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Abstract Large scale changes to lipid bilayer shapes are
well represented by the Helfrich model. However, there are
membrane processes that take place at smaller length scales
that this model cannot address. In this work, we present a one-
dimensional continuum model that captures the mechanics
of the lipid bilayer membrane at the length scale of the lipids
themselves. The model is developed using the Cosserat the-
ory of surfaces with lipid orientation, or ‘tilt’, as the funda-
mental degree of freedom. The Helfrich model can be recov-
ered as a special case when the curvatures are small and
the lipid tilt is everywhere zero. We use the tilt model to
study local membrane deformations in response to a protein

P. Rangamani · G. Oster
Department of Molecular and Cellular Biology,
University of California, Berkeley, CA 94720, USA

G. Oster
e-mail: goster@berkeley.edu

A. Benjamini
Department of Chemistry, University of California,
Berkeley, CA 94720, USA

A. Agrawal
Department of Mechanical Engineering,
University of Houston, Houston, TX 77204, USA

B. Smit
Department of Chemical and Biomolecular Engineering
and Department of Chemistry, University of California,
Berkeley, CA 94720, USA

B. Smit
Materials Sciences Division, Lawrence Berkeley National
Laboratory, Berkeley, CA 94720, USA

D. J. Steigmann (B)
Department of Mechanical Engineering,
University of California, Berkeley, CA 94720, USA
e-mail: steigman@me.berkeley.edu

inclusion. Parameter estimates and boundary conditions are
obtained from a coarse-grained molecular model using dis-
sipative particle dynamics (DPD) to capture the same phe-
nomenon. The continuum model is able to reproduce the
membrane bending, stretch and lipid tilt as seen in the DPD
model. The lipid tilt angle relaxes to the bulk tilt angle within
5–6 nm from the protein inclusion. Importantly, for large tilt
gradients induced by the proteins, the tilt energy contribution
is larger than the bending energy contribution. Thus, the con-
tinuum model of tilt accurately captures behaviors at length
scales shorter than the membrane thickness.

Keywords Membranes · Lipid bilayers · Curvature ·
Mathematical model

1 Introduction

Continuum models of bilayer membranes are used to study
the deformation of membranes and to explain many biolog-
ical phenomena. The most popular model of lipid bilayers
is the Helfrich model (Helfrich 1973), where the energy per
unit area of the membrane depends only on the mean and
Gaussian curvatures of the membrane. This model has been
widely used to study the shape of red blood cells (Iglic 1997;
Deuling and Helfrich 1976; Lim et al. 2002) and to explain
biological phenomena such as the formation of membrane
tubes (Derényi et al. 2002) and the shapes of lipid vesicles
(Seifert et al. 1991, 1996; Jaric et al. 1995; Nelson et al. 1995).
The Helfrich model assumes that the lipids are aligned nor-
mal to the membrane surface at all times and that curvatures
are of the order of the bilayer thermal wavelength (∼20 nm).
This approach captures the changes in membrane shape that
occur at large length scales.
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When the membrane has lipids of different length, all of
which are still aligned normal to the membrane surface, the
variation in thickness can be addressed by the ‘mattress’
model (Bloom and Mouritsen 1984) to explain the varia-
tion in thickness of the membrane. More recently, Bitbol
et al. (2012) have shown that the thickness gradient in the
membrane observed in nanoscale studies can be explained
by keeping the terms in the Hamiltonian involving the gra-
dient and Laplacian of the area per lipid. This is consistent
with what was previously derived in Deseri et al. (2008) from
a dimension reduction procedure. The effective energy for
the two-dimensional membrane turns out to depend upon
the areal stretch and on the misalignment between the nor-
mal to the mid-surface and the orientation of the axes of
the lipids. There, after enforcing the quasi-incompressibility
of the membrane, it is shown that the bending splay modu-
lus is determined by the phase of the lipids, i.e., the value
of the thickness in the current configuration of the lipids
through the derivative of the membrane part of the energy,
and it is proved that the same modulus penalizes the gradient
of the area changes. Recently in Deseri and Zurlo (2013),
among other things, this approach allowed for obtaining
the line tension detected across lipid rafts. Models of this
type provide insight into how the thickness of the membrane
can vary in response to protein insertions or antimicrobial
peptides.

Lipid molecules, however, are generally not aligned nor-
mal to the membrane surface (Fig. 1). For example, the
tilt angle of gel-phase DPPC was found to be approxi-
mately 32◦ (Tristram-Nagle et al. 1993). Even in the liquid
phase, lipids can tilt in regions adjacent to protein inclu-
sions (Watkins et al. 2011) (Fig. 1e, f). Membrane fission
and fusion is a critical cellular process that takes place at
lengths comparable to the lipid length. Membrane fusion
has been studied using dissipative particle dynamics (DPD)
approaches (Grafmuller et al. 2007, 2009). These studies
have shown that when two fusing membranes are in close
proximity, the lipids tilt, splay and flip from one monolayer
to another (Grafmuller et al. 2007, 2009; Marrink and Mark
2003).

Lipid tilt as a key degree of freedom has been explored
previously in continuum models (Lubensky and MacKin-
tosh 1993; Kuzmin et al. 2005; Hamm and Kozlov 2000,
1998; May 2000). Most of these models are based on the
assumption that the lipid tilt angle is small and bending is the
dominant term in the membrane potential energy. An early
theory of orientational order in chiral molecules was devel-
oped by Helfrich and Prost (1988), who showed that a chiral
membrane in a tilted phase will form a cylinder because of
the bending and packing introduced by lipid tilt variation.
Similarly, Selinger et al. (1996) have developed a theory for
cylindrical tubules and helical ribbons formed from chiral
lipid membranes where tilt is the key order parameter. In this

study, they showed that tubules undergo a first-order tran-
sition from a uniform state to a helically modulated state,
with periodic stripes in the tilt direction and ripples in the
curvature.

