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The results of canonical ensemble molecular dynamics calculations of mixtures of Lennard—
Jones and Stockmayer fluids are reported. To study solely the influence of the polarity, the
Lennard-Jones parameters were identical for both components. The excess mixing properties
show a strong asymmetry with respect to composition for large dipolar strength. The free
energy of mixing is obtained through a thermodynamic integration procedure. The results
strongly suggest that, for reduced dipolar strengths u* > 3.15, demixing occurs into a phase
rich in polar component and an almost pure Lennard-Jones fluid. It is shown that perturbation
theory yields fairly accurate results for the dipolar energy and free energy of the mixture. For
the free energy of mixing, qualitatively correct results are obtained. The structure and
orientational correlation functions of the mixture are discussed. The radial distribution
function for pairs of polar molecules show a marked increase in local ordering with dipolar
strength for low concentrations of the polar component, indicating that strong clustering of
polar molecules occurs at these concentrations. The orientational order is also seen to increase
very strongly with dipole moment at these concentrations. The pair correlation function for
pairs of Lennard-Jones atoms shows little dependence on dipolar strength of Stockmayer
molecules at these concentrations. The distribution function for pairs of unlike molecules
reflects the increasingly dissimilar character of these molecules as the dipolar strength
increases. For large concentrations of Stockmayer molecules, the opposite effect is observed,
albeit less pronounced, in that the pair-correlation function for Lennard-Jones atoms shows an
increase in local ordering as ¢ increases, whereas the radial distribution function for
Stockmayer pairs remains relatively unaffected with increasing p. These results are interpreted
in terms of a frustation model. Results are given for the variation of the dielectric constant of
the mixture with composition and dipolar strength.

I. INTRODUCTION

Polar/nonpolar fluid mixtures form a technologically
important class of systems, whose thermodynamic and
phase behavior is at present poorly understood and predict-
ed. Mixtures of fluids consisting of polar molecules having
spherical cores provide a convenient model to study the ef-
fects of polarity on the microscopic structure and thermody-
namic behavior of these systems. The mixing behavior of
these systems has been studied with thermodynamic pertur-
bation theory by Gubbins and Twu."? They extended the
approach based on a Padé approximant, proposed by Stell,
Rasaiah, and Narang,** for the free energy expansion to
mixtures of polar fluids. Using this approach, Gubbins e? al.
investigated the phase behavior of these mixtures for a wide
range of potential parameters and showed that these simple
models exhibited a rich diversity in phase behavior.” More
recently, Morriss and Isbister® used an integral equation ap-
proach to study mixtures of polar and nonpolar hard dum-
bells and predicted a phase separation into an almost pure
nonpolar component and a mixture rich in polar component.

Surprisingly few computer simulations have been re-
ported for such mixtures. Thus, at present it is not known
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whether perturbation theory gives a good description of the
thermodynamic properties of such mixtures. A major prob-
lem in these simulations is the accurate determination of the
phase boundaries in systems in which demixing occurs.

In this paper, we describe the results of molecular dy-
namics simulations of mixtures of Stockmayer and Len-
nard-Jones fluids of equal size. We investigate the variation
of thermodynamic properties (pressure, energy, and excess
mixing properties) with dipole moment. The excess energy
of mixing is positive and exhibits the characteristic asymme-
try, with a maximum at concentrations rich in nonpolar
component, so often observed experimentally in mixtures of
polar and nonpolar fluids.”

Through a thermodynamic integration procedure, we
compute the free energy of mixing directly from the dipolar
energy obtained from our molecular dynamics simulations.
Our results show clearly that phase separation occurs in
these systems for sufficiently large dipole moments of the
polar component, in qualitative agreement with thermody-
namic perturbation theory. We find, however, that the onset
of demixing occurs for higher values of the dipolar strength
i than predicted by perturbation theory. Also, the composi-
tions of the fluid phases in equilibrium differ from those pre-
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dicted by perturbation theory.

We have also computed the center of mass (COM) dis-
tribution functions and the leading spherical harmonic coef-
ficients in the full pair correlation functions. These also show
a marked asymmetry in their behavior with respect to com-
position. As the concentration of the polar component de-
creases, a strong increase in the orientational ordering for
the polar molecules is observed. Also, the main peak in the
COM distribution function for polar molecules attains a
sharp first maximum at these concentrations, reflecting the
onset of phase separation. Such a behavior has also been
observed in Monte Carlo calculations of mixtures of quadru-
polar molecules with spherical cores.” The results can be
explained qualitatively on the basis of a frustration model.
At low concentrations of the polar component, mainly pairs
of dipoles can be found close to each other so that the dipoles
can orient themselves freely in energetically favorable
(head-to-tail) configurations. As the concentration of the
polar component increases, more contacts between dipoles
will be unavoidable and the orientation of the dipoles will be
the result of several competing pair orientations. The ob-
served asymmetry leads to the asymmetry in the excess prop-
erties of mixing with respect to composition.

