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Molecular simulations are used to investigate the energetics and siting of
linear and branched alkanes in the zeolite silicalite. The calculated heats of
adsorption of the branched alkanes are in good agreement with the experi-
mental data. The simulations show a striking di†erence between the behav-
iour of linear and branched alkanes. The linear alkanes are relatively free to
move in all channels of the zeolites. The branched alkanes are trapped with
their CH group in the intersection of the zig-zag and straight channels of
silicalite. This trapping of the branched alkanes suggests that di†usion of
these molecules is an activated process ; most of the time the molecule is
located in the intersection but, occasionally, it hops from one intersection to
another. The straight and zig-zag channels form a barrier for the di†usion.
We present some preliminary calculations of this hopping rate, from which
the di†usion coefficient can be calculated. These preliminary results are in
reasonable agreement with experimental data.

1 Introduction
The catalytic conversion of molecules inside the pores of a zeolite can be seen schemati-
cally as a three-step process ; adsorption and di†usion of the reactants in the pores of the
zeolites, catalytic conversion at the active site and, Ðnally, di†usion and desorption of
the products. Each of these steps contributes to the overall activity of a zeolite. To
understand the shape selectivity of a given zeolite it is, therefore, important to have a
detailed understanding of the sorption and di†usion of the molecules in the pores of a
zeolite. Experimentally, it is difficult to obtain this type of information under reaction
conditions and therefore computer simulations could be a possible alternative.

In principle, the conventional simulation techniques, such as molecular dynamics
(MD) or the Monte Carlo (MC) method, can be used to obtain this type of information.
However, in practice, it turns out that these techniques are limited to the sorption and
di†usion of relatively small molecules. The di†usion of these small molecules or atoms is
sufficiently high, such that within a reasonable amount of CPU time a representative
part of the zeolite is sampled (for a review, see ref. 1). For hydrocarbons, this implies that
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standard MD can be used efficiently to simulate the di†usion and sorption of methane,
ethane and propane.2,3 If we increase the number of carbon atoms the CPU time
becomes too great.4,5 To simulate the thermodynamic properties of long-chain alkanes,
it is necessary to use alternative simulation techniques. For example, Smit and co-
workers have used the conÐgurational-bias Monte Carlo (CBMC) technique to compute
the energetics and siting of linear alkanes in various zeolites.6h9 Similar methods have
been used by Maginn et al.10 In this work we use the CBMC technique to simulate the
behaviour of branched hydrocarbons. Branched hydrocarbons are of importance for
catalytic dewaxing and alkane isomerisation.

We compare the sorption properties of linear and branched alkanes in silicalite. In
particular, we show that the siting of the branched alkanes di†ers signiÐcantly from the
siting of the linear alkanes. It is argued that this di†erence in siting has consequences for
the di†usion mechanism of branched alkanes and we present some preliminary results
for the di†usion coefficients of these molecules.

2 Model and computational details
We focus on alkanes with a single chain-end branch with the structure

The branched alkanes are described with a united-atom(CH3)2wCHw(CH2)nCH3 .
model, i.e. and CH groups are considered as single interaction centres. WeCH3 , CH2have used the model of Wang et al.11 The pseudo-atoms in di†erent molecules, or
belonging to the same molecule, but separated by more than three bonds, interact with
each other through a Lennard-Jones potential
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where is the distance between sites i and j. The Lennard-Jones potentials were trun-r
ijcated at 9.626 and the usual tail corrections have been applied.12 The Lennard-JonesÓ,

parameters used are shown in Table 1. The pseudo-atoms in a given chain are assumed
to be connected by rigid bonds Bond bending is modelled by a harmonic(dCC\ 1.53 Ó).

