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We show that a precise assessment of free energy estimates in Monte Carlo 
simulations of lattice models is possible by using cluster variation approxima- 
tions in conjunction with the local states approximations proposed by 
Meirovitch. The local states method (LSM) utilizes entropy expressions which 
recently have been shown to correspond to a converging sequence of upper 
bounds on the thermodynamic limit entropy density (i.e., entropy per lattice 
site), whereas the cluster variation method (CVM) supplies formulas that in 
some cases have been proven to be, and in other cases are believed to be, lower 
bounds. We have investigated CVM-LSM combinations numerically in Monte 
Carlo simulations of the two-dimensional Ising model and the two-dimensional 
five-states ferromagnetic Ports model. Even in the critical region the combina- 
tion of upper and lower bounds enables an accurate and reliable estimation of 
the free energy from data of a single run. CVM entropy approximations are 
therefore useful in Monte Carlo simulation studies and in establishing the 
reliability of results from local states methods. 

KEY WORDS: Monte Carlo simulations; free energy calculation; lattice 
models. 

1. I N T R O D U C T I O N  

In  M o n t e  C a r l o  ( M C )  s i m u l a t i o n  s tudies ,  k n o w l e d g e  o f  the free ene rgy  is 

i m p o r t a n t  for  d i s t i ngu i sh ing  s tab le  s ta tes  f r o m  m e t a s t a b l e  ones,  by  check-  

ing  which  has  the  l o w e r  free energy .  Th is  d i s t i nc t i on  f r equen t ly  needs  to be 

m a d e  in sys tems  u n d e r g o i n g  a f i r s t -o rde r  phase  t rans i t ion .  U n f o r t u n a t e l y ,  

c a l c u l a t i o n  o f  the  free ene rgy  is difficult  wi th  the  c o m m o n l y  used  
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Metropolis algorithm. (1) This algorithm provides easy access to thermal 
averages of local observables, but the entropy density (i.e., entropy per unit 
volume) of the system is, in general, not locally observable, and hence the 
free energy density is not easily obtained. 

To obtain entropy and free energy estimates from MC simulations, a 
number of methods have been proposed, (2) of which the thermodynamic 
integration method (3) is probably the most popular. However, it requires 
many MC runs along a path from some thermodynamic reference state to 
the state of interest. Consequently, this method can be very costly. 
Moreover, it is not always easy to find a convenient reference state and 
reversible integration path. 

Here, we consider a method for free energy calculation that is based 
on data from one run at the conditions of interest. It extends the local 
states method (LSM) of Meirovitch (4-6) by including additional 
approximation formulas for the thermodynamic entropy density to enable 
a precise assessment of the results. The LSM is a method for lattice systems 
(although it might be extendable to continuum systems by using lattice 
approximations) which was developed on the basis of considerations from 
the stochastic models simulation method of Alexandrowicz. (7) The method 
does not seem to have found much application, ~8'9) despite its obvious 
computational advantage and the fact that it has been shown to be very 
accurate for Ising and lattice gas models. We believe that this may be 
partly due to the manner of its original derivation, which does not provide 
an immediate understanding of its validity and range of applicability. This 
situation is altered by a reconsideration of Meirovitch's formulas (as well 
as other entropy approximation formulas based on the concept of local 
states) in the light of recent results on global Markov properties of 
thermodynamic equilibrium states of lattice systems. (1~ It was this 
observation that prompted the investigation reported here. We explain this 
point below. 

In the LSM for, say, an Ising system, one selects a spin and a certain 
group of its neighbors, forming a cluster of spins for which the configura- 
tion probabilities are sampled. That is, during the MC run one keeps track 
of the number of occurrences of each of the possible spin configurations of 
this cluster. These numbers provide an estimate of the equilibrium 
probabilities of the cluster configurations; the entropy density s ( = entropy 
per lattice site or per spin) of the entire system is then estimated from these 
cluster configuration probabilities. We shall call the set of configuration 
probabilities for the cluster the local state on that cluster. (We note that 
this usage of the term "local state" differs from that of Meirovitch: 
Meirovitch uses the word "state" in the meaning of configuration.) Thus, 
the entropy density s is approximated by a function, say TA(p) of the local 
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state p on the cluster A. The LSM prescribes the selection of A and 
specifies the function TA. 

