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PRELIMINARY COMMUNICATION

Vapour-liquid equilibria for Stockmayer fluids
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Badhuisweg 3, 1031 CM Amsterdam, The Netherlands

and S. W. DE LEEUW
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(Received 14 July 1989 ; accepted 1 August 1989)

Results of Monte Carlo simulations in the Gibbs ensemble for the vapour—
liquid equilibria of Stockmayer fluids are presented. The vapour-liquid curves,
critical temperatures and critical densities are calculated for dipolar strengths of
u*? = u*/ec® = 1-0 and 2-0. Comparison of these results shows that pertur-
bation theory over-estimates the critical point.

The Stockmayer potential is a convenient model to study the influence of
dipolar interaction on the properties of polar fluids. Although the Stockmayer fluid
has been frequently studied using computer simulation techniques [1-7], an accu-
rate calculation of the vapour-liquid curves has yet to be published. Because the
long-range interactions require substantially more computer time than, for example,
the Lennard-Jones fluid, using the conventional techniques [8] the calculation of the
phase diagram of a Stockmayer fluid would be an enormous task. However, a new
simulation technique proposed by Panagiotopoulos [9-11], which samples the
Gibbs ensemble, drastically reduces the amount of computer time to calculate the
vapour-liquid curve. Using this elegant technique one can obtain from a single
simulation data on the coexisting vapour and liquid phases. In this article we
present the results of Gibbs ensemble simulations for the Stockmayer fluid for
p*? = 1-0 and 2-0. Furthermore, the results of the calculations are compared with
the perturbation theory of Stell et al. [12, 13].

For most of the simulations we have used 216 particles. Close to the critical
temperature and at low temperatures some simulations were performed with 512
particles. The Lennard-Jones potential was truncated at half the box size and the
standard long-tail corrections were added. The long-range dipolar interactions were
handled with the standard Ewald summation technique using ‘tinfoil” boundary
conditions [14]. The Gibbs ensemble simulations were performed in cycles, each
cycle having three steps. In the first step the particles of both boxes were given
successively a new position and new orientation in such a way that approximately
50 per cent of the new configurations were accepted. In the second step the volume
of the sub-systems was changed (keeping the total volume constant) with an accep-
tance of SO per cent. In the final step we have performed N, attempts to exchange
particles between the two boxes. Before each attempt it was decided at random
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Vapour-liquid equilibrium results for the Stockmayer fluid for various dipolar strengths (a)
p*? = 1-0, and (b) u*? = 2-0. T* (=kT/e) is the reduced temperature and p* (= po?) is
the reduced density. The points are the results obtained by Monte Carlo simulations
in the Gibbs ensemble. The lines are fits of scaling laws through the data points. (a) ¢,
Stell et al. O(u*); », Stell et al. O(Padé); A, density gas phase; V, density liquid
phase; O, rectilinear law; @, estimated critical point. (b) A, density gas phase; V,
density liquid phase; ¢, rectilinear law; @, estimated critical point.
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which box is to accept the particle. The chemical potential was calculated during the
exchange step using the particle insertion formula for the Gibbs ensemble [15]. The
accuracy of the simulations was estimated by dividing the total simulation into ten
sub-runs. Standard deviations were obtained from block averages. A more extensive
description of this technique may be found elsewhere [9, 10]. A formal proof of the
equivalence of the Gibbs ensemble and the canonical ensemble can be found in [11].

In order to check the consistency of the simulations in the Gibbs ensemble we
have performed several conventional N, V, T molecular dynamics simulations for
108 particles with u*2 = 1-0 at T = 1-25 around the liquid coexistence density. In
[6, 7] details on these simulations can be found. Comparison of the data from these
molecular dynamics simulations with the data from the Gibbs ensemble show that
the results of the two methods are consistent.

The results of the Gibbs ensemble calculations are summarized in tables (a) and
(b). Comparison of the results for 216 particles with the results for 512 particles
shows that the N-dependence is very weak. Without the Ewald summation the
N-dependence appears to be much stronger [16]. The coexistence curves are shown
in figures (@) and (b). The critical temperatures are estimated from fitting the results
to the law of rectilinear diameters and to a scaling law for the density [17] with
critical exponent B = 0-32 [18]. The estimated critical temperature and densities
are for p*?>=10: T,=141+001 and p, =030+0-01 and for u*?=20:
T, =160 + 0-01 and p, = 0-31 + 0-01. Our estimates of the critical temperature
and density for u*? = 1.0 differ slightly from the results by Powles [19], who
obtained T, = 1-45 and p, = 0-33. However, this estimate of the critical temperature
was based on the simulation results of Yao et al. [20], in which the long-tail
contributions of the dipolar interactions were not taken into account.

It is interesting to compare the results of these simulations with the prediction
from thermodynamic perturbation theory of Stell et al. [12, 13]. From figure (a)
we observe that thermodynamic perturbation theory at O(u**) predicts the vapour
density correctly but overestimates the liquid density significantly. Including terms
at O(u*®) using a Padé approximation gives a significant improvement for the liquid
density but the critical temperature is still over-estimated. It is important to note
that the thermodynamic perturbation theory results of Stell et al. are based on early
data for the Lennard-Jones reference fluid. The use of more recent data, which have
been incorporated in the equation of state of Nicolas et al. [21], may improve these
perturbation results.

In this article vapour-liquid curves for the Stockmayer fluid have been calcu-
lated using Gibbs ensemble calculations. We demonstrate that the thermodynamic
perturbation theory of Stell et al. [12, 13] of order O(u**) and O(u*®) gives good
agreement at low temperature but starts to deviate as the critical point is
approached. A more extensive description of the simulations results, which will
include the calculation of the dielectric constant in the Gibbs ensemble, and a more
extensive comparison with perturbation theories will be published shortly.

One of us (B. S.) would like to thank D. J. Tildesley for stimulating discusstons.
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