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Abstract. We present two variants of OMD which are robust against
nonce misuse. Security of OMD—a CAESAR candidate—relies on the as-
sumption that implementations always ensure correct use of nonce (a.k.a.
message number); namely that, the nonce never gets repeated. However,
in some application environments, this non-repetitiveness requirement on
nonce might be compromised or ignored, yielding to full collapse of the
security guaranty. We aim to reach maximal possible level of robustness
against repeated nonces, as defined by Rogaway and Shrimpton (FSE
2006) under the name misuse-resistant AE (MRAE). Our first scheme,
called misuse-resistant OMD (MR-OMD), is designed to be substantially
similar to OMD while achieving stronger security goals; hence, being able
to reuse any existing common code/hardware. Our second scheme, called
parallelizable misuse-resistant OMD (PMR-OMD), further deviates from
the original OMD design in its encryption process, providing a paralleliz-
able algorithm, in contrast with OMD and MR-OMD which have serial
encryption/decryption processes. Both MR-OMD and PMR-OMD are
single-key mode of operation. It is known that maximally robust MRAE
schemes are necessarily two-pass, a price paid compared to a one-pass
scheme such as OMD. Nevertheless, in MR-OMD and PMR-OMD, we
combine the two passes in a way that minimizes the incurred additional
cost: the overhead incurred by the second pass in our two-pass variants
is about 50% of the encryption time for OMD.

Keywords: authenticated encryption, misuse-resistance, OMD, CAE-
SAR competition.

1 Introduction

An authenticated encryption scheme (AE) is a symmetric-key scheme that guar-
antees confidentiality (privacy) and authenticity (integrity) of data at the same
time. Classical authenticated encryption schemes were based on the generic com-
position paradigm: combining a traditional encryption scheme for privacy with
a message authentication code (MAC) for integrity. Generic composition based
schemes were formally analysed for the first time in [2], and more recently, fur-
ther investigated in [19].

The syntax and security notions for authenticated encryption, as a primitive
of its own right, were originally formalized in [2,3,16], and further developed to
include different variations in [12,21,23,24].
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Once the topic started to be investigated more, it became clear that there
is a need for dedicated authenticated encryption schemes—designs that would
provide higher security levels, efficiency or other desired features, in particular,
being easier to use and less prone to implementation errors/attacks, compared
to the generic composition-based schemes. This is backed by the fact that the
generic composition paradigm is neither the most efficient (it requires processing
the input stream at least twice) nor the most robust to implementation errors
[7, 19,27].

In this line, one of the most commonly known schemes is the GCM algorithm,
which was originally introduced in [18] and standardized by NIST [11] as a
blockcipher mode of operation for AE. GCM is a representative example of a
nonce-based, one-pass AE scheme which supports “associated data”—data that
are logically bound to the plaintext, need to be authenticated, but not to be
encrypted. Other prominent standard algorithms in this category include CCM
[10], OCB [17,22,23], and EAX [4], which are specified in ISO/IEC 19772:2009.

Lately, authenticated encryption has received a lot of attention through the
recent CAESAR competition [5]. There were 57 submissions to the first round
of CAESAR, from which (at the time of writing this paper) 7 were withdrawn
due to major attacks. The proposed CAESAR candidates cover a wide range of
designs, advertising different features, such as, being super efficient, single-pass
(online), fully or partially nonce-misuse-resistant; online misuse-resistant, and
so on.

One of the CAESAR candidates is the Offset Merkle-Damgård (OMD)—a
nonce-based, single-pass mode of operation for authenticated encryption with
associated data that uses a compression function as its lower-level primitive. To
the best of our knowledge, OMD is the only candidate that uses a compres-
sion function (in particular, those of SHA-256 and SHA-512). The majority of
other candidates are (AES) blockcipher-based or permutation-based, and some
use round functions of AES. OMD has some promising features, among them,
are provable security in the standard model based on the well-known PRF as-
sumption on the compression function and high bit-security level (127 bits and
255 bits for OMD-sha256 and OMD-sha512, respectively). Being able to take
advantage of the Intel SHA instructions on next-generation processors [28] also
seems to be quite interesting.

However, we notice that the security of OMD relies on the assumption that
implementations always ensure correct use of nonce (a.k.a. message number);
namely that, the nonce never gets repeated, otherwise security will fully collapse.
While the nonce-based security is sufficient and desirable in many situations,
it is not rare that in practice nonces are misused due to poor or erroneous
implementations; e.g., a random IV with bad randomness generator might be
used instead of the nonce, a counter with a short cycle of repetition can be used
as a nonce, or the nonce can even be set to a constant.

Providing robustness against such nonce-misuse scenarios has motivated de-
velopment of nonce-misuse-resistant AE schemes—an AE scheme, that retains



Misuse-Resistant Variants of the OMD Authenticated Encryption Mode 3

most of its security even if the nonces are not used properly. There are two
different categories of such schemes with different levels of robustness.

The first is the category of two-pass schemes that can provide maximal se-
curity in the presence of nonce reuse. These schemes make a first pass over all
data (message and authenticated data) to compute a tag (or IV) and then uses
the result (IV) to parametrize a second pass for encryption. The first such (two-
pass) scheme is the synthetic-IV (SIV) construction described in [24, 25]; other
examples are HBS [15] and BTM [14]. When the nonce is reused, these two-pass
schemes only leak minimal additional information compared to semantically se-
cure encryption schemes—the leaked information being the fact that a plaintext
together with its associated data are exactly repeated.

The second category are the one-pass (online) AE schemes that promise some
limited level of misuse resistance; the first such scheme is McOE [13], followed
by several other designs, such as those in [1, 9]. Being online is considered as
an advantage in many applications, but it must be noted that such online AE
schemes will reveal much more information compared to the two-pass scheme;
namely, the ciphertext reveals to the adversary whether two messages share a
common prefix when the nonce is reused. This is intrinsic to deterministic online
encryption. To the best of our knowledge, there is yet no clear consensus in the
cryptographic community (and no systematic study) on whether such an extra
information leakage (namely, the longest common prefix) can be tolerated and
considered safe in different applications of an AE scheme.

Aiming to keep the good features of OMD as far as possible and making it
robust to nonce reuse, we introduce two variants of OMD, called misuse-resistant
OMD (MR-OMD) and parallelizable misuse-resistant OMD (PMR-OMD). We
aim to reach maximal possible level of robustness against repeated nonces, as
defined by Rogaway and Shrimpton (FSE 2006) under the name misuse-resistant
AE (MRAE), so similar to the previously known schemes in this category (e.g.,
SIV, HBS and BTM) our constructions are also two-pass. The main motives that
influenced design of MR-OMD are the struggle to have a construction that is
very similar to OMD (so that common code and hardware can be reused) and to
have an efficient, provably secure MRAE scheme at the same time. The design of
PMR-OMD further deviates from OMD, providing a fully parallelizable variant,
in contrast with OMD and MR-OMD which have serial encryption process.