The basic ingredients of the LSM are also found in the cluster varia- 
tion method (CVM). (14 ~7) This is an extension of the mean-field and 
quasichemical treatments of lattice model thermodynamics. In the CVM 
the entropy density s is again approximated by some function TA(p) of the 
local state p on some cluster A; however, where in the LSM the 
probabilities that determine the local state are determined by MC 
sampling, in the CVM, which was developed as an analytical method, they 
are considered as free variables, to be determined by minimization of the 
associated free energy expression. In view of the conceptual similarities 
between the LSM and the CVM, it is interesting to observe that the 
methods typically select quite different clusters for A and also propose 
different formulas for irA. 

This observation suggests that the possibilities of hybridization should 
be explored. Such hybridization (or combination) is even more interesting 
in the light of the theoretical results mentioned earlier: these results 
establish rigorously that the LSM approximation formulas correspond to a 
converging sequence of upper bounds on the entropy density s of the 
thermodynamic (infinite) system in equilibrium, whereas the CVM 
formulas typically correspond to lower bounds. Combining the two in an 
MC procedure would thus enable a reliable assessment of the accuracy of 
the entropy estimate, and hence of the free energy estimate. (Another 
example of combining upper and lower entropy bounds, not related to the 
ones discussed here, may be found in ref. 18.) 

In the scouting investigation reported here, we set out to compare a 
number of approximation formulas for the entropy density s and to acquire 
some idea of the relative difference between the upper and the lower 
bounds. As test cases, we selected two two-dimensional models on the 
square lattice: the first was the spin-l/2 classical Ising model, and the 
second the five-state Potts model. The former model was chosen for the 
obvious reason that it has a complete analytic free energy expression, and 
the latter one because it is a simple model with a first-order transition and 
analytic results at the transition point. 

We performed MC simulations of these models and sampled the local 
states to obtain the configuration probabilities that are the input for the 
entropy approximation formulas. We found that the upper and lower 
bounds on s obtained by using clusters of only six points are typically less 
than 1% apart. For clusters of eight points, the difference is generally less 
than 0.2%. Except for very large simulations, this intrinsic (i.e., 
method-related) inaccuracy is of the same order of magnitude as the 
statistical uncertainty. Moreover, it appears that even in the critical region 
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an accurate determination of the free energy is possible. This is a conse- 
quence of the fluctuations in energy and entropy canceling one another. 

This paper is organized as follows. In Section 2, we give a brief 
description of the CVM and the LSM approaches to entropy estimation 
from local states, in order to give the methods some intuitive appeal. We 
refer to the relevant literature for any rigorous justification. In Section 3, 
we present specific approximation formulas applicable to two-dimensional 
models with nearest-neighbor interactions. Section 4 describes the simula- 
tions and Section 5 discusses the results. 

2. LOCAL STATES M E T H O D S  FOR E N T R O P Y  
A P P R O X I M A T I O N  

In this section we consider the two-dimensional square lattice to 
illustrate the two different approaches that come under the heading of local 
states methods, namely the LSM (note the capitalization, which is used to 
distinguish Meirovitch's specific implementation from the general concep- 
tual approach) and the CVM. Both methods estimate the entropy density 
of the thermodynamic (infinite) system from the entropies of a few small 
parts of the lattice, which can be obtained directly from computer simula- 
tions. 

We shall use the word "cluster" to designate any finite set of lattice 
sites. An occupation variable or spin si is associated with a lattice site i; si 
can have any of q >~ 2 distinct values. A configuration co x on a cluster X is 
a collection of spin values ~Ox= {si: icX}. The probability of finding the 
configuration cox on the cluster X, regardless of the configuration on the 
remainder of the lattice, is the cluster configuration probability Px(cox). 
The thermodynamic state of the entire system is specified by the collection 
of all the functions Px(') for all clusters X. The set of configuration 
probabilities for some specific cluster Y defines the local state for Y. We 
note again that in this terminology "state" refers to a probability distribu- 
tion and is not the same as "configuration." Meirovitch uses the word 
"state" to mean "configuration"; since the phrase "'local states method" also 
fits our definition of "state," we adopt it without change and, furthermore, 
apply it to approximations that do not use the original LSM formulas. 

From the local state Px(') on the cluster X we can obtain the cluster 
entropy S[X]:  

s i x ]  = - k  y~ Px(cox) log t'x(co~) (1) 
O3 I" 

The thermodynamic entropy density (entropy per lattice site) s is given by 

s =  lira S[X] (2) 
x~z2 IXI 
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where IX[ is the number of sites in X. (This limit exists in the sense of van 
Hove if there is invariance under lattice translations. We only consider 
systems with translational invariance.) 