While these models have provided substantial insight into
the role of lipid tilt in modulating helical structures and
other long-range effects, several open questions remain. Most
importantly, what happens when the tilt angles of the lipids
are not small, and when the lipids are allowed to flip between
adjacent monolayers, as observed in simulations of fusion
and fission? How does the changing tilt of the lipids influ-
ence the curvature and surface properties of the membrane
such as surface tension and stretching? How does insertion
of a protein change lipid tilt in its neighborhood? To answer
these questions, we have developed a continuum model for
the lipid membrane with tilt as the key degree of freedom and
where the tilt can be large. Using this framework, we are able
to model the orientation of the lipids along with the shape of
the surface. We use this model to study tilt angle variations in
response to protein insertions in the membrane and compare
the results with a coarse-grained (CG) model of the bilayer
membrane.

The paper is organized as follows: In Sect. 2, we provide
a general framework for a 2D director model. In Sect. 3, we
develop a continuum model for lipid tilt in 1D and derive
the Euler equations. We identify the invariants in the system
and construct a free energy that allows for membrane stretch,
lipid tilt and gradient in lipid tilt. In Sect. 4, we describe the
development of the CG DPD model that is used to validate
the continuum model. In Sect. 5, we describe a few special
cases of the tilt model, including reduction in the Helfrich
model and spontaneous tilt. In Sect. 6, we compare the CG
and continuum models for the membrane response to protein
insertion in the membrane. We discuss the model applica-
tions and elaborate on the results obtained from the CG and
continuum models in Sect. 7.

2 General model for lipid tilt

We provide here a general model for biological membranes
with lipid tilt as the key degree of freedom. We consider a
deformation map χ(x) that carries the material point x in a
reference configuration κr to a current configuration κc. A
director field D is associated with each material point x on κr

(Fig. 1a). The classical Frank energy for three-dimensional
liquid crystals takes the form (Virga 1994)

U = 1

2
k1(divD)2

︸ ︷︷ ︸

Splay

+ 1

2
k2(D · curlD)2

︸ ︷︷ ︸

Twist

+ 1

2
k3|(gradD)D|2

︸ ︷︷ ︸

Bend

,(1)

where k1−3 are the positive constants.
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Fig. 1 The vector fields used to describe the surface. a Descent from
a 3D director field D to a 2D director field d restricted to the surface
ω. b The normal n, the tangent τ and the director d are shown. The
binormal b is out of the plane. c In the top panel, the lipids are aligned
along the normal, and in the bottom panel, the lipids along the director
field. Tilt gradients can arise in several ways, e.g., d when two lipids

of different resting tilts are adjacent to one another as in a lipid raft or
a microdomain, e when a protein inserts into one leaflet causing the
neighboring lipids to modify their tilt angle so as to minimize their
hydrophobic exposure. f When two proteins insert themselves at a cer-
tain distance from each other, the lipids in between them reorganize
their tilt by introducing a tilt gradient

Lipids are widely considered to be liquid crystal systems.
Thus, if one derives the free energy of a thin liquid crys-
tal film from the bulk energy, then, as shown in Steigmann
(2013), the relevant film energy depends only on (1) the sur-
face normal n, (2) the director d and (3) the director gra-
dient ∇d. Here, d is the restriction of D to the surface ω

(Fig. 1a). Then, the energy density per unit area for a thin
film of liquid crystals (in this case a lipid bilayer) is given
by Steigmann (2013)

W̄ (n, d,∇d) = |n · d|U (n, d,∇d) (2)

This choice of W̄ determines the optimal value of energy
density per unit area with respect to ∇d; the result is an
energy that is quadratic in ∇d, whenever the dependence of
U on gradD is quadratic. The total energy of the surface ω is
then given by

E =
∫

ω

W̄ (n, d,∇d)da (3)

Therefore, the energy can depend only on n, d and ∇d.
In the next Section, we specialize this model to 1D mem-

branes.

3 Continuum model for 1D lipid tilt

3.1 Notation and assumptions

We develop a 1D model of the membrane with lipid tilt as the
key degree of freedom. The 1D nature of the model provides
us with the simplest mathematical framework to study the
effect of tilt on membrane curvature and connect the contin-
uum description with DPD simulations.

We consider planar curves characterized by position r(s),
normal n(s), the tangent τ (s) and the director d(s), where s
is the arc length along the membrane (Fig. 1b). The surface
normal n is determined by τ in the present model. This arc
length is along the deformed configuration, and this can be
mapped to a reference configuration S. The binormal, b(s),
is constant. The director d can be written in terms of its
components as

d = βτ + γ n (4)

In the case of a monolayer, the length of the director
is the length of the lipid; for a bilayer, it is the combined
length of the two lipids that span the bilayer. In both cases,
we shall assume that the length of the director d0 is con-
stant, i.e., d2

0 = β2 + γ 2, and therefore, the thickness can be
inferred from the tilt. This constraint is implemented using
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a Lagrange multiplier, α. We do not assume that the mem-
brane is incompressible; so, we allow the membrane to stretch
in response to the forces acting on it. The complete list
of variables and parameters used in the model is given in
Table 1.

W is the energy per unit length of the membrane. We
denote position by r(S), the unit tangent by τ and the director
by d, where S is the arc length in the reference configuration.
The ()′ notation indicates derivative with respect to S, (). is
the variational derivative, and subscripts denote derivatives
with respect to the indicated variable.