In MR-OMD and PMR-OMD, the two passes are combined in a way that
minimizes the incurred additional cost: using a keyed compression function with
(𝑛 + 𝑚)-bit input and 𝑛-bit output, for processing a message 𝑀 with associ-
ated data 𝐴, MR-OMD and PMR-OMD only need |𝑀 |/(𝑛 + 𝑚) more calls to
the compression function compared to OMD, where |𝑀 | is the bit length of 𝑀 .
Noticing that the encryption pass in OMD requires 1+ |𝑀 |/𝑚 compression func-
tion calls, and considering 𝑚 = 𝑛 (as suggested in OMD), the overhead incurred
by the second pass in our two-pass variants is about 50% of the encryption time
for OMD. We note that the overhead is independent of 𝐴 as it is processed in
the same way in all these algorithms.
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Compared with SIV which requires two keys, MR-OMD and PMR-OMD only
uses a single key (as is also the case for HBS and BTM). Compared to HBS and
BTM which use polynomial-based hashing and need general finite field multipli-
cations in their IV generation part, MR-OMD and PMR-OMD use compression
function-based hashing process and only need doubling (multiplication by 2) op-
eration in GF(2𝑛) which can be easily and efficiently implemented as shown in
Section 2. Avoiding polynomial based hashing seems to be an advisable prac-
tice due to the recent attacks and issues of such schemes as recently described
in [20, 26]. We note that all these two-pass schemes have the same high-level
generic structure (called “Scheme A4” in [19]); what differs is the design of the
IV generation and encryption processes.

There is also another subtle difference between the design of our variants
of OMD with those of SIV, HBS and BTM; namely, while the latter schemes
are designed to be deterministic AE (DAE) and incorporate nonce (if used)
and associated data as the header information, our schemes treat the nonce
and associated data differently from the beginning. As stated by Rogaway and
Shrimpton [24] “the MRAE goal is conceptually different from the DAE goal,
the former employing an IV and gaining for this a stronger notion of security.
The header and the IV are conceptually different, the one being user-supplied
data that the user wants authenticated, the other being a mechanism-supplied
value needed to obtain a strong notion of security.”

Organization of the paper. Notations and prelimiary concepts are presented
in Section 2. Security notions are defined in Section 3. Section 4 provides the
specification of the MR-OMD mode of operation. In Section 5, we provide the
security analysis of MR-OMD. In Section 6 we describe PMR-OMD and provide
its security analysis. The bulk parts of the proofs are provided in the appendices.

2 Preliminaries

Notations. For a finite set 𝒮, by 𝑥
$←− 𝑆 we denote that 𝑥 is chosen from

𝑆 uniformly at random. Any string is a binary string. Let {0, 1}𝑛 denote set
of all binary strings of length 𝑛 and let {0, 1}* denote the set of all finite-
length strings. For two strings 𝑋 and 𝑌 , 𝑋||𝑌 and 𝑋𝑌 denote the result of
concatenating the two strings. For an 𝑛-bit binary string 𝑋 = 𝑋[𝑛− 1] · · ·𝑋[0],
let 𝑋[𝑖 · · · 𝑗] = 𝑋[𝑖] · · ·𝑋[𝑗] denote a substring of 𝑋, for 0 ≤ 𝑗 ≤ 𝑖 ≤ 𝑚− 1; let
msb(𝑋) = 𝑋[𝑛−1] and lsb(𝑋) = 𝑋[0]. Let 1𝑛0𝑚 denote concatenation of 𝑛 ones
by 𝑚 zeros. For a non-negative integer 𝑖 let ⟨𝑖⟩𝑚 denote binary representation
of 𝑖 by an 𝑚-bit string.

The special symbol ⊥ means that a variable is undefined and it also signifies
an error. Let |𝑍| denote the cardinality of 𝑍 if 𝑍 is a set, and the length of 𝑍 in
bits if 𝑍 is a binary string. The empty string is denoted by 𝜀 and we let |𝜀| = 0.
For 𝑋 ∈ {0, 1}* let 𝑋1||𝑋2 · · · ||𝑋𝑚

𝑏←− 𝑋 denote partitioning 𝑋 into blocks 𝑋𝑖

such that |𝑋𝑖| = 𝑏 for 1 ≤ 𝑖 ≤ 𝑚 − 1 and |𝑋𝑚| ≤ 𝑏. Let |𝑋|𝑏 = ⌈|𝑋|/𝑏⌉ denote
length of 𝑋 in 𝑏-bit blocks and let ||𝑋||𝑏 = max{1, |𝑋|𝑏}.
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For two binary strings 𝑋 = 𝑋[𝑚− 1] · · ·𝑋[0] and 𝑌 = 𝑌 [𝑛− 1] · · ·𝑌 [0], the
notation 𝑋 ⊕ 𝑌 denotes bitwise xor of 𝑋[𝑚 − 1] · · ·𝑋[𝑚 − 1 − ℓ] and 𝑌 [𝑛 −
1] · · ·𝑌 [𝑛− 1− ℓ] where ℓ = min {𝑚− 1, 𝑛− 1}. That is, 𝑋 ⊕ 𝑌 is the result of
xoring first ℓ msb bits of 𝑋 and 𝑌 and dropping the rest (if any) for the longer
string. When 𝑚 = 𝑛, this simply denotes the conventional bitwise xor of two
strings. For any string 𝑋, define 𝑋 ⊕ 𝜀 = 𝜀 ⊕ 𝑋 = 𝜀. The notation 𝑋 ⊕𝑚𝑠𝑏 𝑌
stands for bitwise xor 𝑋||0𝐿−𝑚 ⊕ 𝑌 ||0𝐿−𝑛, where 𝐿 = max {𝑚, 𝑛}. In other
words, we xor the the shorter string to the longer one, aligning the strings by
their leftmost bits.

For a binary string 𝑋 = 𝑋[𝑚 − 1] · · ·𝑋[0], let 𝑋 ≪ 𝑛 denote the left-shift
operation, where the 𝑛 left-most bits are discarded and the 𝑛 vacated right bits
are set to 0. We let 𝑋 ≫𝑠 𝑛 denote the signed right-shift operation, where the
𝑛 right-most bits are discarded and the 𝑛 vacated left bits are filled with the
left-most bit (which is considered as the sign bit); for example, 1001100≫𝑠 3 =
1111001.

The Finite Field with 2𝑛 Points. Let (𝐺𝐹 (2𝑛),⊕, .) denote the Galois Field
with 2𝑛 points. When considering a point 𝛼 in 𝐺𝐹 (2𝑛) it can be represented in
any of the following equivalent ways: (1) as an integer between 0 and 2𝑛− 1, (2)
as a binary string 𝛼𝑛−1 · · ·𝛼0 ∈ {0, 1}𝑛, or (3) as a formal polynomial 𝛼(𝑋) =
𝛼𝑛−1𝑋𝑛−1 + · · · + 𝛼1𝑋 + 𝛼0 with binary coefficients. The addition “⊕” and
multiplication “.” of two field elements in 𝐺𝐹 (2𝑛) are defined as usual (e.g.
see [23]). For 𝐺𝐹 (2256), we use 𝑃256(𝑋) = 𝑋256 + 𝑋10 + 𝑋5 + 𝑋2 + 1, and
for 𝐺𝐹 (2512) we use 𝑃512(𝑋) = 𝑋512 + 𝑋8 + 𝑋5 + 𝑋2 + 1 as the irreducible
polynomials used in the field multiplications. It is easy to multiply an arbitrary
field element 𝛼 by the element 2 (i.e. 𝑋). For example, in 𝐺𝐹 (2256) using 𝑃256(𝑋)
the doubling operation can be described as follows:

2.𝛼 =
{︂

𝛼≪ 1 if msb(𝛼) = 0
(𝛼≪ 1)⊕ 024510000100101 if msb(𝛼) = 1 (1)

= (𝛼≪ 1)⊕ ((𝛼≫𝑠 255) ∧ 024510000100101) (2)

We note that the results computed in (1) and (2) are the same but an implemen-
tation using (2) will not be susceptible to the timing attacks unlike one which
uses (1).

