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Molecular simulations corroborate the existence of the disputed window effect, i.e., an increase in
diffusion rate by orders of magnitude when the alkane chain length increases so that the shape of the
alkane is no longer commensurate with that of a zeolite cage. This window effect is shown to be
characteristic for molecular sieves with pore openings that approach the diameter of the adsorbate.
Furthermore, the physical compatibility between the adsorbate and the adsorbent has a direct effect on
the heat of adsorption, the Henry coefficients, the activation energy, and the frequency factors.
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failed to experimentally corroborate Gorring’s diffu- Further details, including the parameters, are given by
Zeolites are confined systems with pore sizes compa-
rable to the molecular size. These microporous materials
are used for separations, water softeners, and as catalysts
in many (petro)chemical applications. From a scientific
point of view zeolites are ideal systems to study the effect
of confinement on the properties of the adsorbed mole-
cules [1–6]. The effect of confinement on diffusion is still
poorly understood despite its importance for practical
applications. Experimentally this is a very difficult sub-
ject; depending on the experimental technique, the mea-
sured diffusion coefficients may differ by many orders of
magnitude [7].

Zeolites are designated by three capital letter codes
derived from the names of the type materials: ERI
(Erionite), CHA (Chabazite), LTA (Linde Type A), OFF
(Offretite), and MFI (ZSM-5 five). In 1973 Gorring re-
ported an experimental study of diffusion of linear al-
kanes in ERI-type zeolite (a cage/window-type structure)
as a function of chain length indicating a window effect
[8]. Surprisingly, the diffusion rates reportedly increase
significantly going from C8 to C12 before the usual mon-
otonic decrease with chain length sets in. According to
Gorring the diffusion rate exhibits a maximum for C12

because the shape is incommensurate with that of an ERI-
type cage, so that C12 is always inside an ERI-type
window. Smaller molecules are commensurate with the
ERI-type cage and remain trapped in its potential well.

Perhaps the simplest model for molecules that are
either commensurate or incommensurate with the frame-
work structure is the Frenkel-Kontorowa (FK) model [9]
for adsorbed atoms on a periodic substrate. Models based
on the FK theory have been proposed by Ruckenstein and
Lee [10], Derouane, Andre, and Lucas [11], and Nitsche
and Wei [12] to explain the observed increase of the
diffusion coefficient as a function of the chain length
qualitatively. However, due to the simplifications the
quantitative predictions of these models are poor. For
example, these models cannot predict the location and
magnitude of the local maximum, nor can they describe
the inner-cage behavior correctly. Recent attempts [13,14]
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sion data. The discrepancy between the experiments and
the lack of a molecular model that quantitatively explains
the window effect motivated us to develop a molecular
simulation method to quantitatively study diffusion in
cage/window-type geometries.

In this work we focus on self-diffusion of linear al-
kanes in ERI-, CHA-, and LTA-type zeolites as a function
of chain length. These types of zeolites have a cage/
window-type structure with highly tortuous diffusion
paths. The CHA-type cages are slightly shorter than the
elongated ERI-type cages and both cage types are sig-
nificantly smaller than the spherical LTA-type cages.
Conventional molecular simulations are limited to rela-
tively fast diffusing molecules [15,16] or small rigid
molecules [17]. Here, we combine the configurational
bias Monte Carlo (CBMC) method with rare-event mo-
lecular simulation techniques [18,19]. The diffusion co-
efficients are 4–10 orders of magnitude lower than what
currently can be computed by conventional molecular
simulation methods.

We use the united-atom model [20] and consider the
CH3 and CH2 groups as single interaction centers with
their own effective potentials. The beads in the chain
are connected by harmonic bonding potentials. The
bond bending between three neighboring beads is mod-
eled by a harmonic cosine bending potential and changes
in the torsional angle are controlled by a Ryckaert-
Bellemans potential. The beads in a chain separated
by more than three bonds interact with each other through
a Lennard-Jones potential. Lattice vibrations, inter-
growths and defects, cations, and associated aluminum
atoms create strong disorder and complicate the diffu-
sion process. In this work we focus on the influence of
the confinement on the diffusion coefficient and there-
fore we use rigid all-silica ERI-, CHA-, and LTA-type
molecular sieves. In all-silica structures the electric field
does not vary much across the channels and cages, and
Coulomb contributions to the energy of the hydrocarbons
can be neglected. The chains interact with the oxygen
atoms of the zeolite through a Lennard-Jones potential.
 2003 The American Physical Society 245901-1
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FIG. 1 (color online). The reaction coordinate q is defined as
the position of the second bead of a chain mapped orthogonal
to the axis of projection (the line perpendicular to the window).
The resulting free energy profile F�q� indicates a high free
energy barrier at the position of the window q� separating
cages A and B. On the right-hand side we show two pictures:
the unit cell of ERI in 3D (top), and the connectivity of the
cages within the unit cell (bottom). At infinite dilution the
molecules perform a random walk on a lattice spanned by
the cage centers.
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Vlugt, Krishna, and Smit [21] and Maesen et al. [22],
who have shown that with these parameters one can
reproduce the adsorption isotherms, heats of adsorption,
and Henry coefficients of linear alkanes in all-silica
zeolites accurately.