Il. COMPUTATIONAL DETAILS

The systems we study consist of Ng Stockmayer mole-
cules and NV, ; Lennard-Jones atoms. The potential energy of
these systems is given by

V(R .., Ry, g s oy )
1 N N
=? z 2¢LJ(lRij|)

=1 j#i
1 Ns Ng

t S Bua (R, i), (N

i=1j#i

where ¢, ; (R) denotes the usual Lennard-Jones (LJ) inter-
action for two molecules separated by a distance R, and ¢,
is the dipolar interaction energy for two dipoles p, and p,,

D(1,2
¢d,1(R,-j,|L,-,ll,-) = —/U'Z_(R“g_), 2)
D(1,2) =3(@, ‘R) (2, R) — 1, 12, 3)

The hats denote unit vectors. Note that N = Ng + N, ; is the
total number of molecules in the system.

Henceforth we shall employ reduced units defined in the
usual manner. Thus all lengths are measured in units of the
Lennard-Jones size parameter o and all energies in units of
the Lennard-Jones well depth €. The unit of time is given by

T=+mo/e and the dipole moment is given in units of
u/es.

Molecular dynamics simulations were carried out for
mixtures of Lennard-Jones and Stockmayer fluids in which
the concentration x, and the dipole moment x of Stock-
mayer molecules was varied. In all simulations, the size pa-
rameter o and the energy parameter € of the Stockmayer and
Lennard-Jones system were the same. The simulations were
done at a reduced density p = 0.822 and a reduced tempera-
ture 7' = 1.15. The temperature of the system was held con-
stant with a Nosé heat bath.® Both the pure LJ system and
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the pure Stockmayer system have been studied extensively at
this state point.>!!

The Nosé equations of motion for a system composed of
N, Lennard-Jones atoms with mass m and N, Stockmayer
molecules with mass m and moment of inertia 7 are:'?

d’R, dR,
m—L= —VRiV——l—(‘—if) (._’.), i=1.2,.,N, (4)
dt s \dt dt
d’,
1 i = -V, V-4wm
du.
_L(é)(_&), i=12,..N,, (5)
s \dt/ \ dt
dis [ & (dR,.)2 y (du,-)2
i m|—— If—
th2 ’ igl dt ,-;1 dt
2
o] (8]

Here V'is the total potential energy obtained from Eq. (1), s
is the time-scaling parameter introduced by Nosé, and Q is
the fictitious mass governing the rate of change of 5. The
parameter g = (3Ny; + 5N, — 3) ensures that the instanta-
neous kinetic energy is balanced by its appropriate value for
asystem of N ; atoms and N, Stockmayer molecules. Final-
ly, A, is a Lagrange multiplier determined from the require-
ment that u? = u? at all times.”® A fifth-order predictor-
corrector method with a time step Az = 0.0025 was used for
the integration of the equations of motion.

The Ewald sum was used for the evaluation of the dipo-
lar energy, using “tinfoil” boundary conditions.* The con-
vergence parameter a was chosen equal to 6.58/L (L is the
length of the simulation cell) and all reciprocal lattice vec-
tors for which |k|?<27/L? were included in the reciprocal
lattice sum. The real space part was cut off at L /2. Salient
details of our simulations are given in Table I. We have test-
ed the number dependence of our results by carrying out
simulations at compositions x, = 0.167 with 108 and 256
particles with xg = 0.164. The results are compared in Table
II. Clearly, the N dependence of the energy and pressure is
very small. The small differences observed in the table can be
accounted for by the (small) difference in concentration.
This was also found to be the case for the dielectric constant.
For reasons of economy, most simulations were therefore
carried out with 108 particles. The small N- dependence was
also observed by Pollock and Alder'? in their simulations of
the pure Stockmayer fluid, and it appears to be a useful char-
acteristic of the Ewald summation.

The free energy of mixing for the system described

TABLE I. Details of molecular dynamics simulations.

reduced density p* 0.822
reduced temperature T* 1.15
moment of inertia r 0.0025
time-step At 0.0025
No. of time-steps 30,000
Nosé mass o 100
In units of (ma*/u?).