The idea of local states methods is to estimate s from a knowledge of 
local states P x ( ' )  for a limited number (often one) of clusters X. Both the 
CVM and the LSM improve greatly on the naive estimate IX]-1 .S[X] ,  
although in quite different ways. Both methods, however, utilize the fact 
that knowledge of P x ( ' )  not only enables the cluster entropy SIX]  to be 
calculated, but the cluster entropies S [Y]  for all subclusters Y of X can 
also be calculated: from the distribution P x ( )  the local state P r ( ' )  may 
be obtained as a marginal distribution by summing over the redundant 
spin variables in X \  Y. 

The CVM has been used extensively during the past decades as an 
analytical tool for calculating phase diagrams from molecular interactions 
(for some recent applications, see refs. 19-21) and its mathematical aspects 
are by now reasonably well understood. O~ We refer to the 
literature(14 17,24) for various descriptions; here we shall present merely a 
plausibility argument to give the method some intuitive appeal. Consider 
an n x m rectangular cluster Rnm by way of example. Then [cf. Eq. (2)] 

s~m =(nm) -a" S[R,m] ~ s (3) 

for n, m ---, ce. If Snm can be expanded as 

Sn m =s +al~ +a~ +a2~ + a n  + a~ 
n m gl 2 nm --~ + " 

(4) 

then the linear combination of cluster entropies 

C n m = S [ R n m J - g [ R n - l , m ] - S [  R . . . .  1J~f-S[Rn 1,m 1] (5) 

a2o ao2 = s -  ~ -.. (6) 
n(n--1)  m ( m - - l )  

also converges to s, but faster than the sequence Snm. The expression C,m is 
the CVM approximation with Rnm as the so-called basic cluster. It may be 
considered as being based on an extrapolation to the limit of the sequence 
s,m. For  other choices of the basic cluster, the CVM formalism produces 
similar linear combinations of cluster entropies as approximations to the 
limit entropy density s. We stress the fact that the reasoning presented 
above is not the one used in general practice, nor has it been used in 
theoretical analysis of the CVM. [The existence of an expansion as given 
by Eq. (4) has not been established, as far as we know.] The more 
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general (14-17) and precise (w'H'22-25) approaches are, unfortunately, not 
intuitively obvious and tend to rely on specialized mathematical techni- 
ques. 

The mathematical foundation for Meirovitch's LSM formulas has only 
recently been established with complete rigor, but the physical picture 
behind the approach is easily explained. Let us consider the Ising model 
from the binary alloy point of view. One way of producing an equilibrium 
situation is to start with a small crystal and to let A and B atoms settle, 
one at a time, on the surface according to their preferences. These preferen- 
ces are expressed by conditional probabilities: i.e., the probability of an A 
(B) atom settling on the crystal surface is conditioned by what is there 
already. In this setup the equilibrium situation is produced by a dynamic 
process, for which the equilibrium state is the stationary state. The natural 
entropy concept is now a conditional entropy, which measures the random- 
ness associated with adding yet another site to the lattice, given the 
occupation of the existing part. (26) In the thermodynamic limit of an 
infinitely large system, i.e., when the existing lattice is infinite in extent and 
thus fills an entire half of the space, this conditional entropy, denoted by 
L is equal to the thermodynamic entropy density s. (~3'22) The practical 
usefulness of this approach derives from the fact that the thermodynamic 
equilibrium state has a certain Markov property: only the boundary layer 
of the existing lattice contributes to the conditioning; the depth of the 
boundary layer is determined by the range of the interaction. This Markov 
property has long been known for finite lattices, but it has only recently 
been proven for the infinite lattice in more than one dimension. (~3) As a 
result, s can now be expressed as the conditional entropy of one site with 
respect to an infinite boundary layer. Meirovitch's original LSM formulas 
are an approximation to this expression in that conditioning takes place 
with respect to a finite (even small, of the order of ten sites) part of the 
boundary layer only. It may now also be intuitively clear why such an 
LSM formula is an upper bound on s: in conditioning with respect to only 
a part of the boundary layer, fewer restrictions are placed on the freedom 
with which the site may be occupied, and this results in more randomness 
and a larger entropy. 

3. E N T R O P Y  E S T I M A T E S  

In this section we list various entropy approximations from both the 
CVM and the LSM, which are applicable to two-dimensional models on 
the square lattice with nearest-neighbor interactions that are invariant 
under lattice translations and reflections. 
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Fig. 1. The cluster  H 3. 