The dilation λ is given by

λ = |r′(S)| = ds

dS
(5)

The total elastic energy of the membrane is

E =
∫

c

W ds =
∫

C

λW dS (6)

Let λW = Ψ . The variational derivative of the energy is then
given by

Ė =
∫

C

Ψ̇ dS (7)

The energy W can depend on the vectors τ , d(S) and d′(S)

(see Sect. 2). The following scalars can be constructed from
these vectors: d·d, τ ·d, τ ·d′, d′ ·d′, d·d′ and τ ×d·d′. These
scalars are determined by the 3 variables d ·d = d, τ ·d = β

and τ ·d′ = η, which therefore constitute the list upon which
W can depend.

Then, using the chain rule on Ψ , we have

Ψ̇ = Ψd ḋ + Ψββ̇ + Ψηη̇ + Ψλλ̇, (8)

where Ψβ is the partial derivative of Ψ with respect to β and
so on, and

ḋ = d−1d · ḋ (9)

β̇ = u′ · d + r′ · ḋ (10)

η̇ = u′ · d′ + r′ · ḋ′ (11)

The variational derivative of the membrane dilation λ is

Table 1 Notation used in
developing the 1D tilt model Notation Description Units

W Local energy per unit length pN

s Arc length in the deformed configuration nm

S Arc length in the reference configuration nm

r(S) Position vector

d(S) Director nm

d′(S) Director gradient dimensionless

n Normal to the membrane unit vector

τ Tangent along the membrane unit vector

β = d · τ Tangential component of the director nm

γ = d · n Normal component of the director nm

d0 Length of the lipid (d2
0 = β2 + γ 2) nm

λ Local dilation; 1D analog of the
two-dimensional areal dilation J

pN

η = d′ · τ = β ′ − Hγ Tangential component of the director gradient dimensionless

E Total energy of the membrane pN

Ψ λW , energy in the reference coordinates pN

α Lagrange multiplier for lipid length constraint pN/nm

Φ Auxiliary function for W including
the Lagrange multipliers

pN

P Pressure difference across the membrane pN/nm

H Mean curvature of the membrane nm−1

σ Line tension along the membrane, given by Φr′ · τ pN

kη Modulus associated with bending and tilt gradient pN

kβ Tilt modulus pN/nm2

kλ Stretch modulus pN

kb Bending modulus pN·nm

L Length of the domain nm
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λ̇ = 1

2λ
(λ2)̇

= 1

2λ
2r′(S) · ˙r′(S) (12)

= τ (S) · u′(S), (13)

where u′(S) = ṙ′(S).
We impose d = d0 = constant via a Lagrange multiplier,

α. Thus,

E =
∫

C

ΦdS, where (14)

Φ = Ψ + α(d − d0), yielding (15)

Ė =
∫

C

Φ̇dS =
∫

C

(Ψ̇ + αḋ)dS (16)

=
∫

C

[−(Φr′)′
] · ṙdS +

∫

C

[

Φd − (Φd′)′
] · ḋdS

When there is a nonzero pressure difference across the mem-
brane, the above equation becomes

Ė∗ =
∫

C

(Ψ̇ + αḋ)dS + P
∫

C

λn · ṙdS

=
∫

C

[−(Φr′)′ + λPn
] · ṙdS +

∫

C

[

Φd − (Φd′)′
] · ḋdS

(17)

where Ė∗ = Ė + Ẇ , and P is the pressure difference acting
across the membrane. Ẇ accounts for the work performed
by P against the normal component of the variation n · ṙ. At
equilibrium, Ė∗ vanishes. The resulting Euler equations are

(Φr′)′
︸ ︷︷ ︸

Force
per unit length

− λPn
︸︷︷︸

Pressure difference
across the membrane

= 0 (18)

(Φd′)′
︸ ︷︷ ︸

Gradient
of bending moment

− (Φd)
︸︷︷︸

Force associated with
changing the director

configuration

= 0 (19)

where

Φr′ = Ψβd + Ψηd′ + (Ψ + Ψλ)τ (20)

Φd = d−1
0 (Ψd + α)d + Ψβτ (21)

Φd′ = Ψητ (22)

If the curve is not closed, the force acting on the membrane
is given by Φr′ and the line tension along the membrane is
given by the tangential component of this force: (Φr′) · τ .
The quantity Φd′ is analogous to a torque. The quantity Φd

is the force associated with changing the director configura-
tion. In general, the boundary conditions for the differential
equations in Eqs. (18) and (19) can be written for the position
and director vectors or for the forces acting on the membrane
boundaries.

3.2 Elastic energy of the membrane

As a special case of the foregoing formulation, we assume
that the membrane elastic energy has the general form

Ψ = kλ(λ − 1)2
︸ ︷︷ ︸

energy density associated
with stretch

+ kηη
2

︸︷︷︸

energy density associated
with tilt gradient

and curvature changes

(23)

+ kβ(β − β0)
2

︸ ︷︷ ︸

energy density associated
with tilt deviation from
the resting tilt angle β0

Note that the energy is quadratic in η, thereby satisfying the
foregoing condition that the areal energy density be quadratic
in the gradient of the director (see Sect. 2 and Steigmann
2013). Using this expression for the elastic energy in the
Euler equations (Eqs. 18 and 19), with P = 0, results in the
following ordinary differential equations for the shape of the
membrane:

ΨηβH

γ
+ Ψβ = Ψ ′

η

Ψ ′
ββ+(Ψβ +Ψ ′

η)
′η+Ψη

(

η′ + ηβH

γ

)