°In units of (mo?) ~ .
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TABLE II1. Number-dependence of energy u, Lennard-Jones energy «, ,
and compressibility factor Z = BP /p. In these simulations, p = 0.822 and
T = 1.15. Note that the mole fractions are not exactly identical. The small
subscripts denote standard deviations.

N Ny “w —u — Uy z

18 90 1.5 5.489, 5.397, 1.81,
42 214 15 5.492, 5.397, 1.83,
18 90 3.0 5.798; 5.370, 1.67,
42 214 3.0 5.797, 5.361, 1.73,

above can be computed in a particularly simple and elegant
manner. Knowledge of the free energy of the pure compo-
nents is not required. This can be understood by considering
a two-stage process in which a fraction x5 of Lennard-Jones
atoms is changed into Stockmayer molecules with the re-
quired dipolar strength p>.

In the first stage, the Lennard-Jones atoms are changed
into molecules with zero dipolar strength and moment of
inertia 7 corresponding to that of the Stockmayer molecules.
One thus obtains an ideal mixture of Lennard-Jones and mo-
lecular fluids, so that the free energy per particle a (in units
of the Lennard-Jones well depth €) of the mixture is given by

ao(x5) =ay; +xsag + T [xs In xg

+ (1 —xg)In(1 —x5)]. (7

Here a, , is the free energy of the pure Lennard-Jones system
and a is the rotational contribution to the free energy. The
last term describes ideal mixing.

In the second stage, the Stockmayer molecules are
charged to the required value u? of the dipolar strength. Ac-
cording to a well-known expression, the free energy change
during this process can be obtained as the reversible work
required to charge the dipoles of these molecules from a di-
polar strength 1'? = 0 to the required value u'> = . Then
we may write!®

#2 ?2
a(xg) —ap(xs) =J <M,2—)> du’®. (8)
o du w?

Here u(u?) is the potential energy per particle (in units of €)
of a system of dipolar strength u>. The partial derivative of
the potential energy with respect to dipolar strength is sim-
ply obtained from Egs. (1)-(3) as

(éi> _ (ugq (1£%))
a‘uz ‘u2 ’
where u,, is the dipolar energy per particle. Hence for the

excess free energy per particle, a, we obtain
2

(9

2
a(xg) — a,(xs) =f (udd(,u’z;xs))#,2 d,u'l .
o 7

(10)

The free energy of mixing Aa(xg ) of the mixture can now be
calculated by noting that xg = 1 corresponds to the pure
Stockmayer system. Hence
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Aa(xs) = a(xs) — (1 —xg)a; — xga(l)

=T[xsInxs + (1 —xg)In(1 — x5)]

12
+ f ((udd (ﬂ&;xs ) >u'2
o

, d ”2
“xs<udd(/~‘ 2;1)),"2) :2 .

(11)

The dipolar energy of the system is readily obtained
from the molecular dynamics simulations. This technique
has been used previously'® to calculate the free energy of the
pure Stockmayer system. We note, however, that the free
energy of the pure component in not required in Eq. (11).

llii. THERMODYNAMIC PROPERTIES

In this section, we discuss the results obtained from our
simulations and compare these results extensively with the
predictions of the perturbation theory proposed by Gubbins
and Twu'? (GT). The perturbation theory is based on the
Padé approximant for the contribution of the dipolar inter-
actions to the Helmholtz free energy, as proposed by Stell ez
al

a2

1—(a;/a,)’
where a is the free energy (per particle) of a reference system
and a, and a, are the second- and third-order perturbation
terms in the expansion of the free energy in powers of the
perturbation, i.e., the dipolar interaction potential, around
the reference potential (the first-order term vanishes for a
spherical reference potential ).

The free energy a, of the (Lennard-Jones) reference
mixture is calculated using the van der Waals one fluid con-
formal solution theory."”'® According to this theory, the
pressure P, Helmholtz free energy per particle a,, and ener-
gy per particle 4, of the reference mixture are given as

P, =P,

a=a,+kpT[x, Inx, +x,1Inx,],

a=ao+ (12)

(13)
Uy = Uy,

where P,, a, and u, are values for a pure fluid with the same
state parameters N, V, and 7, and Lennard-Jones interaction
parameters € and o given by

or =3 X X%y,
i

i

o= X,X,€;07, (14)
i

where x; is the mole fraction of the ith component in the

mixture.

In our case, the reference fluid of course reduces simply
to the pure Lennard-Jones liquid characterized by € and o, as
the Lennard-Jones parameters of all components in the mix-
ture are identical.