Table 1 Parameters for the Lennard-
Jones potential describing the inter-
actions between pseudo-atoms of a
branched alkane as developed by

Wang et al.11

(e/kB)/K p/Ó

CH2wCH2 59.38 3.905
CH3wCH3 88.06 3.905
CHb3wCHb3 80.51 3.910
CHwCH 40.25 3.850
CH3wCH2 72.31 3.905
CH3wCHb3 84.20 3.9075
CH3wCH 59.53 3.8775
CH2wCHb3 69.14 3.9075
CH2wCH 48.89 3.8775

A group connected to a CHCH3group is denoted by ThiswCHb3 .
group is given a di†erent set of inter-
action parameters. The interactions are
truncated at Rc \ 9.626 Ó.
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Table 2 Parameters for the torsion potential of the branched alkanes11

C0 C1 C2 C3
CH3wCH2wCHwCHb3 373.0512 919.0441 268.1541 [1737.216
CH2wCH2wCHwCHb3 373.0512 919.0441 268.1541 [1737.216
CH2wCH2wCH2wCH 1009.728 2018.446 136.341 [3164.52
CH3wCH2wCH2wCH 1009.728 2018.446 136.341 [3164.52
CH2wCH2wCH2wCH2 1009.728 2018.446 136.341 [3164.52
CH3wCH2wCH2wCH2 1009.728 2018.446 136.341 [3164.52
CH3wCH2wCH2wCH3 1009.728 2018.446 136.341 [3164.52

A group connected to a CH group is denoted by For a CH group theCH3 CHb3 .
total torsion potential is the sum of two contributions.

potential

ubending(hi
) \ (1/2)kh(hi

[ heq)2 (2)

with as the equilibrium angle and with a force constant equal toheq\ 112.4¡ kh \
63 390.976 K rad~2. Changes in the torsional angles are controlled by :
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with parameters shown in Table 2.
In our calculations, we focus on all-silica zeolites. Following Kiselev and co-workers,13

the zeolite lattice was assumed to be rigid. For alkane adsorption the energetics will be
dominated by dispersive interactions. Since the Si atoms are much smaller than the O
atoms, they make a very small contribution to the energetics and can be ignored in the
calculations. In fact, the interactions of the guest molecules with the Si atoms are implic-
itly accounted for in the e†ective potential for the interactions with the O atoms. The
dispersive interactions of the O atoms of the zeolite with the host molecules are
described with a Lennard-Jones potential, eqn. (1). The parameters used are shown in
Table 3.

3 Energetics and siting
In Fig. 1 the calculated heats of adsorption as a function of the total number of carbon
atoms, in silicalite are compared with experimental data of Calvalcante andNcRuthven14 and Eder.15 The simulations show that the temperature dependence of the
heat of adsorption is very small. Only for is a small decrease in the heat of adsorp-C12tion observed. The agreement of the experimental data with the simulation results is
surprisingly good.

In Fig. 2 the structure of silicalite is shown schematically. Silicalite has two types of
channels, zig-zag and straight, that cross each other at the intersections. Fig. 3 compares

Table 3 Parameters for the Lennard-Jones
potential describing the interactions between the
alkane pseudo-atoms and the O atoms of the

zeolite

(e/kB)/K p/Ó

OwCH3 87.5 3.64
OwCHb3 87.5 3.64
OwCH2 54.4 3.64
OwCH 51.3 3.64

The interactions are truncated at Rc \ 13.8 Ó.
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Fig. 1 Heats of adsorption of the branched alkanes as a function(CH3)2wCHw(CH2)N~4(CH3)of the total number of carbon atoms at various temperatures. The experimental data are fromNcref. 14 for at T \ 398 K and from ref. 15 for at T \ 372 K.Nc \ 6 Nc \ 8

the distribution of the CH group of the heat of 2-methylbutane with the distribution of
the middle segment of pentane in the pores of silicalite at T \ 498 K. It shows that the
distribution of the linear alkanes is very di†erent from the distribution of the branched
alkanes. Whereas pentane has an equal probability of being in the straight channels,
zig-zag channels or intersections, the branched alkanes have a strong preference to be
with the head group in the intersections. These results are in very good agreement with
the MC integration results of June et al.16