3 Security definitions

As usual in the concrete-security definitions, we measure the insecurity of a
scheme 𝛱 using the resource parametrized function Advxxx

𝛱 (r), denoting the
maximal value of the adversary’s advantage — Advxxx

𝛱 (r) = 𝑚𝑎𝑥𝐴 {Advxxx
𝛱 (𝐴)}

— over all adversaries 𝐴, against the xxx property of a primitive or scheme 𝛱,
that use resources bounded by r. Let 𝐴 be an adversary that returns a binary
value; by 𝐴𝑓(.)(𝑋) ⇒ 1 we refer to the event that 𝐴 on input 𝑋 and access to
an oracle function 𝑓(.) returns 1.
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Syntax and Security of Keyed Compression Functions. We denote a
keyed compression function by 𝐹 : 𝒦 × ({0, 1}𝑛 × {0, 1}𝑚) → {0, 1}𝑛, where 𝑚
and 𝑛 are two positive integers, and the keyspace 𝒦 is a non-empty set of strings.
The notations 𝐹𝐾(𝐻, 𝑀) = 𝐹 (𝐾; 𝐻, 𝑀) are equivalent. We can alternatively
think of 𝐹𝐾 as a single argument function whose domain is {0, 1}𝑛+𝑚 and write
𝐹𝐾(𝐻||𝑀) = 𝐹𝐾(𝐻, 𝑀). Given a keyless compression function 𝐹 ′ : {0, 1}𝑛 ×
{0, 1}𝑏 → {0, 1}𝑛 (e.g. sha-256 : {0, 1}256 × {0, 1}512 → {0, 1}256) we convert it
to a keyed compression function 𝐹 by dedicating 𝑘 bits of its 𝑏-bit input block
to the secret key; i.e. we define 𝐹𝐾(𝐻, 𝑀) = 𝐹 ′(𝐻, 𝐾||𝑀). For example in the
case of sha-256 we have 𝑛 = 256 and we will set 𝑘 = 256 which will give us
𝑚 = 512− 𝑘 = 256. We assess the security of compression functions in the sense
of pseudorandom function security described below.
Pseudorandom Functions (PRFs) and Tweakable PRFs. We denote by
Func(𝑚, 𝑛) = {𝑓 : {0, 1}𝑚 → {0, 1}𝑛} the set of all functions from 𝑚-bit strings
to 𝑛-bit strings and by Func(ℳ, 𝑛) = {𝑓 :ℳ→ {0, 1}𝑛} the set of all functions
from a setℳ to 𝑛-bit strings. A random function 𝑅

$← Func(𝑚, 𝑛) is a function
selected uniformly at random from Func(𝑚, 𝑛). We define a random function 𝑅′

with input from set ℳ and 𝑛-bit output in a similar manner.
Let Func𝒯 (𝑚, 𝑛) be the set of all functions

{︁ ̃︀𝑓 : 𝒯 × {0, 1}𝑚 → {0, 1}𝑛
}︁

,
where 𝒯 is a set of tweaks. A tweakable random function (RF) with the tweak
space 𝒯 , 𝑚-bit input and 𝑛-bit output is a map ̃︀𝑅 : 𝒯 × {0, 1}𝑚 → {0, 1}𝑛

selected uniformly at random from Func𝒯 (𝑚, 𝑛); i.e. ̃︀𝑅 $←− Func𝒯 (𝑚, 𝑛). We usẽ︀𝑅⟨𝑇 ⟩(.) and ̃︀𝑅(𝑇, .) interchangeably, for every 𝑇 ∈ 𝒯 . Notice that each tweak 𝑇

names a random function ̃︀𝑅⟨𝑇 ⟩ : {0, 1}𝑚 → {0, 1}𝑛 and distinct tweaks name
distinct (independent) random functions.

Let 𝐹 : 𝒦 × {0, 1}𝑚 → {0, 1}𝑛 be a keyed function and let ̃︀𝐹 : 𝒦 × 𝒯 ×
{0, 1}𝑚 → {0, 1}𝑛 be a keyed and tweakable function, where the key space 𝒦 is
some nonempty set. Let 𝐹𝐾(.) = 𝐹 (𝐾, .) and ̃︀𝐹 ⟨𝑇 ⟩𝐾 (.) = ̃︀𝐹 (𝐾, 𝑇, .). Let 𝐴 be an
adversary. Then:

Advprf
𝐹 (𝐴) =Pr

[︁
𝐾

$← 𝒦 : 𝐴𝐹𝐾 (.) ⇒ 1
]︁
− Pr

[︁
𝑅

$← Func(𝑚, 𝑛) : 𝐴𝑅(.) ⇒ 1
]︁

Adv ̃︀prf̃︀𝐹 (𝐴) =Pr
[︁
𝐾

$← 𝒦 : 𝐴̃︀𝐹 ⟨.⟩
𝐾

(.) ⇒ 1
]︁
− Pr

[︁ ̃︀𝑅 $← Func𝒯 (𝑚, 𝑛) : 𝐴̃︀𝑅⟨.⟩(.) ⇒ 1
]︁

The resource parametrized advantage functions are defined accordingly, con-
sidering that the adversarial resources of interest here are the time complexity
(𝑡) of the adversary and the total number of queries (𝑞) asked by the adversary
(note that we just consider fixed-input-length functions, so the lengths of queries
are fixed and known). We say that 𝐹 is (𝑡, 𝑞; 𝜖)-PRF if Advprf

𝐹 (𝑡, 𝑞) ≤ 𝜖. We say
that ̃︀𝐹 is (𝑡, 𝑞; 𝜖)-tweakable PRF if Adṽ︁prf̃︀𝐹 (𝑡, 𝑞) ≤ 𝜖.

Extending these definitions for variable-input-length functions is straightfor-
ward; namely, for a VIL function 𝐺 : 𝒦 × 𝒟 → {0, 1}𝑛, with a non-empty key
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space 𝒦 and message space 𝒟 = {0, 1}*, the ideal primitive to which a randomly
selected function 𝐺𝐾 is compared will be 𝑅

$← Func(𝒟, 𝑛). The resource of in-
terest in this case is the total length of all processed queries in 𝑛-bit blocks 𝜎
for some positive 𝑛.