The coefficients @, and a, involve state variables, inter-
molecular potential parameters and certain integrals Jand K
over pair and triplet correlation functions of the reference
fluid evaluated at reduced temperature T* = k7 /€ and
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reduced density p* = po;. Explicit expressions and a table
of integrals J and K are given by Gubbins and Twu' for a
Lennard-Jones reference system. For our simple model, GT
predict the ratio a,/a, to be directly proportional to the
concentration of polar molecules x.

Various thermodynamic quantities were obtained from
our molecular dynamics simulations in the usual manner
and collected in Table III. Error estimates (small sub-
scripts) were obtained by computing the standard deviation
sy from block averages of successively increasing length as
proposed by Flybjerg and Petersen.?’ From these results, we
can construct the excess energy of mixing «,, (xg) and the
free energy of mixing Aa(xg) by integrating the dipolar en-
ergy as indicated in the previous section.

In Fig. 1, we display the excess energy as a function of
composition for three different values of 2. The most nota-
ble feature here is that «,, is positive and shows an asymme-
try with respect to composition, its maximum occurring at
compositions rich in nonpolar component. Note also that
there is a saturation in u,, (xg). The predictions of GT are
shown in Fig. 1 as well. For low dipole moments, the pertur-
bation theory is seen to underestimate the energy of mixing,
while for higher dipole moments the perturbation theory
overestimates the excess energy. Also, u,, (xg) calculated
from perturbation theory is rather more symmetric with re-
spect to composition than our simulation results, which
show a maximum for compositions rich in nonpolar compo-
nent. Such a maximum is often observed experimentally in
polar/nonpolar fluid mixtures, such as methanol/benzene
and ethanol/n-hexane.”

The free energy of mixing is most conveniently calculat-
ed by fitting the values of the dipolar energy obtained from
our simulation to a simple analytic form. We found a simple

100
80+ e,
. .
, .
604
e e —— \.
ﬁé - - - = -~ ~ "
404 l:' ~ i 3 : ~a
K x 7 : \\ .
’ S
E 4% N
20 . \x\ .
R | s “,
S, + + + o N
s + NS
A + \\
.oo-#‘—/-’Y—__—’iY LB 1
0 2 4 6 8 1
Xs

FIG. 1. Excess energy of mixing. The curves are the results of perturbation
theory. ~: p?=1;—— 4% = 3and - - -: The simulation results are marked as
points. u>=4, +: g =1;0: g*=3and X: p*=4.

rational form adequate for our purposes:

<udd (l-‘r2§xs)) = —AX§M4/(1 + C(xs),uz)- (15)
Equation (15) has the correct behavior for small values of
4% in which case the excess energy over the pure Lennard—
Jones system is entirely due to the dipolar energy, whereas
for large values of 42 it follows an upper bound proposed by
Onsager’! some time ago. The parameter A is simply related

to the compressibility factor Z;; and the potential energy
uy; of the pure LJ system through??

A=(T(Z; — 1) — 4uy,;)/48T (16)
From our simulations, we find 4 = 1.70. In Fig. 2, we show

that this behavior is reasonable for the results we obtained.
Wenote that Eq. (15) has the same form as the Padé approx-

TABLEIII. Thermodynamic quantities obtained from molecular dynamics simulations. In all simulations, the
temperature T = 1.15 and the density p = 0.822. Also, u denotes the total energy per particle, u,, the dipolar

energy per particle, and Z = SP /p the compressibility factor. Note that all quantities are in reduced units. The

small subscripts denote standard deviations.

Fraction of Stockmayer particles, x,

P 0.000 0.167 0333 0.500 0.667 0.833 1.000
—u 5526,  5.518, 5589, 5599,  5.658, 5749,  5.825,
0.50 —u, 0000 0014, 0042, 009,  0.160, 0234, 0316,
z 2.24, 2.36, 2.11, 2.28, 225, 2.11, 2.06,
—u 5526, 5585,  5.679, 5830, 6026, 6219,  6.451,
1.00 —u, 0000 0033, 0162, 0307,  0.500, 0737, 0982,
z 2.24, 2.10, 2.15, 2.00, 1.82, 1.87, 171,
—u 5526,  5.630,  5.854,  6.125,  6.453, 6.822,  7.233,
1.50 —uy  0.000 0.104, 0340, 00624, 0974, 1364,  1.789,
z 2.24, 2.15, 2.03, 1.84, 1.65, 1.44, 1.24,
—u 5526, 5756,  6.188,,  6.683,,  7.250, 7.866,,  8.517,,
225 —uy, 0000 0227, 0704,  1.120,  1.837, 2509,  3.186,
z 2.24, 2.06, 1.85, 1.53, 1.26, 1.00, 0.52,
—u 5526, 5986,  6.606, 7331, 8.136, 9.049,,  9.920,,
3.00 —u, 0000 0497, 1174, 1949,  2.809,, 3793,  4.726,,
z 2.24, 2.01, 172, 1.33, 0.87, 042, -0.10,
—u 5526, 6274,  7.302,, 8364, 9510, 10.724,, 12.04,
4.00 —u,  0.000 0.827, 1949, 3086, 4.329, 5.648,,  7.064,,
z 224, 191, 1.49, 0.87, 027, —028, —098,
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uga/(x3p2)