For such models, the LSM considers Z-shaped clusters (Fig. 1) of 
2n sites, which we denote by H. ;  the CVM in its traditional form uses 
rectangular clusters (27) D.  (Fig. 2), although the cluster H n has been 
mentioned in this context, too. (u) It is convenient to introduce some 
notation for subsets of H. 

so that 

and D. (see Fig. 3): 

L.= {z= (z,, Z2)e Z2: Z 1 =0 ,  1 ~Z2 ~T/} 

Rn= { z = ( z l , z 2 ) e Z h z l =  1, -n<~z2<~O} 

o = { 0 }  = { (0 ,  0 ) }  = z 2 

H.=L._IwOwR,,  i 

(7) 

(8) 

(9) 

(10) 

e 

$ w �9 
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Fig. 2. The  cluster  D 3. 
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Fig. 3. Decomposition of the cluster H 3 into the subclusters L 2, O, and R2: II, sites of L2; 

O, sites of O; x, sites of R2. 

and D~ may be written as 

D n = L n w z l L  . (11) 

where zl denotes translation over one lattice unit in the first coordinate 
direction. Note that any lattice site may be selected as O because of transla- 
tional invariance. 

Meirovitch's entropy approximation,  based on the cluster H~, is 

d .  = s [ / 4 . ]  - s[i4.\o] (12 )  

which is a difference of two cluster entropies; this equals the conditional 
entropy of O given the state on L, l u R n _ l = H ~ \ O ,  In the limit of 
n ~  oo the set H , \ O  extends to cover the entire boundary layer, as 
described in the previous section. From the results of ref. 13, it follows that 
in thermodynamic equilibrium dn decreases monotonically to the entropy 
density s. Thus, the approximation d~ is an upper bound on s, and the 
bound is closer if a larger cluster H ,  is used. The practical limitation is in 
the exponential increase, with increasing n, of the number of configurations 
on H ,  that must be sampled. 

Application of the CVM formalism to the cluster Hn results in the 
following entropy approximation: 

kn=S[Hn]- -S[L , ,  l u R n _ 2 ] - - S [ L , , _ l U O ] + S [ L n _ ~ ]  (13) 
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Theorems A.I and A.II of ref. 11 yield the result that at equilibrium k,  ~< s 
and also that lira k ,  = s; monotonicity of the convergence is not proven. 

With D,  as basic cluster, the CVM gives the following approximation 
to s: 

c,, = S [ D , , ]  - S [ D , , _ ,  ] - S [ L , , ]  + S [ L , ,  _ ~ ] (14) 

which again has the by now familiar look of something like a second-order 
difference [cf. Eq. (5)]. Again, it can be shown rigorously that for ther- 
modynamic equilibrium states cn~<s and that c, converges to s with 
increasing n; here, also, monotonicity is not proven. (1~ 

An upper bound on s with D,  as the basic cluster is provided by the 
expression(l~ 

1 
b. = -  { S [ D . ]  - S [ C . ]  } (15) 

/7 

but, since experience has shown this bound to be very loose for all 
reasonable values of n, it is of no practical value and is not considered 
further. 

The inequalities 

s<~dn (16) 

k . < ~ s  (17) 

c;,<~s (18) 

hold for the thermodynamic equilibrium state of the infinite system. In 
simulation practice, the values for tin, etc., will be calculated from empirical 
configuration probabilities obtained from a finite sample of configurations 
on a finite lattice. This introduces a finite-size effect and a statistical 
(finite-sample) uncertainty, which may lead to small violations of the 
theoretical inequalities. 

4. M O N T E  CARLO S I M U L A T I O N S  

We have tested the use of CVM entropy approximation formulas in 
conjunction with the LSM upper bounds in simulations of the Ising model 
and the five-states ferromagnetic Potts model on the square lattice. For  the 
Ising model, exact results for free energy and entropy are available for all 
temperatures(28); for the Potts model, reference data from an analytical 
calculation are available at the critical temperature. (29~ 

We present results of simulations on a 64 x 64 lattice with periodic 
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Table I. S imulat ion Results for the  Ising Mode l  on the 6 4 x 6 4  Lattice 

Temperature Energy density Entropy density Free energy density 
T I T  c - u / J  s / k  - f l f  