IV-Based Encryption Schemes. An IV-based encryption scheme is a privacy-
only scheme, with a rather weak security notion described below, as for example
the CBC mode. We say that an encryption scheme 𝛱 = (𝒦, ℰ ,𝒟) is an IV-based
encryption scheme if the encryption function ℰ takes a tuple (𝐾, IV, 𝑀) as input,
such that 𝐾 ∈ 𝒦, IV ∈ {0, 1}𝜏 for some fixed positive 𝜏 and 𝑀 ∈ {0, 1}*. We call
IV the initialization vector. The notations ℰ(𝐾, IV, 𝑀), ℰ𝐾(IV, 𝑀) and ℰ IV

𝐾 (𝑀)
are used interchangeably. We also assume that if C = ℰ IV

𝐾 (𝑀), then we have
|C| = |𝑀 | + 𝜏 and C = IV||𝐶; i.e. the ciphertext reveals IV. We define the
advantage of an adversary 𝐴 in breaking the $-privacy of 𝛱 as

Advpriv$
𝛱 (𝐴) = Pr

[︁
𝐾

$←− 𝒦 : 𝐴ℰ
$
𝐾 (·) ⇒ 1

]︁
− Pr

[︁
𝐴$(·) ⇒ 1

]︁
with $(·) being a random string oracle that on input 𝑀 returns a random string
of length |𝑀 |+𝜏 and ℰ$

𝐾 returning ℰ IV
𝐾 with IV $←− {0, 1}𝜏 . It is assumed, that the

adversary never asks a query outside the proper message space of 𝛱. Note that
in the priv$ security game, the IV is chosen by the challenger. We remark that
we make use of an IV-based scheme as a building block for our misuse-resistant
scheme.

Syntax of an AEAD Scheme. A nonce-based authenticated encryption with
associated data, AEAD for short, is a symmetric key scheme 𝛱 = (𝒦, ℰ ,𝒟).
The key space 𝒦 is some non-empty finite set. The encryption algorithm ℰ :
𝒦×𝒩 ×𝒜×ℳ→ 𝒞 ∪ {⊥} takes four arguments, a secret key 𝐾 ∈ 𝒦, a nonce
𝑁 ∈ 𝒩 , an associated data (a.k.a. header data) 𝐴 ∈ 𝒜 and a message 𝑀 ∈ ℳ,
and returns either a ciphertext C ∈ 𝒞 or a special symbol ⊥ indicating an error.
The decryption algorithm 𝒟 : 𝒦×𝒩 ×𝒜×𝒞 →ℳ∪{⊥} takes four arguments
(𝐾, 𝑁, 𝐴,C) and either outputs a message 𝑀 ∈ℳ or an error indicator ⊥.

For correctness of the scheme, it is required that 𝒟(𝐾, 𝑁, 𝐴,C) = 𝑀 for any
C such that C = ℰ(𝐾, 𝑁, 𝐴, 𝑀). It is also assumed that if algorithms ℰ and 𝒟
receive parameter not belonging to their specified domain of arguments they will
output ⊥. We write ℰ𝐾(𝑁, 𝐴, 𝑀) = ℰ(𝐾, 𝑁, 𝐴, 𝑀) and similarly 𝒟𝐾(𝑁, 𝐴,C) =
𝒟(𝐾, 𝑁, 𝐴,C).

We assume that the message and associated data can be any binary string
of arbitrary but finite length; i.e.ℳ = {0, 1}* and 𝒜 = {0, 1}*, but the key and
nonce are some fixed-length binary strings, i.e. 𝒩 = {0, 1}|𝑁 | and 𝒦 = {0, 1}𝑘,
where the positive integers |𝑁 | and 𝑘 are respectively the nonce length and the
key length of the scheme in bits. We assume that |ℰ𝐾(𝑁, 𝐴, 𝑀)| = |𝑀 | + 𝜏 for
some positive fixed constant 𝜏 ; that is, we will have IV||𝐶 = C where |𝐶| = |𝑀 |
and |IV| = 𝜏 . We call 𝐶 the core ciphertext and IV the initialization vector
(or IV for short). The IV is not to be confused with the nonce. The nonce
is an input to the encryption algorithm of the AEAD scheme and it is used
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to randomize the encryption, while the role of what we call IV in this paper
is to authenticate a message with associated data and randomize one part of
the encryption algorithm in such a way, that will ensure the misuse-resistant
property. The IV here is generated by the encryption algorithm itself. It can be
viewed as a variant of an authentication tag, with the difference that the IV is
prepended rather than appended to the core ciphertext.

Nonce Respecting and Nonce Misusing Adversaries. We say that an
adversary 𝐴 is nonce-respecting if it never repeats a nonce in its encryption
queries. That is, if 𝐴 queries the encryption oracle ℰ𝐾(·, ·, ·) with the queries
(𝑁1, 𝐴1, 𝑀1) · · · (𝑁𝑞, 𝐴𝑞, 𝑀𝑞) then 𝑁1, · · · , 𝑁𝑞 must be distinct. If there are at
least two queries (𝑁 𝑖, 𝐴𝑖, 𝑀 𝑖) and (𝑁 𝑗 , 𝐴𝑗 , 𝑀 𝑗) that share the same nonce, i.e.
𝑁 𝑖 = 𝑁 𝑗 , then we say that 𝐴 is a nonce-misusing (or a nonce-reusing) adver-
sary. Note that adversaries of both types may repeat nonces in their decryption
queries.

AE security. To establish the security of MR-OMD scheme, we use the all-in-
one MRAE security notion introduced in [25]. As shown in [25], the all-in-one
security notion is equivalent to the conventional two-requirement security notion
(that combines IND-CPA for privacy and INT-CTXT for integrity), as put forth
in [2, 3, 16].

Definition 1. Let 𝛱 = (𝒦, ℰ ,𝒟) be a nonce based AEAD scheme. The MRAE-
advantage of an adversary 𝐴 in attacking the scheme 𝛱 is defined as:

Advmrae
𝛱 (𝐴) = Pr

[︁
𝐾

$←− 𝒦 : 𝐴ℰ𝐾(·,·,·),𝒟𝐾(·,·,·) ⇒ 1
]︁
− Pr

[︁
𝐴$(·,·,·),⊥(·,·,·) ⇒ 1

]︁
.

To prevent trivial wins, we forbid 𝐴 to ask a query (𝑁, 𝐴,C) of the decryp-
tion oracle, after obtaining result C upon query (𝑁, 𝐴, 𝑀) from the encryption
oracle; we also assume that 𝐴 never repeats an encryption query (𝑁, 𝐴, 𝑀). On
query (𝑁, 𝐴, 𝑀), the random-bit oracle $(·, ·, ·) returns a random string of length
|𝑀 |+ 𝜏 if the inputs 𝑁, 𝐴 and 𝑀 belong to the respective input domains and ⊥
otherwise. The ⊥(·, ·, ·) oracle returns ⊥ on every query.