For the other branched alkanes we also a Ðnd a preference for the head group to be
in the intersections. If the head group is localized in the intersection, the tail of the
molecule can either be in the straight or zig-zag channels or when the molecule is suffi-
ciently small, in the intersection. In Fig. 4 we compare the distribution of the tails of the
branched alkanes over the various channels of silicalite with the distribution of the
linear alkanes at T \ 298 K. For the branched alkanes, a nearly identical distribution is
found at T \ 398 and 498 K. For the linear alkanes, the distribution is relatively simple ;

Fig. 2 Schematic drawing of the pore structure of silicalite, the straight channels are in the yÈz
plane and the zig-zag channels in the xÈz plane. The channels cross at the intersection.
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Fig. 3 Distribution of alkanes in the channels of silicalite. The lines represent the zeolite lattice. At
regular intervals a dot, representing the position of the CH pseudo-atom of the head group for
2-methylbutane or the middle segment for pentane, is drawn. The density of the dots is aCH2measure of the probability of Ðnding a molecule in a particular section of the zeolite. The top
Ðgures give a projection along the straight channels (zÈx plane) and the bottom Ðgures along the

zig-zag channel (xÈy plane).

Fig. 4 Distribution of the alkanes over the zig-zag and straight channels and intersections, as a
function of at T \ 298 K. Left-hand Ðgure is for linear and right-hand Ðgure for branchedNc alkanes.
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the short alkanes are equally likely to reside in the straight or zig-zag channels, the long
alkanes have a preference for the straight channels (see ref. 6 and 17 for more details).
The siting of the branched alkanes is more complex. The small branched alkanes (Nc\5, 6) are nearly spherical and can “rotate Ï freely in the intersection. For these molecules
it is not very favourable to put their tail into one of the channels. In fact, for these small
molecules it is difficult, because of the bulky head, to reach the entrance of the zig-zag
channel, therefore they prefer the straight channel. If we increase the tail length, the
molecules become too big to be completely in the intersection and they have to put their
tail in one of the channels. For these molecules the tail is sufficiently long so that it can
be in the zig-zag channel while the head remains in the middle of the intersection. For
these tail lengths we observed, therefore, a nearly equal probability of being in the
straight or zig-zag channel. A further increase in the tail length makes these tails longer
than the period of the zig-zag channel. As for the linear alkanes, this is not a favourable
conÐguration and therefore the long branched alkanes prefer the straight channels.

4 Di†usion
It is interesting to discuss the consequences of the results of the previous section for the
di†usion of these molecules in the pores of the zeolite. Comparison of the siting of the
linear and branched alkanes shows that the (short-chain) linear alkanes have a uniform
distribution whereas the branched alkanes prefer to be at the intersection. This suggests
that these linear alkanes can move “ freely Ï in the channels and therefore their di†usion
coefficient can be obtained from MD simulations within a reasonable amount of CPU
time. The branched alkanes, however, are pinned with their head group at the intersec-
tions and have a very small probability of being in the channels connecting the intersec-
tions. These straight and zig-zag channels, therefore, form a barrier to di†usion. If this
barrier is much higher than the di†usion of such an alkane is an activated process ;kBT ,
most of the time the molecule resides at an intersection but occasionally a molecule hops
from one intersection to another.

If the di†usion of these branched alkanes is an activated process, we can use the
simulation techniques developed by Bennett18 and Chandler19 to simulate rare events.20
The basic idea behind these calculations is that the rate at which a barrier crossing
proceeds is determined by the product of a static term, namely the probability of Ðnding
the system at the top of the barrier, and a dynamic term that describes the rate at which
systems at the top of the barrier move to the other valley.

To compute the di†usion coefficients of a branched alkane in a zeolite we have to
determine a reaction coordinate for which we can compute the free energy. For di†u-
sion, a natural reaction coordinate is the position of one of the atoms of the adsorbed
molecules. For branched alkanes it is convenient to take the position of the CH group
(i.e. the group for which the distribution is shown in Fig. 3). Let us assume the concen-
tration of hydrocarbons is sufficiently low, such that the probability that two hydrocar-
bons are in neighbouring intersections is very small. In this limit, the jumps from one
intersection to another are independent.