The structures of interest here consist of cages A and B
separated by a narrow window forming a high free en-
ergy barrier. In the Bennet-Chandler approach [18,19,23]
one computes the transmission rate over the barrier in
two steps. First, one computes the probability to find a
chain on top of the barrier and subsequently the trans-
mission coefficient �, defined as the fraction of particles
coming from A that successfully reach B out of those
starting on top of the barrier. At infinite dilution the
chains perform a random walk on a lattice spanned by
the cage centers. The transmission rates are then easily
converted to diffusion coefficients. Transition state
theory (TST) assumes that no recrossing occurs (� � 1)
and predicts a transmission rate kTSTA!B given by

kTSTA!B � �

�����������
kBT
2�m

r
e�
F�q��R

q�
�1 e�
F�q� dq

;

where kB is the Boltzmann constant, T is the temperature,

 � 1=�kBT�, m is the mass of the particle, and F�q� is
the free energy as a function of q. The reaction coordinate
q defines the progress of the diffusion event from cage A
to cage B. We define q� to be the location of the dividing
barrier. The omission of the transmission coefficient � is
not allowed for our systems and we correct the TST
results by computing the transmission coefficients in a
separate molecular dynamics calculation. It is vital to
choose an appropriate reaction coordinate. By trial and
error we concluded that using the second bead of the
chain gave near optimal results for the systems discussed
here. The transmission coefficient is � � 1 for methane
and is within the range � � 0:1–0:3 for other chain
lengths. The more intuitive middle bead and center of
mass gave very small transmission coefficients resulting
in an extremely inefficient computation.

For long chains the conventional techniques are pro-
hibitively expensive. However, the CBMC technique used
to simulate adsorption isotherms [24] can be extended to
compute the free energy of a chain. In a CBMC simulation
chains are grown bead by bead biasing the growth process
towards energetically favorable configurations avoiding
overlap with the zeolite. During the growth the
Rosenbluth factor is calculated. The average Rosenbluth
factor is directly related to the excess chemical potential,
free energy, and the Henry coefficient [19]. The CBMC
algorithm greatly improves the conformational sampling
of molecules and increases the efficiency of chain inser-
tions by many orders of magnitude. To compute the free
energy as a function of the position in the zeolite, chains
are inserted at random positions and grown using the
CBMC scheme. The mapping of the second bead of a
chain is depicted in Fig. 1. A part of the ERI-type silica
245901-2
with cages A and B (connected to other cages) is sliced
half open. We show two examples: a C14 chain in cage A
and a C10 chain in cage B. Free energy values are mapped
onto the one-dimensional free energy profile F�q� by
orthogonal projection of the position of the second bead
onto the line perpendicular to the window.

For most zeolites the diffusion coefficients of linear
alkanes are monotonically decreasing as a function of
chain length [7]. Figure 2 shows a qualitatively different
behavior in ERI- and CHA-type silica. We observe a
range of intermediate chain lengths in which the diffu-
sion coefficient is constant or increases with increasing
chain length, followed by a pronounced local maximum.
Good quantitative agreement with the nondisputed ex-
perimental data for LTA-type zeolite is found, although
one has to realize that the scatter in the experimental data
can be as much as 2 orders of magnitude. We note that the
input of our simulations is the crystal structure of LTA
and the force field, which has been optimized for the
adsorption in MFI-type silica. It is therefore encouraging
that such a good agreement is obtained without any ad-
justment of the parameters. More importantly, our simu-
lation reproduced the chain length dependence and is
consistent with the experimental data of Gorring [8];
we not only confirm the occurrence of a maximum for
both ERI- and CHA-type zeolite at the same carbon
number as observed experimentally, but also the shift of
245901-2
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FIG. 2 (color online). Diffusion coefficients as a function of
chain length at 600 K for ERI-, CHA-, and LTA-type zeolite;
4 ERI-type silica simulation results, � experimental results of
Gorring [8],* Cavalcante et al. [13], � Magalhães, Laurence,
and Conner [14]; 5 CHA-type silica simulation results, � ex-
perimental results of Gorring et al. [26]; � LTA-type silica
simulation results, � experiment compiled in Ref. [7].
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this maximum to lower carbon numbers for CHA-type
silica. The increase in the diffusion rate originating from
the geometry-chain interaction is a remarkable 4 orders
of magnitude for both ERI- and CHA-type silicas.
Additionally, we have computed the activation energies
and frequency factors by fitting the diffusion results at
several temperatures to the Arrhenius law. The simulation
curves in Fig. 3 are qualitatively the inverse of the general
shape of the diffusion curves, i.e., if a chain has a high
mobility the activation energy is low and vice versa. The
frequency factors (data not shown) show a maximum
where the diffusion also shows a maximum and where
the activation energy is at a minimum. Visual inspection
of the simulation snapshots and end-to-end distance his-
tograms show that the chain is stretched across a cage
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FIG. 3 (color online). Activation energies obtained from fit-
ting diffusion simulation results at 300, 400, 500, 600, and
700 K to the Arrhenius law compared to the experimental
results taken from Gorring [8], Cavalcante et al. [13], and
Magalhães, Laurence, and Conner [14].
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tethered at opposite windows: C13 for ERI-type silica, C11

