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ABSTRACT 
de Leeuw, SW,  Williams, CP and Smit, B 1988 Local composdlons and thermodynamics 
of polar/non-polar mixtures 

Results of computer simulations are presented for the thermodynamic properties of mixing 
and the local compositions for mixtures of Stockmayer and Lennard-Jones fluids with varying 
concentrations and dipole strengths The results show a strong asymmetry with respect to the 
concentration which is attributed to the influence of the orientation dependence of the dipole- 
dipole interaction and explained in terms of a "frustration" effect 

1. INTRODUCTION 

The concept of local composihons, which describes the deviahons of concentrations within 

a region around a specific particle from the overall bulk concentrations, and the importance 

of such deviations for liquid models, can be traced back as far as the work of Rushbrooke 

(1938) and Guggenheim (1944) Recently there has been renewed interest in these ideas pri- 

marily motivated by efforts to extend the apphcabihty of equations of state to include the 

liquid-phase descriphon of non-ideal mixtures through the use of fundamental mixing rules 

Methods have been proposed (Mollerup, 1981, Whiting and Prausndz, 1982, Li et a l ,  1986) by 

which the local composition mixing rules may be combined with an equation of state 

By using computer simulations it has become possible to determine the local composition 

of well defined model systems and to use these data for further improvement of the local 

composition models Previously, computer simulations have been concerned mainly with the 

local,compos~hon of particles with isotroplc potentials The results of these earl ier studies 

suggested that the local compositions and phase behaviour were h~ghly symmetric with re- 

spect to the bulk concentrahon This is m direct contrast wrth experimental observations for 

polar/non-polar m~xtures 

Mixtures of Lennard-Jones and Stockrnayer particles prowde a convenient model system 

which can be used to study the mpcroscoplc behavlour of polar/non-polar mixtures with com- 

puter simulation techniques Furthermore the simulations also allow the calculation of the 

thermodynamic properties of mlxmg for these theorehcal fluid mixtures 

2. COMPUTATIONAL DETAILS 

The energy of interaction between two Stockmayer molecules with d~pole moments 

,~1 and 1~2 separated by a distance r12 is given by 
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~ 2  

~s(l~l,/~2, r12) tL D(1,2) + ~LJ(~12) 3 
r12 

(la) 

where 

D(1,2) 3(~ 1 ~ A ^ ~1" ~2 = • q 2 ) 0 , 2  • q 2 )  - ( lb) 

where^ denotes the untt vector D(1,2) is the angular dependence of the dipolar interaction and 

~LJ ts the usual Lennard-Jones interaction 

~Lu(r)  = 4 r . { [ ~ -  ]12 _ [ ~  ]6}  (2) 

In the work reported here we have studied flutd mixtures of Stockmayer and Lennard- 

Jones molecules in which the size parameter, ~ , and the energy parameter, s, of the 

Stockmayer molecules are identtcal to those of the Lennard-Jones molecules Devtatrons from 

ideal mixing m these systems are therefore due enhrely to the polardy of the Stockmayer 

molecules and allows us to study the effect of polardy and composttion on the mtcroscoplc 

structure and the thermodynamtc properttes of these mixtures 

Isothermal-tsochorlc molecular dynamics (MD) caleulahons have been performed for mix- 

tures with various mole trachons, xs, of Slockmayer molecules The temperature was held 

constant wtth a Nose thermostat (Nose, 1984) using a Nose mass of 100 m reduced umts 

The stmulahons were performed at a reduced temperature of T* = kT/s = 1 15 and a 

reduced density of p* = pr~ 3 - 0822 Both the pure Lennard-Jones and the pure 

Stockmayer fluids have been studied extensively at thts state point previously (Adams and 

Adams, 1981, Neumann el al 1984, Petersen et a l ,  1988) The reduced dtpole moment, 

1 I* = t~/\,'r~.~ T was varied between 0 0 and 2 0, covering a range of physically reahshc values 

The long-range dtpolar mteractions were handled with standard Ewald summahon techniques 

usmg "tmfoil' boundary conddtons (de Leeuw et a l ,  1986) A total of 309 reciprocal latttce 

vectors were used for the evaluation of the Fourier part of the Ewald summation The value 

of ¢. the parameter whtch governs the convergence of the two series in the Ewald sum, was 

set to 6 58 

The simulahons were carried out f o r a l o t a l o f N = 1 0 8  parhcles A few runs were performed 

with a larger number of particles to study the N-dependence of the results The total energy 

was found to be almost independent of the number of parttcles and for the pressure a shght 

dependence (a few percent) was observed 

In the simulattons, the system was equthbrated for at least 5000 hme-steps and followed 

b y a  production run of at least 15,000 time-steps A t i m e - s t e p o f 0 0 0 2 5 T w a s  used, where : is 

the reduced unit of hme defined as f = ~/'mr,2/r 
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3. RESULTS 