The resource-based advantage function Advmrae
𝛱 (r) is parametrized by adver-

sarial resource vector r = (𝑡, 𝜎𝐴, 𝜎𝑀 , 𝑞𝑒, 𝑞𝑑) where 𝑡 denotes the time complexity,
𝜎𝐴 = (

∑︀𝑞𝑒

𝑖=1 |𝐴𝑖|+
∑︀𝑞𝑑

𝑗=1 |𝐴𝑗 |) is the total length of associated data in all queries,
𝜎𝑀 = (

∑︀𝑞𝑒

𝑖=1 |𝑀 𝑖|+
∑︀𝑞𝑑

𝑗=1 |C𝑗−𝜏 |) is the total length of plaintexts in all queries,
𝑞𝑒 denotes the maximal number of encryption queries and 𝑞𝑑 the maximal num-
ber of decryption queries made by the adversary.

Clearly, the MRAE security notion implies the nonce-respecting security; the
latter being a special case of the former, where adversary cannot repeat the nonce
and hence no query to the encryption oracle is repeated. We denote the conven-
tional nonce-respecting notion by “nr-ae” and let the corresponding resource-
parametrized advantage function be Advnr-ae

𝛱 (r), measuring the maximal inse-
curity over all “nonce-respecting” adversaries 𝐴 having resources bounded by
r.
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If an adversary repeats a whole query to the encryption oracle (i.e. queries
(𝑁, 𝐴, 𝑀) twice) then it is impossible to have any IND-CPA privacy, as the ci-
phertext will reveal this repetition. This is the minimal amount of additional in-
formation leakage by a MRAE scheme compared to a semantically secure scheme
and a scheme fulfilling Definition 1 is considered as maximally robust to nonce-
reuse. Note that such trivial winning strategy is disallowed in Definition 1.

We sometimes use simplified notation for adversary’s oracles and the choice of
the key in a security game. For a scheme 𝛱 = (𝒦, ℰ ,𝒟), the notations 𝐾

$←− 𝒦 :
𝐴ℰ𝐾(·,·,·),𝒟𝐾(·,·,·) and 𝐴𝛱𝐾(·,·,·),𝛱−1

𝐾
(·,·,·) are equivalent.

4 Specification of MR-OMD

MR-OMD is a compression function mode of operation for nonce-misuse resistant
AEAD. It has the following parameters.

– keyed compression function 𝐹 : 𝒦 × ({0, 1}𝑛 × {0, 1}𝑚)→ {0, 1}𝑛

– IV length 𝜏 < 𝑛

where the key space 𝒦 = {0, 1}𝑘 and 𝑚 ≤ 𝑛.
Let MR-OMD-𝐹 denote the MR-OMD mode of operation using a keyed

compression function 𝐹𝐾 : {0, 1}𝑛 × {0, 1}𝑚 → {0, 1}𝑛 with 𝑚 ≤ 𝑛 and an
unspecified tag length. We let MR-OMD[𝐹, 𝜏 ]denote the MR-OMD mode of
operation using the keyed compression function 𝐹𝐾 and the IV of length 𝜏 . The
encryption algorithm of MR-OMD[𝐹, 𝜏 ] takes four input arguments (secret key
𝐾 ∈ {0, 1}𝑘, nonce 𝑁 ∈ {0, 1}|𝑁 |, associated data 𝐴 ∈ {0, 1}*, message 𝑀 ∈
{0, 1}*) and outputs C = IV||𝐶 ∈ {0, 1}|𝑀 |+𝜏 . The decryption algorithm of MR-
OMD[𝐹, 𝜏 ] inputs four arguments (secret key 𝐾 ∈ {0, 1}𝑘, nonce 𝑁 ∈ {0, 1}|𝑁 |,
associated data 𝐴 ∈ {0, 1}*, ciphertext IV||𝐶 ∈ {0, 1}*) and either outputs the
whole 𝑀 ∈ {0, 1}|𝐶| at once or an error message ⊥.

A schematic representation of the encryption algorithm of MR-OMD[𝐹, 𝜏 ] is
shown in figure 1. The construction of the decryption algorithm is similar to the
encryption except that the ciphertext is first decrypted using IV from the input
and then the IV from input is compared to IV′ computed over the associated
data and decrypted message. Figure 2 shows the algorithmic description of the
encryption and decryption algorithms of MR-OMD[𝐹, 𝜏 ]

Computing the masking values. As seen from the description of MR-OMD
in Figure 1, before each call to the underlying keyed compression function, we
xor a masking value 𝛥. Seven different sets of masking values are used:

– masks 𝛥𝑁,𝑖,𝑗 for 𝑗 ∈ {0, . . . , 5} are used in the IV generation process,
– masks 𝛥IV,𝑖 are used in the encrypt/decryption process.

In the following, all multiplications are in 𝐺𝐹 (2𝑛), ntz(𝑖) denotes the number
of trailing zeros (i.e. the number of rightmost bits that are zero) in the binary
representation of a positive integer 𝑖.
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Initialization. Let 𝐿* = 𝐹𝐾(0𝑛, 0𝑚); 𝐿(0) = 8 · 𝐿*, and 𝐿(𝑖) = 2 · 𝐿(𝑖− 1) for
𝑖 ≥ 1. The rule to compute 𝐿(𝑖) is described as a part of the initialization,
because these values can be precomputed and stored in a table. Further on
let 𝛥𝑁,0,0 = 𝐹𝐾(𝑁 ||10𝑛−1−|𝑁 |, 0𝑚); 𝛥𝑁,0,1 = 𝐹𝐾(𝑁 ||10𝑛−1−|𝑁 |, 0𝑚)⊕ 𝐿*.

Masking sequence for IV generation. For 𝑖 ≥ 1 let 𝛥𝑁,𝑖,0 = 𝛥𝑁,𝑖−1,0 ⊕
𝐿(ntz(𝑖)); and 𝛥𝑁,𝑖,1 = 𝛥𝑁,𝑖−1,1⊕𝐿(ntz(𝑖)). For 𝑖 ≥ 1 and 𝑗, 𝑗′ ∈ {0, . . . , 5}:
𝛥𝑁,𝑖,𝑗 = 𝛥𝑁,𝑖,𝑗′ ⊕ (⟨𝑗⟩𝑛 ⊕ ⟨𝑗′⟩𝑛) · 𝐿*.

Masking sequence for encryption. Let 𝛥IV,0 = 𝐹𝐾(IV||10𝑛−1−𝜏 , 0𝑚)⊕6·𝐿*.
We have 𝛥IV,𝑖 = 𝛥IV,𝑖−1 ⊕ 𝐿(ntz(𝑖)) for 𝑖 ≥ 1.

5 Security Analysis

We analyse the security of MR-OMD in two cases: (1) as a MRAE, considering
adversaries that are nonce-reusing; (2) in the case that adversaries are nonce-
respecting. As MR-OMD is designed as a nonce-misuse resistant scheme, we first
focus on analysing the security bounds in the nonce-misuse scenario. Clearly,
an upper-bound for the MRAE insecurity (i.e. MRAE advantage) also upper-
bounds the insecurity in the nonce-respecting case. Intuitively, the latter can be
lower than the former. This is made explicit by Theorem 1 and Theorem 2.

