irrespective of whether these are well-defined or not). 
The other particles are regarded as a contribution to the external field exerted on the tagged 
particle. Since we look at a single tagged particle, the diffusion coefficient can still be 
computed from the hopping rate by using Eq. 3 at any loading, rendering it unnecessary to 
perform N-particle kMC simulations. Now, kA B  is the effective hopping rate, including all 
jump correlations and averaged over all orientations and loading fluctuations. The external 
field is maintained by an MC NVT simulation (fixed total number of particles, volume, and 
temperature) in the 'background'. By using an MC approach that includes translational, 
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orientational, and regrow moves, we automatically average over cage distributions, positions, 
and orientations of neighboring molecules. To speed up these simulations for longer 
molecules by several orders of magnitude, these techniques can be combined with the 
configurational bias Monte Carlo (CBMC) approach [6]. 

We now discuss the two steps in the computation of the hopping rate using our approach 
in detail. 

 
The probability P(q) 

During an NVT-ensemble MC simulation at the required loading we measure the free 
energy F(q) by using either the Widom Particle Insertion (WPI) method or Histogram 
Sampling (HS). WPI uses a probe particle that is inserted at random positions, to measure the 
energy required for or obtained by insertion of the particle in the system. This energy is 
mapped onto the reaction coordinate q, using F(q) = -ln‹e- U›N, to produce a free energy 
profile, where ‹e- U›N is the average Boltzmann factor over all positions in the slice 
perpendicular to the reaction coordinate. A "ghost particle" is used as the measuring probe, 
but the other particles in the system do not feel its presence. In the HS method, a histogram is 
made of the particle positions, mapped on the reaction coordinate. From the histogram a free 
energy profile is computed, by using F(q) = -ln‹P(q)›. If needed, statistics can be improved 
by using importance sampling [6]. At higher loadings, WPI is known to give erroneous results 
[6]. At loadings as low as 6 methane molecules per cage the WPI method starts to deviate.  
The transmission coefficient   

We compute the fraction of particles starting on top of the barrier with a velocity towards 
B that successfully reach cage B. Starting configurations are generated using MC with one 
particle constrained to the dividing surface and N-1 particles moving around freely. These 
configurations are then used to compute the ratio in unconstrained NVE-MD simulations, 
starting with velocities sampled from a Maxwell-Boltzmann distribution at the desired 
temperature. For this snapshot cage B contains more molecules than cage A, and the barrier-
molecule has a high probability of recrossing to cage A. In general, the transmission 
coefficient is much lower than one for chain molecules (even at infinite dilution). Note that 
during the computation none of the windows are blocked and simultaneous jumps (e.g. from 
cage C to cage A, and cage D to cage B) are allowed. As is shown in Fig. 1, our extended 
dcTST method and MD agree quantitatively. 

 
Fig 1: DS as a function of loading for methane in LTA, as computed with Molecular Dynamics (MD), 
Transition-State Theory (TST), and dynamically corrected Transition-State Theory (dcTST). 
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3. RESULTS AND DISCUSSION 
 
We use a combination of conventional Molecular Dynamics (MD) calculations and our 

Fig. 2: Normalized D pe zeolites (top, right), and 

We can interpret our results by making use of a very simple concept based on ellipsoids. 
The 

recently proposed dynamically corrected Transition-State Theory (dcTST) method to study 
the diffusion of methane in a variety of zeolite structures. In addition to diffusion coefficients, 
this method can yield an explanation of the diffusion behavior in terms of free energy 
differences. Free energy profiles are computed during an NVT-ensemble MC or MD 
simulation, in which we compute the probability to find a particle at a particular value of the 
reaction coordinate q. DS and DC are obtained for methane in 10 different molecular sieve 
topologies: LTA, CHA, ERI, SAS, AFI, MTW, LTL, MFI, BOG, and BEC; This set 
represents a wide range of different topologies. We focus on methane, since even for this 
simple molecule the diffusion behavior is not understood. The results are shown in Fig. 2 