+ (Ψ + Ψλ)
′ = 0

Ψ ′
βγ + (Ψβ + Ψ ′

η)

(−ηβ

γ

)

−Ψη

(

η2d2
0

γ 3 + ηβ2 H

γ 2 + η′β
γ

)

+ H(Ψ + Ψλ) = 0

β ′ = η + Hγ

γ ′ = −β ′β
γ

(24)

The position r(S) can be written as

r(S) = x(S)e1 + y(S)e2, (25)

where e1 and e2 are orthonormal basis vectors. Then, we can
write

r′(S) = x ′(S)e1 + y′(S)e2, (26)

and the unit tangent and normal as

τ = x ′(S)e1 + y′(S)e2
√

x ′2 + y′2 n = y′(S)e1 − x ′(S)e2
√

x ′2 + y′2 (27)

From Eqs. (5 and 26), we find λ = √

x ′2 + y′2. We use the
arc length parametrization to obtain the additional equations

x ′ = λ cos(θ) y′ = λ sin(θ)

and θ ′ = −2Hλ. (28)

Together, Eqs. 24 and 28 describe the system. Boundary con-
ditions will depend on the specific situation.

To test the predictive potential of the continuum model,
we compare the tilt angle distributions when proteins are
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Table 2 Parameters used in the
continuum model Parameter Value Notes

d0 6.62255 nm Measurements from the CG model

kb 17kB T = 71.4 pN.nm Measurements from the CG model

kη kb/d2
0 = 2.856 Calculated from kb

kβ 1 pN/nm2 Parameter variation; see Fig. 9

kλ 145 pN Lipowsky and Sackmann (1995)

β0 d0cos(24◦) nm Measurements of lipid tilt in the
bulk from the CG model

inserted in the membrane using a previously developed CG
DPD model (Kranenburg et al. 2003; de Meyer et al. 2008;
Benjamini and Smit 2012).

3.3 Parameters

The main parameters in the model are the moduli corre-
sponding to the invariants η and β. We use a value of
17kB T for the membrane bending modulus obtained from
the CG model discussed below. The bilayer thickness and
kη were also estimated from the CG model. All parameters
are listed in Table 2. To ensure consistent units in the 1D
model, we assume that the width of the membrane is 1 length
unit.

4 Description of the coarse-grained model

In this work, we used the CG model previously published
by Benjamini and Smit (2012). Three system components
were modeled: water, lipids and α-helices, using four distinct

bead types. Each bead represents a set of three heavy atoms,
on average, that are bundled together. The types of beads con-
sidered include the following: (1) a water like bead, w, used
to describe a set of three water molecules; (2) a hydrophilic
bead, h, used to model the lipid head group as well as the
marginal part of the helix; (3) a hydrophobic tail bead, t , used
to model the hydrophobic lipid tail; and (4) a hydrophobic
protein bead, p, used to model the hydrophobic core of a
transmembrane(TM) helix.

The lipid model was previously shown to form a stable
bilayer structure and to reproduce the typical phase behavior
of lipid bilayers (Kranenburg et al. 2003). It includes a head
group consisting of three h types of beads and two tails each
containing five t types of beads (see Fig. 2a).

The helix model captures the basic common characteristic
of all TM helices. It contains a helical geometry of beads
with a hydrophobic core and hydrophilic caps on both ends.
Such a model guarantees that the helix will remain within the
membrane, while both its ends are exposed to the hydrophilic
phase on the bilayer (or water). For more details on model
parameters, see Benjamini and Smit (2013).

(A) (B) (C)

(D)

Fig. 2 Schematic representation of the CG model. a A model lipid is
represented by equally sized beads. Three hydrophilic beads represent
the lipid head group, bonded to two 5-bead hydrophobic tails. b The
lipid tilt angle, θ , is defined as the angle between the vector connecting
the first two tail beads with the last two tail beads and the Z direction. A

schematic picture of a membrane helix inserted into a bilayer is shown
in (c). We analyze the tilt angle of lipid around the inserted helix as a
function of the radial distance from the helix center, as shown in (d).
The helix core is represented by a black circle, while the lipid head
groups are represented by gray circles
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4.1 Simulation technique

We studied the CG model system using a hybrid dissipa-
tive particle dynamics-Monte Carlo (DPD-MC) simulation
technique. In DPD, a set of three forces combine together:
a conservative force, FC , a dissipative force FD and a ran-
dom force FR (Groot and Warren 1997). The conservative
force includes all bonded and non-bonded interactions. The
non-bonded interactives involve a soft core repulsive force
whose amplitude is based on the types of the two interact-
ing beads. Repulsive interaction parameters for our mod-
eled beads are shown in Table 3. Each interaction parame-
ter represents the maximal repulsion between beads of each
type in reduced units of [ε0/l0]. For example, the repul-
sion between a hydrophobic bead and water (awt = 80.0)
is set higher than that of a hydrophilic bead and water
(awh = 15.0). The non-bonded contribution to the conser-
vative force, FC , depends on these interaction parameters,
such that: FC

i j (rij) = ai j (1−ri j/R) · r̂i j for ri j < R; and 0.0
otherwise. The dissipative and random forces mimic the fric-
tion and random collisions between close molecules, respec-
tively. When balancing the random and dissipative forces to
satisfy the fluctuation-dissipation theorem, the overall effect
is a system simulated at constant temperature with equilib-
rium system configurations determined solely by the con-
servative (bonded and non-bonded) forces. All forces are
applied on a pairwise basis in the direction of the vector con-
necting the beads. DPD forces are truncated at a predefined
cutoff radius (R = 1l0 ∼ 6.46 Å; l0 is a reduced length unit)
and satisfy Fi j = −F j i such that the total momentum of the
system is conserved. The positions and velocities were inte-
grated using the modified Velocity–Verlet algorithm (Groot
and Warren 1997).