5.1 Security in the Case of Nonce Misuse

Theorem 1 gives the MRAE security of MR-OMD. The high-level structure of the
proof is similar to those of previous MRAE schemes following the synthetic-IV
(SIV) design paradigm [24], such as HBS [15] and BTM [14], but the details differ.
We first prove the security in the information-theoretic setting using tweakable
random functions. To obtain the information-theoretic security, we prove security
of MR-OMD.HASH as a PRF and that of MR-OMD.ℰ as a secure IV-based
encryption scheme. Consequently, we prove security of MR-OMD in the MR-AE
sense using the previous two results. A complexity-theoretic security bound is
then determined by instantiating the tweakable random functions using the XE
construction from [22].

Theorem 1. Fix 𝑛 ≥ 1 and 𝜏 ∈ {0, 1, · · · , 𝑛}. Let 𝐹 : 𝒦×({0, 1}𝑛×{0, 1}𝑚)→
{0, 1}𝑛 be a PRF, where the key space 𝒦 = {0, 1}𝑘 for 𝑘 ≥ 1 and 1 ≤ 𝑚 ≤ 𝑛.
Then

Advmrae
MR-OMD[𝐹,𝜏 ](𝑡, 𝜎, 𝑞𝑒, 𝑞𝑑) ≤ Advprf

𝐹 (𝑡′, 2𝜎) + 3.5𝜎2

2𝑛
+ 0.5𝑞2

𝑒

2𝜏
+ 𝑞𝑑

2𝜏

where 𝑞𝑒 and 𝑞𝑑 are, respectively, the number of encryption and decryption
queries, 𝑡′ = 𝑡 + 𝑐𝑛𝜎 for some constant 𝑐 and 𝜎 is the total number of calls
made to the underlying compression function 𝐹 .
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Fig. 1: The encryption process of MR-OMD[𝐹, 𝜏 ] and PMR-OMD[𝐹, 𝜏 ] using a
keyed compression function 𝐹𝐾 : ({0, 1}𝑛 × {0, 1}𝑚) → {0, 1}𝑛 with 𝑚 ≤ 𝑛.
(Top) The process of generating the IV. Both associated data and message are
parsed into 𝑛 + 𝑚 bit blocks and padded if needed as shown. (Bottom) The
encryption process (upper part for MR-OMD and lower for PMR-OMD). The
output ciphertext is IV||𝐶. For operations ⊕ and ⊕𝑚𝑠𝑏 see our convention in
Section 2.
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1: Algorithm Initialize(𝐾)
2: 𝐿* ← 𝐹𝐾 (0𝑛, 0𝑚)
3: 𝐿

(2)
* ← 2 · 𝐿*

4: 𝐿
(4)
* ← 2 · 𝐿(2)

*
5: 𝐿

(6)
* ← 𝐿

(4)
* ⊕ 𝐿

(2)
*

6: 𝐿(0)← 2 · 𝐿(4)
*

7: for 𝑖← 1, 2, · · · do
8: 𝐿(𝑖) = 2.𝐿(𝑖− 1)
9: return

1: Algorithm HASH𝐾(𝑁, 𝐴, 𝑀)
2: 𝑏← 𝑛 + 𝑚

3: 𝐴1||𝐴2 · · ·𝐴𝑎−1||𝐴𝑎
𝑏← 𝐴

4: 𝑀1||𝑀2 · · ·𝑀𝑡−1||𝑀𝑡
𝑏←𝑀

5: 𝛴𝐴 ← 0𝑛; 𝛴𝑀 ← 0𝑛

6: 𝛥𝑀 ← 𝐹𝐾(𝑁 ||10𝑛−1−|𝑁|, 0𝑚)
7: 𝛥𝐴 ← 𝛥𝑀 ⊕ 𝐿*
8: for 𝑖← 1 to 𝑎− 1 do
9: 𝛥𝐴 ← 𝛥𝐴 ⊕ 𝐿(ntz(𝑖))
10: Left← 𝐴𝑖[𝑏− 1 · · ·𝑚]
11: Right← 𝐴𝑖[𝑚− 1 · · · 0]
12: 𝛴𝐴 ← 𝛴𝐴 ⊕ 𝐹𝐾(Left⊕𝛥𝐴, Right)
13: if |𝐴𝑎| = 𝑏 then
14: 𝛥𝐴 ← 𝛥𝐴 ⊕ 𝐿

(2)
*

15: Left← 𝐴𝑎[𝑏− 1 · · ·𝑚]
16: Right← 𝐴𝑎[𝑚− 1 · · · 0]
17: 𝛴𝐴 ← 𝛴𝐴 ⊕ 𝐹𝐾 (Left⊕𝛥, Right)
18: else if |𝐴| > 0 then
19: 𝛥𝐴 ← 𝛥𝐴 ⊕ 𝐿

(4)
*

20: 𝐴*
𝑎 ← 𝐴𝑎||10𝑏−|𝐴𝑎|−1

21: Left𝐴*
𝑎[𝑏− 1 · · ·𝑚]

22: Right← 𝐴*
𝑎[𝑚− 1 · · · 0]

23: 𝛴𝐴 ← 𝛴𝐴 ⊕ 𝐹𝐾 (Left⊕𝛥𝐴, Right)
24: for 𝑖← 1 to 𝑡− 1 do
25: 𝛥𝑀 ← 𝛥𝑀 ⊕ 𝐿(ntz(𝑖))
26: Left←𝑀𝑖[𝑏− 1 · · ·𝑚]
27: Right←𝑀𝑖[𝑚− 1 · · · 0]
28: 𝛴𝑀 ← 𝛴𝑀⊕𝐹𝐾(Left⊕𝛥𝑀 , Right)
29: if |𝑀𝑡| = 𝑏 then
30: 𝛥𝑀 ← 𝛥𝑀 ⊕ 𝐿

(2)
*

31: Left←𝑀𝑡[𝑏− 1 · · ·𝑚]⊕𝛴𝐴

32: Right←𝑀𝑡[𝑚− 1 · · · 0]
33: IV← 𝐹𝐾(Left⊕𝛥𝑀 , Right)

34: else
35: 𝛥𝑀 ← 𝛥𝑀 ⊕ 𝐿

(4)
*

36: 𝑀*
𝑡 ←𝑀𝑡||10𝑏−|𝑀𝑡|−1

37: Left←𝑀*
𝑡 [𝑏− 1 · · ·𝑚]⊕𝛴𝐴

38: Right←𝑀*
𝑡 [𝑚− 1 · · · 0]

39: IV← 𝐹𝐾(Left⊕𝛥𝑀 , Right)
40: return IV[𝑛− 1 · · ·𝑛− 𝜏 ]

1: Algorithm ℰ𝐾(𝑁, 𝐴, 𝑀)
2: if |𝑁 | > 𝑛− 1 then
3: return ⊥
4: 𝑀1||𝑀2 · · ·𝑀ℓ−1||𝑀ℓ

