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Figure S 1: Histogram of Mulliken charge population for Ca andN atoms in CaBTT MOF. Red
and black data correspond to a cubic crystal in absence of M’ atoms and to CaBTT with M’=Na,
respectively. The presence of a neighboring M’ atoms reduces the charge difference between N1
and N2 and as a consequence neighboring Ca atoms have a lower positive charge.
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Figure S 2: Left panels: Electronic band structure for cubicCaBTT (upper panel) and moniclinic
CaBTT where charge is balanced by 3 M’=Na (lower panel). Right panels: Corresponding wave-
function of the lowest unoccuppied band. The presence of M’ atoms removes the degeneracies of
the electronic structure with the wavefunction exhibitinga defect-like character.
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Figure S 3: Total energy at intermediate images between the CO2 binding geometry at the Ca and
N sites. The images have been computed as a linear interpolation between the two geometries (x
coordinate in Figure). After the nudged elastic band calculation the minimum energy path shows
absence of an energy barrier between the two configurations.

S4



Extraframework cations

When smaller M’ atoms are used, CO2 binding is significantly enhanced for M’ at the A2 site:

a smaller ionic bond distance between the CO2 oxygen and M’ is predicted, as well as a larger

O-Ca distances. This suggests that a stronger O-M’ interaction weakens O-Ca, resulting in a more

attractive CO2 interaction energy. Bond lengths, bond angle and binding energies are reported in

Table 1. For M’=K, although CO2 is found to bind with the MOF, the total binding energy shows a

less stable complex upon CO2 adsorption. This destabilization is due to the CO2-K(A2) interaction

with result in a different location of the M’ atom as shown in Figure S4. A negligible dependence

of the M’ atom choice is found when the neighboring M’ atom is located at A1 due to the larger

CO2-M’ distance (O-Na(A2) is 2.393 Å while O-Na(A1) is 5.060 Å).

Figure S 4: Fragments of the crystal strcuture of CaBTT before and after CO2 adsorption with
M’=K at the A2 site

Table S 1: PBE binding energies, bond distances and the O-C-O bond angle of CO2 are also
reported for the different M’ atoms at the A2 site.

FC Eads(kJ/mol) O-C-O(◦) O-FC(Å) C-N(Å) O-H(Å) O-M’(Å)

Li 59.9 169.1 2.634 2.657 2.647 2.447
Na 48.5 171.4 2.476 2.741 2.682 2.393
K N.B. 165.5 2.471 2.573 2.516 2.623
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Figure S 5: Upper panel: Evolution of the PBE CO2-MOF interaction energy as a function of the
extraframework at both A1 (diamond) and A2 (circle) geometry. Lower panel: Evolution of the
PBE and vdW-DF2 CO2-MOF interaction energies as a function of the metal atom, with M’=Na
at the A1 geometry.
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