for CHA-type silica, and C23 for LTA-type silica [25].
These chains correspond to the largest chains still able to
fit into a single cage and have the lowest orientational
freedom.

In simulations we are able to extract detailed informa-
tion such as F�q�. The free energy differences for ERI-
type silica are shown in Fig. 4 and are analyzed in terms
of the value inside the cage and the value at the barrier.
For the chains in the cage we observe that as we increase
the chain length the minimum of the free energy de-
creases until we reach an optimum chain length beyond
which the chain no longer fits comfortably in one cage.
For chain lengths longer than this optimum length the
free energy increases rapidly until the chain is so big that
additional beads are added comfortably in the second
cage and the minimum free energy is decreasing again.
For the free energy of a chain on top of the barrier we
observe an increase from C1 to C3, as more beads are
placed on top of the barrier. For C3 all beads feel the
influence of the window. Any additional bead will be
placed in more favorable positions outside the window
and therefore the barrier decreases for C4 and continues to
decrease until the chain is so large that it feels the limi-
tations of the cage. Beyond this chain length the maxi-
mum of the free energy increases rapidly. Combining
these effects gives the generic, nonmonotonic diffusion
behavior. First a decrease followed by a possible plateau,
an increase, and finally a decrease again. Key parameters
in this mechanism are the presence of a narrow window
combined with a cage structure. By optimizing the effec-
tive cage size one can shift the location of the second
maximum to a desired value.

We have argued that the maximum of the diffusion is
related to a relative unfavorable adsorption for this chain
length. This is also reflected in the Henry coefficient as a
function of chain length shown in Fig. 5. At sufficiently
low pressures the number of adsorbed molecules is pro-
portional to the Henry coefficient. The Henry coefficients
are directly related to the minimum of the free energy
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FIG. 4 (color online). The free energy difference between
maximum and minimum for ERI-type silica at 600 K.
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FIG. 5 (color online). Henry coefficients in OFF-, ERI-,
CHA-, and LTA-type silica as a function of chain length at
600 K.
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profile. The data for OFF-type silica shows the common
behavior of many channel-type zeolites. In contrast,
cage/window-type zeolites show a typical nonmonotonic,
periodic dependence of the Henry coefficients on the
chain length. The same applies to the heat of adsorption
(data not shown). The local minima nicely correspond to
the local maxima in the diffusion coefficient. The repeat-
ing period in the Henry coefficients corresponds to chains
fitting into one, two, or three cages, respectively. We note
that the period of LTA-type zeolite is large. The confine-
ment determines the variety of conformations present and
for LTA-type zeolites this entropy effect is large as chains
up to C23 still fit into a single cage. An important argu-
ment against the existence of the window effect was that
experimental data for LTA do not provide evidence in
support of this effect [7]. Experimentally, the maximum
chain length that has been studied is C16. This chain
length is in the plateau region; only for much longer chain
lengths a moderate increase can be expected.

Our simulations show that the window effect is a very
generic effect that can be found in an entire class of
zeolites. When a chain is incommensurate with the cage
structure the diffusion rate increases by orders of magni-
tude. The crossover points at which a chain fits in n cages
and a longer one into �n
 1� cages are directly related to
the local minima in the Henry coefficients, the heats of
adsorption, and the activation energies, and to the local
maxima in the diffusion coefficients and the frequency
factors. Although closely related, this is not necessarily
an exact multiple of the window-to-window distance, nor
is half the window-to-window distance the chain length
which is always commensurate with the cage, as theory
suggests. In fact, there can be more than one minimum of
diffusion per period. From a simulation point of view it is
encouraging that our method allows us to compute very
low diffusion coefficients that vary 6 orders of magnitude
for alkanes ranging from C1 to C20. It is particularly
useful at conditions accessible to neither conventional
245901-4
simulation techniques nor experiments, but where diffu-
sion limitations can be an important factor in under-
standing practical catalytic applications [25].
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