In silicalite, a molecule can jump from one intersection to another via the straight
channel or zig-zag channel (see Fig. 5). We have to calculate the jump rates for each of
these paths. Because of the symmetry of the crystal, the two di†erent paths via the
straight channels ( jumping up or down) and the paths via the zig-zag channels are
equivalent. The calculation can therefore be limited to computing the jump rates via
these two paths.

For the straight channel the reaction coordinate is deÐned as the projection ofqstr(z)the head group on the line connecting two intersections via a straight channel. For the
zig-zag channel the reaction coordinate is y) deÐned as the projection of theqzz(x,
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Fig. 5 Schematic drawing of the silicalite pore structure. An alkane can jump from one intersec-
tion to another. The dotted lines show the paths via zig-zag channels and the solid lines those via

straight channels.

head group of the line connecting two intersections via a zig-zag channel (see Fig. 6).
Both reaction coordinates are normalized in such a way that q ½ [0 ; 1].

In practice, the computation of a rate constant consists of two steps. The expression
of the rate constant is given by20

kA?B(t)\
Sq5 (0)d[q* [ q(0)]h[q(t) [ q*]T

Sd[q* [ q(0)]T
]

Sd(q* [ q)T
Sh(q* [ q)T

(3)

where A and B are neighbouring intersections, q(t) is the reaction coordinate, h(x) is the
Heavyside step-function, h(x)\ 1 for x [ 0 and h(x) \ 0 otherwise, and q* is the top of
the free energy barrier separating the states A and B.

is reaction coordinate along the straight channel, obtained by projecting the y coor-Fig. 6 qstr(y)
dinate of the molecule on the line indicated. z) is obtained by projection of the xÈz coordi-qzz(x,

nate on the line indicated.
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The Ðrst part on the left-hand side of eqn. (3) is a conditional average, namely the
average of the product given that the initial position of the reactionq5 (0)h[q(t) [ q*],
coordinate is q(0)\ q*. An assumption in transition-state theory is that all trajectories
that start on top of the barrier with a positive velocity will end up in state B. If this
assumption holds, we have

q5 (0)h[q(t) [ q*]B
1
2

o q5 o\
SAkB T

2nm
B

(4)

It is important to note that it is possible to test the validity of the above approximation
and to compute this ensemble average exactly. This conditional average can be calcu-
lated from MD simulations. In these simulations we start with an initial conÐguration
taken from a Boltzmann distribution on top of the barrier. Such a distribution can be
obtained from constrained MD or, if the constraint is sufficiently simple, from an MC
simulation.

In this work, we focus on the calculation of the second term on the right-hand side of
eqn. (3), i.e. Sd(q* [ q)T/Sh(q* [ q)T, the probability density of Ðnding the system at the
top of the barrier, divided by the probability that the system is on the reactant side of
the barrier. This ratio, can be calculated from the free energy as a function of the order
parameter. We can use the CBMC algorithm to compute this free energy as a function
of the order parameter. Details of this calculation are given in the Appendix.

A typical result is presented in Fig. 7. The free energies of 2-methylhexane as a
function of order parameter in the straight and zig-zag channels are calculated. This
Ðgure indicates that in the straight channel there are three barriers. The height of the
Ðrst barrier (q \ 0.29) is ca. 14 which demonstrates that a jump over this barrier iskBT ,
indeed a rare event. In addition this Ðgure shows two additional barriers at q \ 0.5 and
q \ 0.68. Because of the symmetry of the crystal the barriers at q \ 0.68 and q \ 0.29
are of equal height. Within the accuracy of the calculation, the barrier at q \ 0.5 is also
of the same height. For the zig-zag channel we observe four barriers, the highest barrier
has a height of 18 kBT .

For both the zig-zag and straight channels, the middle barriers have a height of
several therefore crossing of these barriers is also a rare event on the timescale ofkBT ,
an MD simulation. Thus, the jump from one intersection to another consists of three
consecutive jumps over the three barriers shown in Fig. 7 for the straight channel or
over four barriers for the zig-zag channel.