𝑚←𝑀
5: IV← HASH𝐾(𝑁, 𝐴, 𝑀)
6: 𝛥← 𝐹𝐾(𝐼𝑉 ||10𝑛−1−𝜏 , 0𝑚)
7: 𝛥← 𝛥⊕ 𝐿(0)⊕ 𝐿

(6)
*

8: 𝐻 ← 0𝑛

9: 𝐻 ← 𝐹𝐾 (𝐻 ⊕𝛥, ⟨𝜏⟩𝑚)
10: for 𝑖← 1 to ℓ− 1 do
11: 𝐶𝑖 ← 𝐻 ⊕𝑀𝑖

12: 𝛥← 𝛥⊕ 𝐿(ntz(𝑖 + 1))
13: 𝐻 ← 𝐹𝐾(𝐻 ⊕𝛥, 𝑀𝑖)
14: 𝐶ℓ ← 𝐻 ⊕𝑀ℓ

15: C← IV||𝐶1||𝐶2|| · · · ||𝐶ℓ

16: return C

1: Algorithm 𝒟𝐾 (𝑁, 𝐴,C)
2: if |𝑁 | > 𝑛− 1 or |C| < 𝜏 then
3: return ⊥
4: IV||𝐶1||𝐶2 · · ·𝐶ℓ−1||𝐶ℓ

𝑚← C
5: 𝐻 ← 0𝑛

6: 𝛥← 𝐹𝐾(𝐼𝑉 ||10𝑛−1−𝜏 , 0𝑚)
7: 𝛥← 𝛥⊕ 𝐿(0)⊕ 𝐿

(6)
*

8: 𝐻 ← 𝐹𝐾 (𝐻 ⊕𝛥, ⟨𝜏⟩𝑚)
9: for 𝑖← 1 to ℓ− 1 do
10: 𝑀𝑖 ← 𝐻 ⊕ 𝐶𝑖

11: 𝛥← 𝛥⊕ 𝐿(ntz(𝑖 + 1))
12: 𝐻 ← 𝐹𝐾(𝐻 ⊕𝛥, 𝑀𝑖)
13: 𝑀ℓ ← 𝐻 ⊕ 𝐶ℓ

14: IV′ ← HASH𝐾 (𝑁, 𝐴, 𝑀)
15: if IV′ = IV then
16: return 𝑀 ←𝑀1||𝑀2|| · · · ||𝑀ℓ

17: else
18: return ⊥

Fig. 2: Definition of MR-OMD[𝐹, 𝜏 ]. The function 𝐹 : 𝒦× ({0, 1}𝑛×{0, 1}𝑚)→
{0, 1}𝑛 is a keyed compression function with 𝒦 = {0, 1}𝑘 and 𝑚 ≤ 𝑛. The IV
length is 𝜏 ∈ {0, 1, · · · , 𝑛}. Algorithms ℰ and 𝒟 can be called with arguments
𝐾 ∈ 𝒦, 𝑁 ∈ {0, 1}≤𝑛−1, and 𝐴, 𝑀,C ∈ {0, 1}*.
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Remark 1. We can verify that 𝜎 = ⌈𝜎𝐴/(𝑚+𝑛)⌉+⌈𝜎𝑀 /(𝑚+𝑛)⌉+⌈𝜎𝑀 /(𝑚)⌉+∑︀𝑞𝑒

𝑖=1 1|𝑀𝑖|=0 +
∑︀𝑞𝑑

𝑗=1 1|C𝑗 |=𝜏 + 𝑞𝑒 + 𝑞𝑑.

Proof. The proof is obtained by combing Lemma 3, Lemma 1 and Lemma 2 in
subsection 5.1.1 with Lemma 4 and Lemma 5 in subsection 5.1.2.

⊓⊔

5.1.1 Generalization of MR-OMD based on Tweakable Random Func-
tions We define the scheme MR -OMD[ ̃︀𝑅, 𝜏 ], a generalization of MR-OMD[𝐹, 𝜏 ]
that uses a tweakable random function ̃︀𝑅 : 𝒯 × ({0, 1}𝑛 × {0, 1}𝑚) → {0, 1}𝑛,
as depicted in figure 3. The tweak space 𝒯 consists of seven mutually exclusive
sets of tweaks; namely, 𝒯 = 𝒩 × N × {0} ∪ 𝒩 × N × {1} ∪ 𝒩 × N × {2} ∪
𝒩 × N× {3} ∪ 𝒩 × N× {4} ∪ 𝒩 × N× {5} ∪ ℐ𝒱 × N, where 𝒩 = {0, 1}|𝑁 |
is the set of nonces, ℐ𝒱 = {0, 1}𝜏 is the set of IV-s and N is the set of positive
integers.

Lemma 1. Let MR -OMD [ ̃︀𝑅, 𝜏 ] be the MR-OMD scheme that uses tweakable
RF ̃︀𝑅. Then

Advprf
MR - OMD[̃︀𝑅,𝜏 ].𝐻𝐴𝑆𝐻

(𝜎) ≤ 0.5𝜎2

2𝑛

where 𝜎 =
∑︀𝑞

𝑖=1(|𝐴𝑖|𝑚+𝑛 + ||𝑀 𝑖||𝑚+𝑛) is the total number of calls to the under-
lying tweakable RF ̃︀𝑅 in all 𝑞 queries asked by a nonce-misusing adversary.

The proof of the lemma is provided in Appendix A.
Before we proceed, we have to introduce a new notation. The purpose of

this notation is to make the security analysis better structured. Consider the
encryption algorithm MR -OMD[ ̃︀𝑅, 𝜏 ].ℰ𝐾(𝑁, 𝐴, 𝑀). The algorithm can be split
into two parts. First, it computes IV = MR -OMD[ ̃︀𝑅, 𝜏 ].𝐻𝐴𝑆𝐻𝐾(𝑁, 𝐴, 𝑀). The
second part comprises all the steps after computing the IV. We can formalize the
second step as MR -OMD[ ̃︀𝑅, 𝜏 ].ℰ̄𝐾(IV, 𝑀), so that, if we simplify the notation,
we have

ℰ𝐾(𝑁, 𝐴, 𝑀) = ℰ̄𝐾(𝐻𝐴𝑆𝐻𝐾(𝑁, 𝐴, 𝑀), 𝑀).

We define MR -OMD[ ̃︀𝑅, 𝜏 ].�̄�𝐾(IV, 𝑀) in a similar manner.

Lemma 2. Let MR -OMD[ ̃︀𝑅, 𝜏 ] be the MR-OMD scheme that uses tweakable
RF ̃︀𝑅. Then

Advpriv$
MR - OMD[̃︀𝑅,𝜏 ].ℰ̄

(𝑞𝑒) ≤ 0.5𝑞2
𝑒

2𝜏

where 𝑞𝑒 is the number of all encryption queries asked by the adversary.

The proof is provided in Appendix B.

