

## Supporting information for: Ligand-assisted enhancement of CO<sub>2</sub> capture in metal organic frameworks

Roberta Poloni,<sup>†,‡</sup> Berend Smit,<sup>†</sup> and Jeffrey B. Neaton<sup>\*,‡</sup>

Department of Chemistry and Chemical and Biomolecular Engineering, University of California, Berkeley, and Molecular Foundry, Lawrence Berkeley National Laboratory

E-mail: jbneaton@lbl.gov

<sup>\*</sup>To whom correspondence should be addressed

<sup>&</sup>lt;sup>†</sup>Department of Chemistry and Chemical and Biomolecular Engineering, University of California, Berkeley

<sup>&</sup>lt;sup>‡</sup>Molecular Foundry, Lawrence Berkeley National Laboratory



Figure S 1: Histogram of Mulliken charge population for Ca and N atoms in CaBTT MOF. Red and black data correspond to a cubic crystal in absence of M' atoms and to CaBTT with M'=Na, respectively. The presence of a neighboring M' atoms reduces the charge difference between N1 and N2 and as a consequence neighboring Ca atoms have a lower positive charge.



Figure S 2: Left panels: Electronic band structure for cubic CaBTT (upper panel) and moniclinic CaBTT where charge is balanced by 3 M'=Na (lower panel). Right panels: Corresponding wave-function of the lowest unoccuppied band. The presence of M' atoms removes the degeneracies of the electronic structure with the wavefunction exhibiting a defect-like character.



Figure S 3: Total energy at intermediate images between the  $CO_2$  binding geometry at the Ca and N sites. The images have been computed as a linear interpolation between the two geometries (x coordinate in Figure). After the nudged elastic band calculation the minimum energy path shows absence of an energy barrier between the two configurations.

## **Extraframework cations**

When smaller M' atoms are used, CO<sub>2</sub> binding is significantly enhanced for M' at the A2 site: a smaller ionic bond distance between the CO<sub>2</sub> oxygen and M' is predicted, as well as a larger O-Ca distances. This suggests that a stronger O-M' interaction weakens O-Ca, resulting in a more attractive CO<sub>2</sub> interaction energy. Bond lengths, bond angle and binding energies are reported in Table 1. For M'=K, although CO<sub>2</sub> is found to bind with the MOF, the total binding energy shows a less stable complex upon CO<sub>2</sub> adsorption. This destabilization is due to the CO<sub>2</sub>-K(A2) interaction with result in a different location of the M' atom as shown in Figure S4. A negligible dependence of the M' atom choice is found when the neighboring M' atom is located at A1 due to the larger CO<sub>2</sub>-M' distance (O-Na(A2) is 2.393 Å while O-Na(A1) is 5.060 Å).



Figure S 4: Fragments of the crystal structure of CaBTT before and after  $CO_2$  adsorption with M'=K at the A2 site

Table S 1: PBE binding energies, bond distances and the O-C-O bond angle of  $CO_2$  are also reported for the different M' atoms at the A2 site.

| FC | E <sub>ads</sub> (kJ/mol) | 0-C-0(°) | O-FC(Å) | C-N(Å) | O-H(Å) | 0-M'(Å) |
|----|---------------------------|----------|---------|--------|--------|---------|
| Li | 59.9                      | 169.1    | 2.634   | 2.657  | 2.647  | 2.447   |
| Na | 48.5                      | 171.4    | 2.476   | 2.741  | 2.682  | 2.393   |
| Κ  | N.B.                      | 165.5    | 2.471   | 2.573  | 2.516  | 2.623   |



Figure S 5: Upper panel: Evolution of the PBE  $CO_2$ -MOF interaction energy as a function of the extraframework at both A1 (diamond) and A2 (circle) geometry. Lower panel: Evolution of the PBE and vdW-DF2  $CO_2$ -MOF interaction energies as a function of the metal atom, with M'=Na at the A1 geometry.