FIG.2. Dipolar energy {u,,)/(x2t*) vs p. The curves give the fit according
to Egs. (15)—(17). = x, = 0.167; ——: x, = 0.333; -: x, = 0.500; *~-—+:
x, =0.667;— - x, = 0.833and -+ - -~: x, = 1.000, The points mark the sim-
ulation results. O0: x, =0.1667; X: x, =0.3333; V: x, = 0.5000; + :
x, = 0.6667; *: x, = 0.8333; A: 1.000 and X: u? = 4.

imant for the free energy of a dipolar system [Eq. (12)]. In
that case, C(x,) is the ratio a,/a, of the third and second
term in the A-expansion of the free energy (a vanishes for the
dipolar interaction).

We decided to take C(xg) as a fitting parameter and
found that C(x) could be well approximated by

C(xs) = 0.876x5 — 0.134. (17)

In constructing Eq. (17), we have not used the data for
x, = 0.167, as these are seen to deviate somewhat from the
general trend at higher values of u2. There is evidence that
phase separation has occurred for u*> = 4, so that these re-
sults should not be included in the fit. After substitution of
Eqgs. (16) and (17) into Eq. (15), an analytic expression for
the Helmholtz free energy can be obtained through integra-
tion. The final expression differs from Eq. (12) through
logarithmic terms, which are generally small. In Fig. 3, we
show the excess free energy obtained through this proce-

o

aa(xg)

| T T T T
Xs

FIG. 3. Excess Helmholtz free energy of mixing for the Stockmayer-Len-
nard-Jones mixture. 7= 1.15 and p = 0.822. (See also the caption of Fig.
2.)

D

Xg

FIG. 4. Phase diagram obtained from the free energy. This according to
Egs. (15)-(17). T=1.15and p = 0.822.

dure. For larger values of the dipolar strength, it displays a
strong asymmetry with respect to composition, with a mini-
mum in regions rich in polar component. As shown before??
for values of u? > 3.15, the free energy is no longer a convex
function, so that phase separation occurs. In Fig. 4, the com-
position diagram is shown as obtained from the usual bino-
dal construction. Of course, the phase boundary should be
calculated through a binodal construction for the Gibbs free
energy of mixing. Our calculation neglects volume effects;
we believe these to be small. An estimate of these effects
using the perturbation theory of Gubbins and Twu'? con-
firms this assumption. Neglecting volume effects will shift
the phase boundaries of the Stockmayer rich phase slightly
towards higher concentrations of polar molecules, but the
onset of phase separation occurs at almost the same value of
p?. Clearly, a phase separation occurs for u?> 3.15. This
result agrees qualitatively with the predictions of perturba-
tion theory, but quantitative differences remain. For exam-

-2

44

Ydd

-8

~10 T

FIG. 5. Comparison of the dipolar energy obtained from simulation with
the predictions of perturbation theory. —: x, = 0.333; ——: x, = 0.667 and

*: x; = 1.000. The simulation results are marked as points. +:

x, =0.333; [0: x, = 0.667 and V: x, = 1.000.
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ple, perturbation theory predicts the onset of phase separa-
tion at u>=~2.7.

A more direct comparison with the predictions of per-
turbation theory can be made by comparing the dipolar ener-
gy and the Helmholtz free energy of the mixture with the
results of our simulations. According to Eq. (10), the dipo-
lar energy of the fluid can be obtained through differenti-
ation of the Helmholtz free energy with respect to u>. In Fig.
5, we compare the dipolar energy obtained through differen-
tiation of Eq. (12) with the results of our simulation. For the
pure Stockmayer fluid, the Padé approximant is known to
give a fairly accurate representation of the simulation re-
sults.»**'¢ In the mixture, the Padé approximant for a(x,)
again yields reasonably accurate values for the dipolar ener-
gy (u,4,). Similarly, the contribution to the free energy from
the dipolar interaction obtained from simulation compares
very well with the prediction of perturbation theory. Discre-
pancies appear, however, in the free energy of mixing, as this
quantity is obtained as a difference of two relatively large
numbers.