Fig. 7 Free energy of 2-methylhexane as a function of the position of the head group in the
straight (left) and zig-zag (right) channels. For q \ 0 and 1 the head group is in the intersections.

T \ 398 K.
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If we assume that transition-state theory can be applied to this system, Fig. 7 is
sufficient to compute the crossing rate. If we combine the results of the free energy
calculation with those of the transmission rate, as obtained from transition-state theory,
eqn. (4), we can compute the crossing rates. The results of this calculation are shown in
Table 4. For the straight channel we Ðnd that the highest barrier is crossed 1.4 ] 105
times s~1. This implies that a molecule resides in the intersection for ca. 7 ls, which is a
very long time on the timescale of an MD simulation. Since, for both the zig-zag and
straight channel, there is one barrier which is much higher than the others, we can
assume that these barriers determine the hopping rates. With this assumption we obtain :

] 105 and events s~1.wstr \ 1.37 wzz\ 5.0] 104
Having computed the hopping rates from one intersection to another either via a

straight channel or via a zig-zag channel, we have to relate these crossing rates to the
di†usion coefficients. In the limit of inÐnite dilution the molecules perform a random
walk on a lattice spanned by the intersections. The unit cell of this lattice is shown in
Fig. 8.

Since this lattice is anisotropic, we have three di†erent di†usion coefficients for the x,
y and z directions21

D
xx

\ 1
12

wzz a2, D
yy

\ 1
12

wstr b2, Dzz\
1
12

wzz wstr
wzz] wstr

c2 (5)

where a, b and c are the unit vectors of the di†usion lattice (see Fig. 8), and arewzz wstrthe hopping rates via the zig-zag and straight channels, respectively. The formula for the
di†usion in the z direction reÑects that for a molecule to di†use in this direction it has to
jump via a straight channel followed by a jump via a zig-zag channel. For the overall
di†usion coefficient, we can write

D\ 1
12

wzz
A

a2] wstr
wzz] wstr

c2
2
B
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12
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wzz] wstr

c2
2
B

(6)

Numerical values for the di†usion coefficient of 2-methylhexane are given in Table 5.
Experimentally, di†usion coefficients of branched alkanes are found in the range 10~9È
10~11 cm2 s~1.2 Comparison with our result : 8.5 ] 10~10 cm2 s~1 shows that our Ðrst
estimate of the di†usion coefficient has the same order of magnitude as the experimental
results.

In the previous calculations, we have assumed that transition-state theory holds. We
have performed some MD simulations with conÐgurations that start on top of the

Table 4 Hopping rates

kTST/
[ bF(qmin) [bF(q*) events s~1

str (1 ] 2) [22.9 [ 6.8 1.4] 105
str (2 ] 3) [12.3 [ 6.9 4.3] 1010
str (3 ] 1) [11.9 [ 6.5 2.6] 1010

zz (1] 2) [23.8 [5.8 5.0] 104
zz (2] 3) [9.6 [5.3 1.3] 1011
zz (3] 4) [10.5 [5.2 1.0] 1011
zz (4] 1) [20.2 [9.0 1.4] 109

bF(q) is the free energy for the order parameters, qminthe bottom of the well and q* the top of the barrier,
kTST is the hopping rate as approximated with
transition-state theory.
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Fig. 8 Di†usion unit cell of silicalite ; the intersections are represented by dots and the channels by
lines. a \ 20.1, b \ 19.9 and c\ 2 ] 13.4 for this cell (where 20.1, 19.9 and 13.4 are theÓ Ó

vectors of the unit cell of silicalite).

barrier, to test whether or not transition-state theory is a reasonable approximation.
These preliminary calculations indicate that transition-state theory may overestimate
the di†usion coefficients by a factor of 5È10. Unfortunately, these calculations were not
sufficiently accurate to compute the crossing rate accurately.