3.1 T h e r m o d y n a m i c  P roper t i es  

In table I we have collected the values of the potential energy obtained from our simu- 

lations for various compositions and dipolar strengths The contributions due to the Lennard- 

Jones interactions, including the long-tail correctton, have also been included These 

contributions are seen to increase wdh dipolar strength and mole fraction xs of the 

Stockmayer molecules This is of course expected due to the tendency of the dipolar inter- 

actions to decrease the distance of closest approach which in turn increases the contribution 

of the repulswe energy in the Lennard-Jones potentqal 

Fraction of Stockmayer particles, xs 

i ~.2 0 000 0 167 0 333 0 500 0.667 0 833 1 000 

0 50 5 526 5 518 5 589 5 599 5 658 5 749 5 825 
5 503 5 548 5 503 5 498 5 515 5 510 

1 O0 5 526 5 585 5 679 5 831 6 026 6 219 6 451 
5 551 5 517 5 523 5 526 5 481 5 469 

1.50 5 526 5 630 6 845 6 "125 6 453 6 822 7 223 
5 526 5 514 5 501 5 478 5 456 5 426 

2 25 5 526 5 756 6 188 6 683 7 259 7 866 8 517 
5 528 5 484 5 463 5 413 5 355 5 331 

3 O0 5 526 5 986 6 606 7 331 8 "136 9 049 9 920 
5 490 5 432 5 383 5 326 5 253 5 194 

4.00 5 526 6 274 7 302 8.364 9.510 10 724 "12 039 
5 450 5 353 5 278 5 "181 5 070 4 975 

TABLE I Potential energy - U/(Ns) for mixtures of Lennard-Jones and Stockmayer fluids for various 
composdlons x s and reduced dipolar strengths i L*2 (The lower number is the contribubon of L-J 
interactions ) 

The excess energy of mixing Ue, can be readdyobtamed from the data qntable I In figure 

1 the variation of Ue. wdh composition is shown for three different values of the reduced 

dipolar strength /~.2 As expected U,, increases with increasing reduced dipolar strength, 

however the most interesting feature of the figure is the asymmetric behavlour of U,~ with re- 

spect to the composition The energy of mixing has a maximum at mole fractions x s slighly 

less than 0.5, re  at compositions rich tn the non-polar component This corresponds with what 

has been observed experimental ly in a number of polar/non-polar mixtures such as 

CH3OH/C6H 6 and CzHsOH/C6H14 (King, 1969, pp 27-35) 

The asymmetric behaviour has also been observed m the variation of the excess free en- 

ergy of mixing fe~, as shown elsewhere (de Leeuw et a l ,  1988) For values of #*z > 4 it was 

shown that this leads to a phase separation into an almost pure Lennard-Jones fluid and a 

Stockmayer-nch phase Th~s agreeswt th the results o fMornss  and lsbister (1986) whoso lved  

the site-site Ornstem-Zermcke equation, using the mean spherical approxtmatlon closure, for 

mixtures of polar and non-polar hard-dumbbells 
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It is instruchve to compare our results with those of Wong and Johnston (1984) who per- 

formed Monte Carlo simulations of strongly non-ideal hquld m~xtures The dtpolar interactions 

were included m the form of an angle-averaged express}on and the behavtour of the excess 

properties with respect to the composition was found to be htghly symmetric Thin comparison 

demonstrates that it Is indeed the onentahon dependence of the dtpolar interachons that Is 

responslble for the asymmetry in the composdlon dependence ofUo~and f~, A stmdarasym- 

metric behavtour IS observed for the local composthon as a funchon of the mole frachon of 

Stockmayer molecules whtch ~s d~scussed Hi the following sechon 

0 -  

z. 