We used Monte Carlo moves to sample from the NP⊥γ T
ensemble. The bilayer surface tension, γ , was set to zero to
simulate the tensionless state of unconstrained lipid bilay-
ers (Jahnig 1996; Marrink et al. 2001). The normal pressure,
P⊥, was set equal to the bulk water pressure. To combine
the DPD and MC technique and maintain detailed balance,
each simulation step, we chose at random between a short
DPD trajectory, a constant surface tension move or a con-
stant normal pressure move. Note that in all MC moves, the
overall volume of the system is kept constant. For a detailed

Table 3 Non-bonded interaction parameters of the CG model

w h t p

w 25.0 15.0 80.0 120.0

h 15.0 35.0 80.0 80.0

t 80.0 80.0 25.0 25.0

p 120.0 80.0 25.0 25.0

description of the simulation technique and parameters, we
refer to previously published work (de Meyer et al. 2010).

4.2 Sampling methods

In the course of our CG simulation, we sampled the tilt of
lipids in the vicinity of TM helices. The lipid tilt angle is
defined by the position of lipid tails, as shown in Fig. 2b.
We defined a vector connecting the center-of-mass of the
first two tail beads (first out of five beads in each tail)
to the center-of-mass of the two last tail beads (fifth out
of five beads in each tail). The lipid tilt is then defined
as the angle between the constructed vector and the +ẑ
direction.

To obtain the tilt angle of lipids around one inserted TM
helix, we sampled lipids as a function of their radial distance
from the helix (see Fig. 2c, d). In each time frame, we looped
over several radii away from the helix center-of-mass (ri =
{1, 2, . . ., 10} l0). For each radii bin, i , we maintained all
lipids within the range r ∈ [ri − 1.0, ri ) of the helix center-
of-mass. As the number of lipids in each bin grows with
the radius, we randomly chose a subset of the lipids in each
bin, such that all bins will contain approximately the same
number of samples. To that end, we chose to sample a lipid
with probability P(ri ) = 1/(2ri − 1). Note that all the lipids
in the bin ri = 1.0 l0 are sampled, and all consecutive bins
will contain a similar number of lipids.

5 Special cases of the tilt model

5.1 Reduction in Helfrich model

The model for elastic membranes developed by Helfrich
assumes that only curvature elasticity is important for deter-
mining the shapes of closed vesicles. However, Helfrich notes
at the very outset that lipid tilt and membrane stretch can
be important variables. In developing his model, Helfrich
assumes that the lipids are always aligned normal to the
bilayer (Helfrich 1973). To recover the Helfrich model from
the tilt model, we have to impose three additional constraints
(Fig. 3a):

d
d0

= n,
d′

d0
= n′ = −Hτ and λ = 1 (29)

Eq. 29(1) states that the director is aligned normal to the
membrane everywhere. Since the director and director gra-
dient are independent at a given point, we have to specify
how the director gradient varies. Equation 29(2) states that
the director gradient must vary like the gradient of the nor-
mal to the surface (Fig. 3a). Since the gradient of the normal
is the mean curvature, the director gradient captures the vari-
ation of curvature along the surface. The constraint on λ holds
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Fig. 3 Reduction of the tilt model to the Helfrich model. a The Hel-
frich model requires that d = n and d′ = n′ along the membrane. The
value of λ = |r′(s)| is set to 1 in this case. b When pressure difference
across the membrane P = 0, the Helfrich model is limited to describ-
ing the cases where the lipids are aligned normal to the membrane.
c A circular vesicle is a special case of the Helfrich model with zero
transverse shear. The size of the vesicle depends on the applied pressure

difference across the membrane and the surface tension. The continuum
model can also capture spontaneous lipid tilt, where all the lipids have
the same, nonzero tilt angle. In (d), we show a flat membrane, where
the resting tilt is β0, and e when there is a net pressure difference across
the membrane, the membrane cross-section is a circle, with uniformly
tilted lipids

the membrane stretch to unity. The constraints in Eq. 29 can
be written as

λ = 1, β = 0 and η = −Hd0 (30)

everywhere on the membrane. These are in addition to the
constraint d = d0. Therefore, we need additional Lagrange
multipliers to impose these constraints. The auxiliary energy
potential now becomes

ζ = λW + μ(λ − 1) + α(d − d0) + m1(β − 0)

+ m2(η + Hd0), (31)

where μ, m1 and m2 are Lagrange multipliers for the con-
straints presented in Eq. 29, respectively.

ζ̇ = λ̇(W + μ) + λẆ + μḋ + m1β̇ + m2η̇ (32)

We use Eq. 9 to obtain

ζr′ = (Wβ + m1)d + (Wη + m2)d′ + (W + μ)τ

ζd = d−1
0 (Wd + μ)d + (Wβ + m1)τ

ζd′ = (Wη + m2)τ , (33)

and the Euler equations become

(ζr′)′ = −Pn (34)

(ζd′)′ − ζd = 0 (35)

Expanding out these equations will yield equations involv-
ing the second derivative of curvature and result in the well-
known ‘shape equation’ (Steigmann 1999). The energy is
now W = kηη

2 = kηd2
0 H2, and the moduli kη and kb can be

related by kb = kηd2
0 .