MC Exact MC Exact MC Exact 

k 4 c 4 d 4 best interval 

0.50 1.9924 1.9924 0.0076 0.0076 0.0076 0.0076 [1.7637, 1.7637] 1.7637 
0.60 1.9733 1.9733 0.0227 0.0227 0.0227 0.0228 [1.4721, 1.4721] 1.4721 
0.70 t.9313 1.9312 0.0511 0.0511 0.0511 0.0511 [1.2669, 1.2669] 1.2669 
0.80 1.8524 1.8524 0.0971 0.0971 0.0971 0.0972 [1.1176, 1.1176] 1.1176 
0.90 1.7133 1.7131 0.1689 0.1690 0.1690 0.1691 [1.0079, 1.0079] 1.0079 
1.00 1.4231 1.4142 0.2989 0.3010 0.3038 0.3065 [0.9281, 0.9309] 0.9297 
1.10 1.1100 1.1095 0.4349 0.4351 0.4357 0.4356 [0.8798,0.8804] 0.8801 
1.50 0.6858 0.6850 0.5848 0.5848 0.5848 0.5850 [0.7862, 0.7863] 0.7862 
2.00 0.4803 0.4790 0.6379 0.6379 0.6379 0.6382 [0.7438, 0.7438] 0.7438 
3.00 0.3062 0.3047 0.6701 0.6701 0.6701 0.6704 [0.7151, 0.7151] 0.7151 
4.00 0.2261 0.2249 0.6805 0.6805 0.6805 0.6806 [0.7054, 0.7054] 0.7054 

Table il. S imulat ion Results for  the q =  5 Potts Mode l  
on the  64 x 64 Lattice 

Temperature Energy density Entropy density Free energy density 
T I T  c - u / J  s / k  - f l f  

k 3 c 3 d 3 best interval 

0.50 1.9986 0.0036 0 .0036  0 . 0 0 3 6  [4.6978,4.6978] 
0.60 1.9930 0.0154 0 .0154  0.0154 [3.9162, 3.9162] 
0.70 1.9768 0.0444 0 .0444  0.0444 [3.3607, 3.3607] 
0.80 1.9386 0.1037 0 .1037  0.1037 [2.9494, 2.9495] 
0.90 1.8542 0.2194 0 .2194  0.2195 [2.6388, 2.6389] 
0.95 1.7724 0.3230 0 .3230  0.3231 [2.5140, 2.5141] 
1.00 ~ 1.5241 0.6165 0 .6179  0.6219 [2.4077, 2.4117] 
1.05 1.1180 1.0907 1 .0911 1.0933 [2.3415, 2.3438] 
1.10 1.0225 1.1961 1 .1962  1.1971 [2.2878, 2.2887] 
1.20 0.9093 1.3126 1 .3126  1.3128 [2.2024, 2.2026] 
1.30 0.8372 1.3805 1 .3805 1.3806 [2.1368, 2.1369] 
1.40 0.7858 1.4253 1 .4253 1.4253 [2.0845, 2.0845] 
1.50 0.7462 1.4574 1 .4574  1.4575 [2.0417, 2.0417] 

aExact results: for T = T - :  - - u / J = 1 . 4 7 3 7 ,  s / k = 0 . 6 7 9 2 ,  -flf=2.4098; for T = T + :  

- u / J  = 1.4208, s / k  = 0.7414, - flf= 2.4098. 
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boundary conditions, performed with the conventional Metropolis algo- 
rithm. After an equilibration period of 1000 MC trials per spin, a new 
lattice configuration was subjected to analysis at intervals of 3 MC trials 
per spin. In the analysis the number of occurrences of each of the possible 
cluster configurations on the clusters Hn and D n was counted; for the Ising 
model, we used n =- 4, which involved keeping track of two times 28 = 256 
cluster configurations; for the Potts model, we used n = 3, involving two 
times 56= 15,625 cluster configurations. Each simulation run analyzed 
10,000 lattice configurations to yield estimates of the cluster configuration 
probability distributions (local states) on the H and D clusters. The 
entropy estimates d, k, and c [cf. Eqs. (12)-(14)] were calculated from 
these data. The estimates are presented in Tables I and II, together with the 
simulation results for the energy and reference data from the analytical 
solutions. The statistical uncertainty of the MC results for energy and 
entropy approximations was estimated, from a subdivision of the runs, to 
be <0 .5% for T #  Tc and < 1 %  for T =  To. The free energy results are 
more accurate, however, which explains the number of decimals used in the 
presentation of the data. Note that the simulations at the critical tem- 
peratures were as long (or short) as the others. Using a 96 x 96 lattice did 
not produce significantly different results. 