5 Concluding remarks
We have used the CBMC technique to investigate the behaviour of linear and branched
alkanes in the pores of the zeolite silicalite. We Ðnd that the calculated heats of adsorp-
tion for both the linear and the branched alkanes are in good agreement with the experi-
mental data.

The simulations indicate that siting of the branched alkanes is very di†erent from the
siting of the linear ones. The linear alkanes can move “ freely Ï in the channels of silicalite,

Table 5 Di†usion coefficients of 2-methylhexane in silicalite at
T \ 398 K

D
xx

D
yy

D
zz

D
/cm2 s~1 /cm2 s~1 /cm2 s~1 /cm2 s~1

1.7] 10~10 4.7] 10~10 2.1] 10~10 8.5] 10~10
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the branched alkanes, however, are trapped with their CH group in the intersections of
the zig-zag and straight channels. This trapping suggests that the di†usion of the
branched alkanes is an activated process ; most of the time the molecules are in the
intersections but once in while a molecule hops from one intersection to another via a
straight or zig-zag channel. These straight and zig-zag channels form a barrier for the
di†usion.

We demonstrate that the CBMC technique can be used to compute the free energy
of these di†usion barriers. From these free energy barriers an estimate of the di†usion
coefficient can be made, if we assume that transition-state theory is valid for this system.
The resulting di†usion coefficient is in reasonable agreement with experimental data.

In the future we will extend these calculations to test whether the transition state is
valid for this system. At this point it is important to note that these calculations have
been performed for a rigid zeolite lattice ; one can expect that allowing the zeolite atoms
to move can have signiÐcant consequences for the height of the free energy barrier. It is
therefore, important to repeat these calculations with a Ñexible zeolite lattice.

Appendix : free energy calculation
One part of the calculation of barrier crossing rate is the computation of the free energy
as a function of the order parameter. For the di†usion of branched alkanes in zeolites,
we use the position of the head as the order parameter. Here, we demonstrate how to
calculate the free energy as a function of this order parameter.

In the CBMC algorithm the Rosenbluth scheme is used to generate new conforma-
tions of the hydrocarbons. A molecule is grown atom by atom using the algorithm of
Rosenbluth and Rosenbluth.23 During the growing of an atom several trial positions are
probed, the energy of each of these positions is calculated, and the one with the lowest
energy is selected with the highest probability according to :

P
i
( j)\ exp[[bu

i
( j)]

;
l/1k exp[[bu

i
(l)]

\ exp[[bu
i
( j)]

w(i)
,

where is the energy of atom i at trial position l. When the entire chain is grown, theu
i
(l)

normalized Rosenbluth factor of the molecule in conÐguration C can be computed :

W (C) \ <
i/1

l
w(i)/k

In ref. 20 it is shown that the average Rosenbluth factor is related to the chemical
potential of the molecule :

Sexp([bk)T \ CSW T
where C is a constant deÐning the reference chemical potential. One can also calculate
the Rosenbluth factor as a function of the order parameter. This gives the chemical
potential or free energy as a function of the order parameter.

The number of samples for a given value of the order parameter is determined by the
way we grow the molecule. For example, if we start the growing procedure by giving the
CH group a random position in the zeolite, we obtain a uniform sampling of all values
of the order parameter, irrespective of whether we sample the top or the bottom of the
barrier. The method does not rely on the acceptance of the conÐguration on top of the
barrier.

The fact that we do not need to rely on sampling conÐgurations in which the mol-
ecule is on top of the barrier may cause difficulties when a Ñexible zeolite is used. During
the simulation, the zeolite atom will never “see Ï an alkane molecule on top of the barrier.
As a consequence, one would never sample those conÐgurations in which the zeolite
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lattice would “respondÏ to the presence of a molecule on top of the barrier. Such Ñuctua-
tions of the zeolite lattice may change the height of the barrier signiÐcantly. Therefore, it
is important to use a scheme in which we force the system to sample conÐgurations on
top of the barrier. A method which allows us to do this is, for example, the multiple
histogram technique.20
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