In the simple case that H is constant everywhere, simula-
tions yield a circle for positive pressure difference P and a
straight line for P = 0. Figure 3b, c shows schematics of the
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Helfrich case of lipid membranes. We do not include further
simulations from the Helfrich model, since these have been
studied extensively elsewhere (Seifert et al. 1991; Jaric et al.
1995).

5.2 Spontaneous tilt

The simplest case of the continuum model is where all the
lipids are aligned along the same nonzero tilt, with zero tilt
gradient. By writing the energy as W = kβ(β − β0)

2 + kλ

(λ − 1)2, we establish the general case where the resting tilt
angle is β0. This energy is minimized when β = β0. Since
there are no a priori assumptions on the tilt angle, β0 need not
be 0. Just as the spontaneous curvature of the lipid captures,
the curvature of the membrane that minimizes the bending
energy, the resting tilt, β0, represents the intrinsic tilt along
which the lipids align themselves. It can be thought of as the
spontaneous tilt of the lipids.

In this case, the ODEs reduce to a set of algebraic equa-
tions given by

β = β0

Ψ + Ψλ = constant

H = −P

Ψ + Ψλ

(36)

Thus, the equation for mean curvature is similar to the capil-
larity equation H = −P/σ . In Fig. 3d, we show a depiction
of lipids aligned at a resting angle away from the normal,
when P = 0. When P is not zero, the curvature is computed
by Eq. 36(3) and is shown in Fig. 3e. In this case, the line
tension is given by σ = Ψ + Ψλ.

6 Lipid tilt due to helix insertion

We consider the situation where a helix is inserted into the
membrane and causes the lipids in the neighboring region to

tilt. In the continuum model when one protein helix is intro-
duced into the membrane, the mathematical problem reduced
to solving a boundary value problem on a semi-infinite
domain. At the point of helix insertion (s = 0), the tilt angle
introduced by the helix is known; i.e., β and γ are known at
this boundary. Each helix introduces a different tilt angle at
s = 0 (Fig. 4). Additionally, we can specify the position of
the membrane at s = 0 as x = 0 and y = 0. Far away from
the helix insertion, the membrane has bulk values of lipid tilt
and line tension. We solve the ODEs given in Eq. 24 using the
energy given in Eq. 23 along with the specified boundary con-
ditions. The CG model provides the value of lipid tilt far away
from the protein helix as β0 = d0cos(24◦) and (Φr′) ·τ = 0.
These boundary value problems were solved using the math
interface of COMSOL Multiphysics ® using a domain length
of 15 nm.

6.1 Comparison with the coarse-grained model

The continuum model is suitable for investigating membrane
phenomena at a mesoscopic scale, that is, on the scale of
the membrane thickness. Here, we show that the continuum
model captures behavior corresponding to processes operat-
ing at the molecular scale by comparing its predictions with
a CG model subjected to DPD. In the CG model, lipids,
membrane-embedded proteins and water are represented by
strings of beads (Fig. 2a, b).

In order to draw direct comparisons between the CG and
the continuum models, we observe that the CG simulations
were performed on a torus with periodic boundary condi-
tions. If the torus is large enough, then locally it is nearly
cylindrical, whereas our 1D theory provides a model with
cylindrical cross-sections. We show below that the 1D model
yields a surprisingly good approximation to the CG simula-
tions in this setting.

Fig. 4 Tilt angle introduced by
the different helices are shown.
In all four cases, the bulk tilt
angle of the lipids is the same
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Fig. 5 Insertion of a hydrophobic protein helix causes the lipids to tilt
in the region proximal to the insertion. The graphs show tilt angle com-
parison between the coarse-grained and continuum models. a Helix 1
introduces an 8◦ change in tilt angle from the bulk. b Helix 2 intro-

duces a 5.5◦ change in tilt angle from the bulk. c Helix 3 introduces a
3◦ change from the bulk, and d helix 4 introduces a tilt angle change
of 1.5◦ from the bulk. The continuum model is able to capture the tilt
behavior of lipids observed in the coarse-grained model

6.2 Lipid tilt induced by one protein

In these simulations, we explored helices of various sizes.
We varied the number of helix residues, such that all helices
have the same number of hydrophilic residues on both ends
(three), but a different number of hydrophobic residues at
their center. Helices 1–4 correspondingly contain 9,12,15
and 18 hydrophobic residues at their center, respectively.
Varying the number of hydrophobic residues allowed us to
control the hydrophobic mismatch between the helices and
the bilayer. Here, we focus only on negative (helix 1–3,
Δd = 13.27, 8.77, 4.27 Å, respectively) and zero (Helix 4,
Δd = 0.23 Å) hydrophobic mismatches, which share simi-
lar bilayer response characteristic to their inclusion, but vary
in their degree. The tilt angle induced by each helix is shown
in Fig. 4.

The CG simulations predict that the lipids attain the bulk
tilt value within 4–6 nm from the helix insertion (Fig. 5a, b).
Using values of kβ = 40 pN/nm2 from the literature (Hamm
and Kozlov 2000; May et al. 2004) did not give us good
matches for the tilt angle distribution along the arc length as
observed in the CG simulations (Fig. 9). However, when the
value of kβ was set to be less than kη, at 1 pN/nm2, we were
able to obtain good agreement for the tilt angle distribution
between the continuum and CG models for all four helices
(Fig. 5). The inset in each panel of (Fig. 5) shows a snapshot

of the membrane with the helix inserted. The alignment of
the helix changes from Helix 1 to Helix 4 as seen in these
snapshots. The alignment of Helix 4 is closest to the bulk
bilayer value of 24◦ (Fig. 5d). In all four cases, the lipid tilt
attains the bulk value within 4–6 nm.