Differences between prediction from perturbation theo-
ry and the results of our simulation can also be observed in
the pressure, as can be seen in Fig. 6. The overall agreement
is fair, but at large dipolar strengths, the theoretical results
lie considerably below the results of the simulation, whereas
at low values of 1 these lie above the simulation results. The
change in pressure due to the dipolar interactions is consid-
erably less than predicted on the basis of the Padé approxi-
mant.

We conclude that perturbation theory gives a fair de-
scription of the thermodynamic properties of the mixture,
with at least semiquantitative agreement with the results of
computer simulations. Differences between theory and sim-
ulation do appear in the derivatives of the free energy with
respect to density and composition. Moreover, the small dif-
ferences between GT and simulation results lead to large

ey
9

-2

=3 T

FIG. 6. Compressibility factor Z = BP /p. The points give the results of sim-
ulation; the curves the predictions of perturbation theory. —: x, = 0.333; - -
1 x, =0.667 and ---: x, = 1.000, +: x, =0.333; O: x, =0.667 and V:
x, = 1.000.
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discrepancies for the excess mixing quantities, such as the
excess energy of mixing.

Our simulations confirm the linear dependence of the
numerator on the concentration x_, although with constants
different from theory. This linear dependence is sufficient to
give the strong asymmetry of the excess free energy of mix-
ing with respect to composition.

IV. STRUCTURAL PROPERTIES

The spatial and orientational structural properties of the
mixture are most conveniently discussed in terms of the pro-
jections of the pair distribution function onto low-order
spherical harmonics. For LJ/Stockmayer mixtures, only the
distribution function for Stockmayer molecules can be ex-
panded in spherical harmonic coefficients, viz:

£7°(1,2) = gooo (R) + h5D(1,2)
+hAX(R)A(L,2) + -+, (18)

where g%(1,2) is the pair distribution function for pairs of
Stockmayer molecules and 4 3, (R) are angular correlation
functions. Note that # °(R) is the projection of g%5(1,2)
onto the rotationally invariant angular function D(1,2), de-
fined by Eq. (3). Physically, 25 (R) is a measure of the
mean value of the angular part of the dipolar interaction at
separation R. It follows that the dipolar energy u ) of our
system can be expressed in terms of 4 3 (R) through
27 (* hp(R)
(Uaq) 3 Jo R dR.
Herep, = N,/V is the number density of Stockmayer mole-
cules. Similarly, 4 35(R) is the projection of g°5(1,2) onto
A(1,2), defined by

A(L2) =/21 '/22 = CO8 V12,

(19)

(20)
where ¥, is the angle between the unit vectors i, and 4i,.
Evidently, A(1,2) is invariant under rotation. Note that
h 3°(R) can be viewed as a measure of the alignment of polar
molecules separated by a distance R.

The distribution function for pairs of unlike molecules
£°%(1,2) has the expansion®

£r(1,2) = gH(R)P(cos ay, ), (21)
[}

where P,(x) is a Legendre polynomal and cos a,, = ji, R

is the cosine of the angle between the orientation of the polar
molecule 2, and the intermolecular separation R. Since
£°(1,2) is invariant under change of sign of &1, , the expan-
sion (21) contains only even components /. In the range of
concentrations and dipolar strengths studied here, we may
expect the higher angular correlations to be small, particu-
larly since they are caused by three- and higher-body inter-
actions.

We begin by discussing the radial distribution functions
(rdf’s) goge- The variation of these functions with dipolar
strength depends strongly on composition. Thus for compo-
sitions rich in polar component, the distribution function for
pairs of Stockmayer particles g, is relatively insensitive to
changes in dipolar strength, and its structure is qualitatively
similar to that of the pure fluid. Closer examination reveals,
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however, that in contrast to the pure fluid,'® its height in-
creases somewhat with u2. As expected, the peak moves
somewhat towards lower values of R for stronger dipole mo-
ments. As the fraction of polar molecules decreases, this ten-
dency becomes more pronounced, and at low x,, a strong
increase of the height of the first peak in gy is observed as u
becomes larger, reflecting the increasing tendency of polar
molecules to cluster. This can be seen in Fig. 7, where we
show go for three concentrations (x, = 0.33, 0.50, and
0.67) and various values of x. In an earlier paper,”® we al-
ready pointed out the strong asymmetry in local composi-
tion with respect to concentration resulting from this behav-
ior. The strong clustering can, of course, be regarded as an
onset towards phase separation, which we showed earlier
appears to occur at concentrations low in polar component
for values of > > 3.15.