 
S for cage-type zeolites (top,left), channel-ty

intersecting-channel-type zeolites (bottom, along with DC). 
 

molecular sieve's pores or cavities form confinements that can be considered as 
interconnected ellipsoids. There are three ways to interconnect these ellipsoids (see Fig. 3): 
aligned in a direction perpendicular to the long axis a (left), aligned along a (middle), or 
aligned alternatingly (right). The three basic models form confinement types that we refer to 
as 'cage-type', 'channel-type', and 'intersecting channel-type', respectively, and each of these 
types gives rise to very distinct diffusion behavior. 
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Fig.3: Ellipsoid models used in the explanation of the diffusion behavior in cage-type zeolites (left), 
channel-type zeolites (middle), and intersecting-channel-type zeolites (right). 
 

The cage-type molecular sieves generally consist of large cages, connected by narrow 
windows forming large free energy barriers. Adding a new molecule means less interactions 
with the walls and hence an increase of the free energy of the bottom of the well for methane 
in LTA-type molecular sieve. The influence of particles at the window region is much smaller, 
so that as the structure is being filled up, the net free energy barrier decreases, causing an 
increase in both the self and the transport diffusion coefficient. At very high density, the free 
energy barrier rapidly increases again at the addition of a molecule, caused by packing and 
free-volume effects, which causes the diffusion to slow down again. 

LTA-, ERI-, CHA-, and SAS-type systems all conform to this scenario for the diffusion 
of methane. The increase in both self- and corrected diffusion compared to the infinite 
dilution limit can be a surprising two orders of magnitude. As expected, DC > DS in all cases, 
due to positively contributing correlations present in DC, but not in DS. 

The second class of confinement consists of channel-type molecular sieves. Upon 
insertion of new molecules, again the free energy in the interior of the cage rises, but this time 
the effect on the free energy is even larger at the barriers, mainly due to reduced entropy with 
respect to the cage regions. As a result, the diffusivity (both DS and DC) is a decreasing 
function of loading. The details of the diffusion graph depend on the exact topology of the 
channels. The smoother the channel (i.e. the wider the windows with respect to the cages), the 
steeper the decreasing function will be. In channel-type structures, the amount of collective 
behavior is much higher than in cage-type structures, because the barriers are lower. The 
difference between DS and DC depends on the window size: the smaller the intersection 
between ellipsoids, the larger the ratio DC /DS . 

The third class of confinement is the class of intersecting channel-type structures, of 
which MFI is the most famous example. Any type of structure with channels running in 
different directions that mutually intersect, falls into this category. The barriers are formed by 
the horizontally aligned ellipsoids, creating entropic traps between consecutive vertical 
ellipsoids. The influence of loading in these systems is complex as it involves effects such as 
non-simultaneous freezing in vertical and horizontal ellipsoids/channels, due to differences in 
ellipsoid diameter and length, causing varying degrees of commensurability of the particles 
with the structure, as a function of loading and direction. Here, like in the case of channel-
type molecular sieves, the self diffusion still sharply decreases when the loading is increased, 
but the corrected diffusivity initially only slightly decreases with density, until packing effects 
sharply decrease the corrected diffusivity to zero, causing a kink in the diffusion curve at 
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intermediate loading. The position of the highest free energy barrier is not the same for every 
loading. Importantly, the loading at which the corrected diffusion starts its fast decrease 
corresponds to the loading at which the low-loading highest barrier is overtaken by a barrier 
at a different position, giving rise to a new diffusion regime. 
 
4. CONCLUSION 
 
We have compared the loading-dependent behavior of the self-diffusion and corrected 
diffusion for methane in ten different zeolite topologies, using a new dynamically corrected 
Transition-State Theory model. Based on their characteristics, we can divide these topologies 
into three zeolite groups. Each of the three zeolite groups shows very distinct diffusion 
behavior as a function of loading. The method employed in this study can be used to make a 
classification of pore structures for any given adsorbate molecule.  
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