In our model, we were able to obtain kη from kb mea-
surements from the CG model and the stretch modulus of a
bilayer is widely documented as being quite high (Lipowsky
and Sackmann 1995). The unknown parameter is the tilt mod-
ulus kβ . Previous estimates of the tilt modulus state that it can
range from 0.002 kB T/nm2 (May et al. 2004) to 40 pN/nm
(Hamm and Kozlov 2000). We ran simulations with different
values of the tilt modulus (Fig. 9) and found the best match
between the continuum and CG model when kβ = 1 pN/nm.
Increasing kβ decreases the distance over which the tilt angle
goes to its resting angle (Fig. 9) and is not in agreement with
the observations in the CG model.

6.3 Membrane thickness

Insertion of a protein helix will cause a local tilt gradient
around the protein. This in turn creates membrane thinning
around the protein. In the continuum model, membrane thick-
ness is given by γ . That is, as the tilt angle induced by the pro-
tein increases, membrane thickness decreases in the region
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Fig. 6 Insertion of a protein helix changes the membrane thickness. Increasing protein-induced lipid tilt decreases membrane thickness. a Membrane
thickness profile in the continuum model and b membrane thickness in the coarse-grained model
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Fig. 7 Membrane stretch and line tension. a Insertion of a protein helix
in the membrane causes the membrane to stretch. The membrane stretch
increases with the difference in the tilt angle introduced by the protein

helix. b Line tension, computed as Φr′ ·τ , is highest near the helix. The
line tension increases with increased protein-induced lipid tilt

around the protein. Helix 1 causes the most thinning and
Helix 4 causes the least thinning (Fig. 6a).

We measured the thickness of the bilayer in the CG model
as a function of distance from the helix center-of-mass by
extracting the positions of lipid heads (second bead out of
three head beads) in a total of 1,600 time frames. We calcu-
lated the distance between each lipid and the helix center-
of-mass and obtained a detailed map of the upper and lower
layer head bead positions at each time frame. To gain better
statistics, we bundled together every 100 frames. For each
group of frames, we extrapolated the height of the lower
and upper bilayer leaflets on a radial grid using the LOESS
method (Chambers and Hastie 1992). The average bilayer
thickness as a function of distance from helix center is then
inferred by subtracting the grids of the upper and lower
leaflets.

In the CG simulations, the bilayer changes its properties to
fit the helix. As a result, the helices that induce larger tilt angle
changes also result in greater changes in membrane thickness

(Fig. 6b). The thickness variation relaxes at the same length
scale of 4–6 nm as the tilt angle. Not surprisingly, the trend
of membrane thinning in response to protein-induced lipid
tilt was the same in both models, but the exact values of the
membrane thickness did not match.

6.4 Membrane stretch and line tension

In addition to changing lipid tilt angle and thickness, the
continuum model also allows the membrane a small degree
of stretch, between 1 and 1.2 % in the 4–6 nm distance from
the helix (Fig. 7a). The extent of stretch decreases as the tilt
angle decreases. This is consistent with the idea that larger
deviations from the bulk tilt angle will cause larger strain
on the membrane. Lipid membranes are more resistant to
dilation than to bending (Secomb and Skalak 1982; Evans
and Skalak 1980) and even modest values of stretch can cause
membrane rupture (Rawicz et al. 2008).
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Fig. 8 The energy penalty on the membrane increases with increasing
tilt angle. The number next to the helix name indicates the tilt angle
difference from the bulk. Membrane stretch, kλ(λ − 1)2, is the least
contributor in all four cases. For small tilt angle changes, the contribu-
tions from kηη

2 and kβ(β − β0)
2 are comparable (Helices 3 and 4). As

the tilt angle difference increases, the energy contribution from the tilt
terms, kβ(β −β0)

2, increases. This tilt contribution is the maximum for
Helix 4

Additionally, the line tension ((Φr′) · τ ) is highest for
the largest tilt angle difference (Fig. 7b) and decreases with
decreasing tilt angle. Far away from the helix insertion, the
line tension goes to zero.

6.5 Energy contributions

The relative contributions of the tilt energy, η energy and the
stretch energy are shown in Fig. 8. In all cases, the energy
contribution from membrane stretch is the smallest of the
three terms. For the helix that induces the largest tilt angle
difference, the maximum energy penalty is from the tilt term.

The energy density that captures curvature changes kηη
2 is

smaller than the tilt energy kβ(β − β0)
2. For small tilt angle

differences between the helix insertion and the bulk bilayer,
the stretch energy is negligible, consistent with the observa-
tions of very small stretch (Fig. 7). As the difference in tilt
angles decreases, the ratio of tilt energy toη energy decreases.
The variation of energy with the modulus, kβ , is shown in
Fig. 9. Increasing the tilt modulus will increase the tilt energy
contribution. In all variations, we found that the energy con-
tribution from tilt is higher than the energy contribution from
the curvature coupled term η. Therefore, in regions close to a
protein insertion, the largest energy contribution comes from
lipid tilt, followed by η and then by lipid stretch.