In Fig. 8, we show the rdf °s for pairs of LY molecules g“*
for two concentrations, x, = 0.33 and x, = 0.67. Here, the
dependence on concentration is reversed as compared with

S5, the largest changes being observed at high concentra-
tions of Stockmayer molecules. However, the effect is con-
siderably smaller than for Stockmayer molecules. Again this
is reflected in the behavior of the local composition
numbers,?® which do not show the large variation with re-
spect to composition observed for the Stockmayer mole-
cules. The position of the main peak in g“* is seen to be
independent of dipolar strength and composition, as expect-
ed.

The rdf’s for unlike pairs, g5, are shown in Fig. 9 for
the same mole fractions as above. The behavior of these func-
tions appears to be independent of concentration and reflects
the increasing dissimilarity of the molecules as the dipolar
strength becomes larger.

In Fig. 10, the projection 4 3°(R) of the pair distribution
function g55(1,2) onto D(1,2) is shown for various concen-
trations of polar molecules. The strong increase in angular
correlation with decreasing concentration of polar mole-
cules is most notable. Clearly, there is an increasing align-
ment of polar molecules with decreasing x,.

In Fig. 11, we display the projection & 3°(R) for three
concentrations and various values of the dipolar strength.
We note the same trends as for 4 3 (R), namely strong in-
crease in angular correlation as the concentration of Stock-
mayer molecules decreases, corresponding with an increas-
ing alignment of the polar molecules [A(1,2) = 1].

Clearly, both angular correlation functions show a
strong increase in orientational ordering as the concentra-
tion of polar molecules decreases. This can be understood by
considering a highly dilute solution of polar molecules in a
nonpolar solvent, so that only pairs of polar molecules are in
each others neighborhood. In that case, the molecules are
free to align themselves in the energetically most favorable
configuration, i.e., head-to-tail for Stockmayer dipoles, for
which D(1,2) =2. As the concentration of Stockmayer
molecules increases, the probability of a third Stockmayer
molecule in the vicinity becomes large. It is easily seen that
now an optimal configuration cannot be achieved for all
pairwise interactions, so that a compromise must be

de Leeuw, Smit, and Williams: Molecular dynamics studies of fiuid mixtures. |

achieved, reducing the alignment of the Stockmayer mole-
cules. This is shown in Fig. 12, where some typical orienta-
tions are displayed. For larger concentrations, this “frustra-
tion effect” will become increasingly important in
determining the angular correlations in our system. This ar-

(a)

9000P)

{b)

{c)

9o00(R)

FIG. 7. The radial distribution functions for pairs of Stockmayer molecules
at three compositions: (a) x, = 0.33; (b) x, =0.50; (c) x, =0.67. —
#2=0.50; —— p? = 1.00; *--: p? = 1.50, ‘——: > =2.25; —-— p* = 3.00
and —- - g? = 4.00.
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34
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[4,]

(c)

34
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o — —T —

5 1 1.5 2 25
R

FIG. 8. The radial distribution functions for pairs of Lennard-Jones mole-
cules at three compositions: (a) x, = 0.33; (b) x, = 0.50; (¢) x, = 0.67. =
p2=0.50; - —p* = 1.00; ... 44> = 1.50, -——-: > = 2.25; — —: pu* = 3.00 and
— = p? = 4.00.

gument implies an asymmetry in the behavior of the system
with respect to concentration, which is reflected in the be-
havior of the local composition numbers?® and the excess
properties of mixing.

(a)

4

golR

{b)

44

34

go(R)

(c)

g,(R)

14

FIG. 9. The radial distribution functions for pairs of unlike molecules at
three compositions: (a) x, =0.33; (b) x, =0.50; (c) x, =0.67. —
2 =0.50;— —p? = 1.00;...:% = 1.50, ~——: p® = 2.25; — —: > = 3.00and
— e p? = 4.00.