5. D I S C U S S I O N  

The data in Tables I and II confirm the previous observation (4-6~ that 
the LSM approximations dn are, for small values of n, very close to the 
exact entropy density. The approximations kn and cn, based on the CVM, 
are shown to be equally accurate. In combination, they define a narrow 
interval that determines the entropy density s with an accuracy that is of 
the same order of magnitude as the statistical accuracy of the MC sampling 
procedure. The smallness of this interval in itself signals the intrinsic 
accuracy of b.oth the LSM and the CVM approximations; the exact results 
provide an opportunity for an independent verification, which would not 
usually be possible. 

The differences between upper bounds, lower bounds, and exact 
entropy values hardly rise above the level of statistical noise, and therefore 
it is difficult to draw any firm conclusions from these test results beyond 
the statement that the intrinsic accuracy of these local states methods is 
impressive. The lower bound c, does seem to be slightly better than kn, but 
this difference, too, is hardly significant. The advantage of using k,  is that 
both k,  and the upper bound d, are calculated from the same local state 
on the cluster Hn; to obtain c~, the local state on the rectangular cluster 
Dn must also be sampled; this requires additional computational effort. 
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It is only at the critical temperature that there is an appreciable dif- 
ference between the various entropy bounds and the exact value. Here also 
a significant finite-size effect is apparent: the exact entropy density for the 
infinite Ising model does not lie between the bounds obtained from the 
simulation on the 64 x 64 lattice--even if the statistical uncertainty is taken 
into account. On the other hand, the entropy density of the 64 x 64 Ising 
model is estimated (3~ to be 0.302, which is well within the approximation 
interval. 

As a consequence of the variational principle, which states that the free 
energy density is a minimum for a state of thermodynamic equilibrium, 
fluctuations in energy and entropy tend to cancel. We observe that the 
bounds k, c, and d fluctuate in tandem and follow the entropy fluctuations. 
Hence, the free energy density can be estimated with considerable reliability 
even from a relatively short MC run: the free energy is more easily deter- 
mined than its separate contributions, energy and entropy. This is clearly 
seen from the results at T c. 

We conclude that local states methods provide a very direct way of 
obtaining good free energy estimates. Data from only one simulation run 
under the conditions of interest are needed, which makes the technique 
computationally cheap and the implementation straightforward. The fact 
that the entropy is calculated from approximation formulas rather than 
with the help of an exact relation can no longer be considered a drawback: 
if the original LSM approximation of Meirovitch, which gives an upper 
bound on s, is combined with other approximations, derived in the CVM 
and yielding complementary lower bounds, the accuracy of the results can 
be assessed directly. The problem of dealing with statistical fluctuations is 
greatly reduced if one considers the free energy rather than considering the 
entropy and energy separately: the free energy can be obtained even at the 
critical temperature with a simulation of ordinary length. 

The observation that formulas from the CVM can be useful in the con- 
text of Monte Carlo simulations is, we think, interesting in itself. There is 
a vast reservoir of entropy approximations for all kinds of situations 
available in the CVM, which could be explored for use in MC simulations. 
Such simulation results might in turn yield useful insights into the behavior 
of the CVM as an analytical tool. 

A number of aspects of local states methods deserve further study. In 
the investigation reported here, we have found that good results can be 
obtained by using a cluster of six or eight lattice sites. For  interactions with 
longer range and for three-dimensional models it is to be expected that 
clusters of more sites must be used to obtain equally good results. The 
memory requirements for sampling the local state on the cluster are then 
likely to become a limiting factor. This problem has already received some 
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attention, in the LSM (6) as well as in the CVM; possibly techniques that 
were developed in the CVM contexr TM can be used in the present context, 
too. 

There is a theoretical question concerning some frequently used CVM 
approximations for three-dimensional lattices. While it is believed that 
they correspond to lower bounds on s, a proof has not yet been given; 
the techniques that have been used to establish the proofs in the 
two-dimensional case do not seem to admit an easy extension to three 
dimensions. 

Finally, the influence of the finite size of the lattice used in the simula- 
tion needs more careful attention. The finite-size effect enters only through 
the sampled local state, which is the local state that corresponds to the 
equilibrium state of the finite lattice, whereas the theory that underlies the 
approximation formulas calls for the use of the local state belonging to the 
equilibrium state on a lattice of infinite size. In that case, the approxima- 
tion formulas bound the thermodynamic limit entropy density s. The 
finite-size effect may lead to a situation where the actual calculated interval 
no longer contains s. The simulations at critical conditions provide exam- 
ples. It would be of interest to understand the finite-size scaling behavior 
of the entropy bounds. Since they are not related in an obvious way to 
thermodynamic quantities of the finite system, it is not clear if existing 
scaling techniques can be applied. 
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