7 Conclusions

Lipid tilt is a key degree of freedom in lipid membranes.
Membrane lipids change their orientation to relieve the
stresses that are induced by protein inclusions and by
processes such as membrane fusion and fission. Addition-
ally, the membrane is the first point of contact for many
viruses. Viral fusion proteins from the influenza virus, HIV
and Ebola virus can all insert into the membrane and drive
a local rearrangement of the lipids so as to create a fusion
pore (Phillips et al. 2009; Nir and Nieva 2000; Fischer and
Hsu 2011). Antimicrobial peptides such as bacterial grami-
cidin work by inserting the gramicidin helix into the mem-
brane; this changes the lipid orientation to form a channel
in the bilayer (Lundbaek et al. 2010). The influence of pro-
teins on lipids is not unidirectional; many proteins modulate
their activity in response to the lipids that bind to them, or
to the bilayer thickness and/or lipid curvature. All of these
processes involve local rearrangements of the lipid orienta-
tion and thus the membrane curvature. In order to under-
stand these phenomena, it is important to capture the small-
est length scale on which these spatial rearrangements take

Fig. 9 Increasing the tilt
modulus kβ decreases the tilt
relaxation distance. For larger
values of kβ , the tilt angle
relaxes within 1 nm, which is
not in agreement with the
observed distribution
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place. The orientation of lipids is the obvious length scale on
which to capture these changes.

Hamm and Kozlov have derived a model for the lipid
bilayer that includes lipid tilt and splay using the Frank liq-
uid crystal energies (Hamm and Kozlov 2000, 1998). Their
definition of the tilt vector differs from our use of the direc-
tor; however, these models complement each other because
the tilt gradient and mean curvature are coupled in both. The
Hamm and Kozlov model has been used to study line ten-
sion (Kuzmin et al. 2005), protein inclusion (Kozlovsky et al.
2004) and hemifusion intermediates (Kozlovsky et al. 2002;
Kozlovsky and Kozlov 2002). While many studies have noted
that lipid tilt could be important in accommodating protein
inclusions in the membrane, experimental measurements of
lipid orientation in the fluid phase have not yet been obtained.
Kozlovsky et al. predicted that, at small tilt angles and in
the presence of a protein inclusion, membrane bending is
more important than lipid tilting (Kozlovsky et al. 2004).
Moreover, in the regime of small tilt angles, lipid flipping,
an important step in scission, is not possible.

We have presented here a one-dimensional model of
lipid membranes, readily generalizable to higher dimen-
sions (Steigmann 2013), using tilt as the fundamental degree
of freedom. Importantly, we do not impose any restrictions on
the range of the tilt angle. We emphasize that our 1D model
limits the kind of shapes we can generate and in obtain-
ing certain finer length scale effects. While we are able to
obtain good agreement between the 1D model and the aver-
aged behavior from the CG model, a full surface model is
required for capturing further details of membrane deforma-
tions. Additionally, we are using one director to capture two-
tailed lipids. To represent the two tails, the director model
may be extended to include two directors, one for each tail.
Our current efforts are focusing on developing this in a higher
dimensional framework.

In the 1D case, the elastic equilibria are the solutions of a
system of ODEs that govern the variation of tilt, curvature and
stretch along the arc length. These equations can be solved
simultaneously with the appropriate boundary conditions to
obtain the membrane shape and tilt distribution for various
scenarios. We apply this tilt model to the case where a pro-
tein is inserted into the lipid bilayer and compare the results
computed from the continuum model to the results from a
coarse-grained molecular dynamics model for the same sce-
nario. This model reduces to the Helfrich model when the
lipids are all aligned normal to the surface and where the
curvatures are small (Helfrich 1973) (See Fig. 3a–c). When
the membrane is composed of a single lipid species with
constant tilt, the result is similar to membranes where DPPC
packs in a gel-phase bilayer aligned at 32◦ (Tristram-Nagle
et al. 1993) (See Fig. 3d, e).

We compared the continuum model with a CG molecular
model of lipid bilayers with protein inclusions. This compar-

ative framework is the closest we can get to an experimental
measurement at this time. We find that a single protein helix
introduces a tilt gradient that extends 5–6 nm from the helix
(Fig. 5).

Hydrophobic mismatch is the difference between the
hydrophobic size of the helix and that of the membrane.
Whenever such mismatch arises, the lipids and helix reorga-
nize so as to minimize the exposure of hydrophobic beads
to water or other hydrophilic beads (Benjamini and Smit
2013; Killian et al. 1996; Park and Opella 2005; Lee and
Im 2008; Parton et al. 2011; Strandberg et al. 2012). In nega-
tively mismatched helices, most of the adjustments are found
in the lipids surrounding the helix, rather than in the helix
itself. This is because the helix’s principal degree of free-
dom is its tilt, which does not help minimize the exposure of
hydrophilic beads (Benjamini and Smit 2013). In our simula-
tions, we observe that hydrophobic mismatch affects both the
lipids’ tilt (Fig. 5) and the membrane thickness close to the
helix center (Fig. 6). The membrane thickness surrounding
the helix decreases and the membrane shrinks to accommo-
date the presence of the helix. The thickness drop corresponds
to the helix hydrophobic mismatch (Fig. 6). Additionally,
the lipids surrounding a helix tilt to a greater extent when
surrounding a very negatively mismatched helix (Fig. 4), in
order to shield the lipid tails from the water. We are able to
obtain the same tilt characteristics in the continuum model,
by allowing the tilt modulus kβ ≈ 1 pN/nm2. Using the CG
and continuum models in tandem, we predict that lipid tilt
angle changes are an important contribution at short length
scales.

Based on the above observations, we propose that mem-
brane curvatures that occur on length scales of the bilayer
thickness are dominated by lipid tilt. Ignoring the tilt energy
contributions by assuming that the tilt angle is small will
miss the change in tilt angle in small regions. The CG model
shows that the lipids are fluctuating and the bulk tilt angle is
approximately 24◦. These effects may not be relevant while
studying large curvatures such as vesicle shapes; however,
these effects can dominate when multiple proteins aggregate
or during membrane fusion and fission. Our future studies
will focus on these phenomena.
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