V. THE DIELECTRIC CONSTANT

The angular correlation functions 42 5°(R) are a mea-
sure of the mean value of cos ¥,, at a distance 7 of a polar
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[o]

(c)
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25

FIG. 10. The angular distribution functions 4 }; (R) at three compositions:
(a) x, = 0.33; (b) x, = 0.50; (c) x, = 0.67. — g’ = 0.50; — — p* = 1.00; ...:
#> =150, —~: =225 -~ pu*=3.00and - - ~: g = 4.00.

molecule. Consequently, the dielectric constant of the sys-
tem is related to 4 3°(R). The Kirkwood correlation factor
8, is defined through

R,
g =1 +43_’Tpf R?R% (R)dR. (22)
0

(a)

ha(R)
w
1
T 7
o

(b)

hy®R)

5 1 1.5 2 2.5
R
6
(c)
54
44

ha(R)

FIG. 11. The angular distribution functions 4 3 (R) at three compositions:
(a) x, = 0.33; (b) x, = 0.50; (c) x, = 0.67. = p* = 0.50; - —: > = 1.00; ...
=150, ——1pu? =225 -— 4> =3.00and — - -—: u* = 4.00.

The cutoff R, in the integral (22) is necessary because the
asymptotic behavior of A iS(R) depends on the boundary
conditions applied to the system, even in the thermodynamic
limit. Note that R_ is chosen to be large compared to atomic
distances, but much smaller than the system size.?’” With
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000"
B

FIG. 12. Ilustration of orientational frustration: (a) Nose-to-tail orienta-
tions at low concentrations of Stockmayer particles, and (b) orientational
frustrations at high concentrations of Stockmayer particles.

O@@O

this definition, the dielectric constant £ of our system can be
obtained through the Kirkwood formula:

(e = 1)Qe + 1))/9¢ = yg,, (23)

where y = 47f8p,11*/9 is a dimensionless parameter of dipo-
lar strength. In a simulation, the dielectric constant is usual-
ly obtained from the fluctuations in dipole moment
M = 3y, of the simulation cell. The use of “tinfoil” bound-
ary conditions implies that

where the correlation factor g is defined by
g = (M?)/Ngu? (25)

In Table IV, the results for the dielectric constant are pre-
sented. As expected, € increases with dipolar strength and
with concentration of polar molecules, with an almost linear
dependence on y for small values of 4 and low concentra-
tions xg. For larger concentrations and larger values of 4, a
much stronger increase is seen.

VIi. SUMMARY AND DISCUSSION

In this paper, we have described the results of molecular
dynamics calculations for mixtures of Lennard-Jones and
Stockmayer fluids, which can be considered as the simplest
model for polar/nonpolar fluid mixtures. The results indi-
cate strongly that the addition of a dipolar interaction
between molecules leads to demixing when the polarity of
the Stockmayer molecules is large enough (u®> 3.15).

The results of our simulation have been compared ex-
tensively with the perturbation theory of Gubbins and
Twu,"? based on a Padé approximant®* for dipolar contri-
bution to the free energy and the van der Waals one fluid
conformal solution theory.'’'° In general, the perturbation

TABLE IV. Dielectric constant of Stockmayer/Lennard-Jones mixtures.
T=1.15p=0.822.

Fraction of Stockmayer particles, x

u 0.167 0333 0500 0667 0833  1.000
0.50 1.3 1.60, 190, 235, 2.9 37,
1.00 1.6 2.40 326, 436, 54 7.3,
1.50 1.9 341, 50, 67, 100 137,
225 2.6 49, 84, 14, 202 35,

3.00 3.7 9.5, 16, 22, 32 47,

4.00 6.7 16, 23, 50, 74 151,

theory gives a good account of the thermodynamic proper-
ties, such as the Helmholtz free energy and the dipolar ener-
gy, although slight differences remain. As a result, larger
discrepancies appear in derivatives of the free energy, such as
the pressure, and the excess mixing properties, the latter be-
ing calculated by subtraction of relatively large quantities.
The excess energy and free energy of mixing exhibit a strong
asymmetry with respect to composition, so often observed in
experiment. A linear dependence of the ratio a, /a, of third-
and second-order terms in the perturbation expansion of the
free energy, combined with the simple Padé approximant, is
sufficient to produce the asymmetric behavior for the excess
free energy of mixing.

The radial distribution functions clearly show a tenden-
cy of like molecules to cluster when their concentration is
low. This effect is much stronger for polar molecules in a
nonpolar solvent than vice versa. Moreover, in a nonpolar
solvent, the dipolar molecules show a strong tendency to
align themselves especially at low concentration of polar
molecules. This manifests itself as a strong increase in the
height of the main peak in the lower-order spherical har-
monic coefficients of the pair distribution function. The de-
crease of orientational ordering as the concentration of polar
molecules increases is thus explained as a frustration effect
arising from the impossibility to achieve energetically most
favorable orientations when more than two dipoles are in
each others vicinity. This frustration effect provides a molec-
ular explanation for the asymmetry observed in the struc-
tural and excess mixing properties.
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