/ .oz=  1 O0 

. T " ' " T  /Z% 2.25 
• J- ~.3- /~ = 4 00 

,5 
o.oo o:25 o:5o o:75 1.oo 

X s 

Fig 1 Excess energy of mixing U~dNsversus concentration x s 

In table II values for the compresslbddy factor (Z=PV/NkT)  are given for the vartous 

composlhons and reduced dtpole moments Again we observe devrahons from tdeahtywhtch 

behave asymmetrBcally wdh respect to the compos~hon 

3.2 Loca l  Compos i t i on  

The local composdton Fn mtxtures of square-well flutds has been thoroughly examined m 

a series of papers by Lee and Sandier and their co-workers (1984, 1986a, 1986b, 1987) The 

use of square-well fluids is advantageous In that the cut-off distance in the mtegrahons for the 

calculahon of the local mole frachon is unambrguously defined Furthermore the properties 

of such fluid mixtures are clmmed to resemble mixtures of Lennard-Jones molecules 

The local composFtton of equlmolar, equal-stzed Lennard-Jones mtxlures have themselves 

been studied prevlouly (Nakamsht and Toukubo, 1979, Nakantsht and Tanaka, 1983, Nakantsht 

el al 1983) using molecular dynamtcs and by Wong and Johnston (1984) usmg Monte Carlo 

stmulahons In both studies a var tetyofcornbmmg rules were used for the energy parameter 



Fraction of Stockmayer particles, x s 

#*2 OOOO O167 0333 0500 0667 0833 1000 

050 22 24  21 23 22 21 21 

100 22 21 22 20 18 19 17 

150 22 22 20 18 17 14 12 

225 22 21 19 15 13 10 05  

300 22 20  17 13 09  04  -01 

400 22 19 15 09  03  -03 -10 
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TABLE II Compresstbdity factor PV/NkT for mixtures of Lennard-Jones and Stockmayer fluids for 
various compositions x s and reduced dipolar strengths iz 'z 

%, representattve of assoc~atton and solvahon forces, in adddeon to the usual Lorentz- 

Berthelot (L-B) geometrtc mean typical of dispersive-only forces 

The local composihon of Lennard-Jones mtxtures wdh differing component stzes, obeying 

the L-B mixing rules, has been studaed using molecular dynamics (Glerycz and Nakamshl, 

1984, Gierycz et a l ,  1984) Hoheisel and Kohler(1984) investtgated the local composition in 

L-B mtxtures of Lennard-Jones fluids with both equal and differently sized particles Lee et 

al (1986) studied the effects of size and energy differences m both Lennard-Jones and Kthara 

mixtures These studies concluded that packing effects, and not the attracttve forces, are the 

dominant cause of non-randomness in liquid mixtures obeying the L-B combining rules 

The number of i-particles around a central j-particle, within a given distance L, is rigor- 

ously defined m terms of the distribution funchon g,j(r) (Lee et al , "1983) and ~s gtven by 

to- N~j(L) = x,p . d r  gp/r) (3a) 

and simtlarly for j-particles around a central j-parhcle 

r0- Njj(L) = x jp .  d rg j j ( r )  (3b) 

For a binary mixture the local mole frachons may then be defined according to the following 

N~](L) (4) 
X~/L) - (N,j(L) + Njj(L)) 

w~th the condition that 

Xq(L) + Xjj(L) = 10  (5) 
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Obviously for continuous interaction potentials the actual value of X,~(L) depends on the 

cboJce of L, the cut-off point for the mtegrahons Thrs is typically chosen to correspond wdh 

the end of the first-coordmahon shell and, as pointed out by Hohelsel and Kohler (1984), 

should be independent of the type of contact so as to fulfill the reqmrement that, as L becomes 

large 

X21-~x ~ (6a) 

Xt2-~x~ (6b) 

fe this paper we are more concerned with the trends m the local mole fractions rather than 

the specific values, however for comparison we have chosen Liar = 1 35 in keeping with pre- 

vious work (Hohelset and Kohler, 1984) 

The local mole fractions X,~, defined by equations (3-5), have been determined for the mmu- 

lations d}scussed earher The results for Xss and XL~ ' for two of the Stockmayer/Lennard-Jones 

fluid mtxtures studied are shown tn figure 2(a,b), for the same three values of the reduced 

dipole moment shown m f~gure 1 The vatues of Xst.(L/cr = I 35) and Xts (L/~ = 1 35) [or all 

mixtures and dipole moments are given in table Ill 

O66321 05041 
I 

03205~ 04980 
0 64181 Q 4994 

1 
031511 04917 
062741 n4917 

03134 01626 

J Fraction of Stockmayer Parhcles, xs 

,,*' I 0167 / 0333 I 0500 0 6 6 7  083-3- 

- - - ~  I 0 I673 i 033151""05046 06773 08312 
t 08419 / 066321 03393 01661 

lOO I o ooo 

,50 I 0t614t o6611 o8221 
I 08o561 03315 01652 

2 25 0 16291 0.3055 04716 0 6269 08294 
! 08103[ 06113 t 04707 03132 01670 
I 

300 J 01392J 02910 04692 06550 07728 
! 068931 05860 04717 03319 01550 

400 I 014241 02875t 04476 06171 08038 
07155 05798' 04541 

TABLE III Loca| mole fractions Xst.(upper ) and XLs(lower ) at L/o- = 1 35 for each composition x s and 
reduced dipole moment l~ *z 

The results are also presented In the form used by Lee and Sandier (Lee and Sandier, 1987), 

who suggested using the raho 
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FIG 2 a,b Locat mole fract ions Xss and XLL for two composi t ions x s (0 167 and 0 833) and three 
reduced dipole moments  #.2 (t.00, 2 25. 4 00) 
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NI/x/ (7) 
Nj/Xl 

wh~ch, if equal to unity would indlcate a completely randomsoluhon These results are shown 

in figure 3(a,b) and gwen m table IV (again at L/,7 = 1 35 ) for all mtxtures considered 

The most notable feature of these results is the asymmetry wtth respect to the compost- 

tlon, as seen prewously, with the greatest deviation from a random solutron being found for 

mixtures wtth low concentrations of Stockmayer particles As discussed above, this is m 

agreement with our earher work (de Leeuw et al , "1988) 

Fraction of Stockmayer Particles, x s 

#*~ 0 167 0 333 0 500 0 667 0 833 

050 `1004f 09916 `10185 10496 09847 
1 0653 0 984~ 1 0164 1 0270 0 9961 

1 O0 0 9984 0 9433 0 9920 0 9732 0 9662 
1 0230 0 8958 0 9975 0 9900 0 99`11 

1 50 0 9623 0 9199 0 9674 0 9754 0 9243 
08286 08418 09674 09918 09895 

2 25 0 9727 0 8799 0 892~ 0 8401 0 9724 
08543 07863 08893 09119 10023 

300 0 8085 0 8208 0 8839 0 9491 0 6801 
O4437 07077 08927 09934 09171 

4 O0 0 8300 0 8071 0 8104 0 8057 0 8195 
0 5030 0 6898 0 8317 0 913( 0 9707 

TABLE IV Local composition ratios NsLXL/NLLXs(Upper ) and NLsXs/Nssx~(Iower ) at L/cr = 1,35 for each 
composition x s and reduced dipole moment t/.2 

Wong and Johnston (1984) also reported values for lhe local mole fractions for non- 

p o r a r / ' p o l a r - h k e "  mixtures Similar to their observations concerning the thermodynamic 

properties of mixing discussed prevlouly, they found that the local composdlons of the sys- 

tems were symmetric with respect to the bulk concentration Thrs again reinforces our sug- 

geshon that the onentahon-dependence of the dipole-dipole mterachon plays an important 

role in determining the behawour of this type of system 

4. DISCUSSION 

It is interesting to speculate about the origin of the asymmetric behaviour shown rn the 

results given above If one considers two Stockmayer partlclesw~thm close proximity of each 

other, in a background of Lennard-Jones particles, then the two polar particles are free to 

orientate themselves in the most energetically favourable onentatron For dipolar particles this 

occurs when the two are ahgned"nose-to4al l"  However, lncreaslngtheoveral lconcentratron 

of Stockmayer parhcles increases the probabrhty of a third polar parbcle also being m the vi- 

cinity One can then rmaglne that the particles are frustrated m the l ra t tempts toach leve th ts  

optimal orientation for each patr-mterachon Therefore some compromise must be achfeved 
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which will then result ;n a decrease tn the interactPon between each parr This arguement rs 

then the basis for our explanahon of the observed asymmetry of the results, wtth respect to 

the concentration, in terms of our so-called"frustrahon effect" Th~s suggestion ~s further re- 

inforced by the orientation correlahon funchons for these mixtures which will appear else- 

where shortly 
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