Lemma 3. Let MR -OMD[ ̃︀𝑅, 𝜏 ] be the MR-OMD scheme that uses tweakable
RF ̃︀𝑅. Let 𝐴 be an MR-AE adversary attacking MR -OMD[ ̃︀𝑅, 𝜏 ]. Let 𝑞𝑒 be the
number of encryption queries and 𝑞𝑑 the number of decryption queries made by
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Fig. 3: The scheme MR -OMD[ ̃︀𝑅, 𝜏 ] using a tweakable random function ̃︀𝑅 :
𝒯 × ({0, 1}𝑛 × {0, 1}𝑚) → {0, 1}𝑛. (Top) The process of generating the IV.
Both associated data and message are parsed into 𝑛 + 𝑚 bit blocks. If the last
block of the message 𝑀𝑡 does not have length 𝑛 + 𝑚 bits, it is padded as shown.
Similar applies for associated data. (Bottom) The encryption process. The out-
put ciphertext is IV||𝐶. For operations ⊕ and ⊕𝑚𝑠𝑏 see our convention in Section
2.
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𝐴 and let 𝜎 be the total number of calls to the underlying tweakable RF ̃︀𝑅 in all
𝐴’s queries. Then there exist adversaries 𝐸 and 𝑅, such that

Advprf
MR - OMD[̃︀𝑅,𝜏 ].𝐻𝐴𝑆𝐻

(𝑅)+Advpriv$
MR - OMD[̃︀𝑅,𝜏 ].ℰ̄

(𝐸) ≥ Advmrae
MR - OMD[̃︀𝑅,𝜏 ]

(𝐴)− 𝑞𝑑

2𝜏

where 𝐸 asks at most 𝑞𝑒 queries and 𝑅 asks at most 𝑞 = 𝑞𝑒 + 𝑞𝑑 queries in total.
Both 𝐸 and 𝑅 are limited to a total number 𝜎 of calls to underlying tweakable
RF ̃︀𝑅 in all their queries.

Proof. For the sake of readability, we shall refer to MR -OMD[ ̃︀𝑅, 𝜏 ] by 𝛱 through-
out this proof. The proof proceeds in two steps, similarly as in [25].
In the first step, we start with the scheme �̄�, which is the same as 𝛱, ex-
cept that we replace the algorithm 𝛱.𝐻𝐴𝑆𝐻 by 𝐹𝑢𝑛𝑐({0, 1}|𝑁 | × {0, 1}* ×
{0, 1}*, 𝜏). To instantiate �̄�, a tweakable RF ̃︀𝑅 is picked for 𝛱.ℰ̄ and a RF
𝜌

$←− 𝐹𝑢𝑛𝑐({0, 1}|𝑁 | × {0, 1}* × {0, 1}*, 𝜏) is picked to instantiate the "HASH",
so the key is now formed by ̃︀𝑅, 𝜌. Let 𝑝 = Advmr−ae

�̄�
(𝐴) with unchanged limits

on resources 𝑞𝑒, 𝑞𝑑, 𝜎. We have

𝑝 = Pr
[︂
𝐴

�̄�̃︀𝑅,𝜌
(·,·,·),�̄�−1̃︀𝑅,𝜌

(·,·,·)
⇒ 1

]︂
− Pr

[︁
𝐴$(·,·,·),⊥(·,·,·) ⇒ 1

]︁
=𝑝1 + 𝑝2

with

𝑝1 = Pr
[︂
𝐴

�̄�̃︀𝑅,𝜌
(·,·,·),�̄�−1̃︀𝑅,𝜌

(·,·,·)
⇒ 1

]︂
− Pr

[︂
𝐴

�̄�̃︀𝑅,𝜌
(·,·,·),⊥(·,·,·)

⇒ 1
]︂

𝑝2 = Pr
[︂
𝐴

�̄�̃︀𝑅,𝜌
(·,·,·),⊥(·,·,·)

⇒ 1
]︂
− Pr

[︁
𝐴$(·,·,·),⊥(·,·,·) ⇒ 1

]︁
We proceed by bounding the terms 𝑝1 and 𝑝2. To bound 𝑝2, we construct an ad-
versary 𝐸 for attacking the priv$ security of �̄�.ℰ̄ from 𝐴. 𝐸 is equipped with its
own oracle 𝑒(·), which implements either �̄�.ℰ̄ or the random bits oracle. We let
𝐸 run 𝐴. On 𝐴’s query (𝑁, 𝐴, 𝑀) to the encryption oracle, 𝐸 queries it’s own
oracle 𝑒(·) with 𝑀 and returns the result to 𝐴. On any query from 𝐴 to decryp-
tion oracle, 𝐸 returns ⊥. When 𝐴 halts and outputs bit 𝑏, 𝐸 stops and outputs
𝑏 as well. If 𝑒(·) = �̄�.ℰ̄$̃︀𝑅(·), then 𝐸 simulates �̄�̃︀𝑅,𝜌

(·, ·, ·),⊥(·, ·, ·) correctly (the
assumption, that 𝐴 does not repeat queries, is needed here). If 𝑒(·) = $(·), then
𝐸 correctly simulates $(·, ·, ·),⊥(·, ·, ·). We deduce 𝑝2 ≤ Advpriv$

�̄�.ℰ̄ (𝐸).

To give a bound on 𝑝1, we shall reveal the tweakable RF ̃︀𝑅 to 𝐴. Clearly, an
upper bound of the advantage in this case will also be valid if 𝐴 does not havẽ︀𝑅, since having ̃︀𝑅 only makes the attack easier:

𝑝1 = Pr
[︂
𝐴

�̄�̃︀𝑅,𝜌
(·,·,·),�̄�−1̃︀𝑅,𝜌

(·,·,·)
⇒ 1

]︂
− Pr

[︂
𝐴

�̄�̃︀𝑅,𝜌
(·,·,·),⊥(·,·,·)

⇒ 1
]︂

≤Pr
[︂
𝐴( ̃︀𝑅)

�̄�̃︀𝑅,𝜌
(·,·,·),�̄�−1̃︀𝑅,𝜌

(·,·,·)
⇒ 1

]︂
− Pr

[︂
𝐴( ̃︀𝑅)�̄�̃︀𝑅,𝜌

(·,·,·),⊥(·,·,·)
⇒ 1

]︂
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In this setting, 𝐴 can only tell the difference between the two games, if the
decryption query returns something other than ⊥ (then 𝐴 stops and outputs 1).
This happens, if 𝐴 builds a query (𝐴,C) to �̄�−1̃︀𝑅,𝜌

, that successfully verifies and
decrypts, and that happens if IV = 𝜌(𝑁, 𝐴, 𝑀) and 𝑀 = �̄�.�̄�̃︀𝑅(IV,C). Recall,
that the adversary is assumed not to query its decryption oracle with (𝑁, 𝐴,C)
if it had previously obtained C from an encryption query (𝑁, 𝐴, 𝑀). Having̃︀𝑅, 𝐴 can compute 𝑀 = �̄�.�̄�̃︀𝑅(IV,C) for any pair IV,C, but it never knows
a pair IV, (𝑁, 𝐴, 𝑀), s.t. IV = 𝜌(𝑁, 𝐴, 𝑀) and (𝑁, 𝐴, 𝑀) has not been queried
to the encryption oracle before. 𝐴 is thus left to guess the correct IV and the
probability of producing a decryption query, that does not result in ⊥ is at most
1/2𝜏 . If we consider all queries made by 𝐴, we have 𝑝1 ≤ 𝑞𝑑/2𝑛. We then have
𝑝 ≤ Advpriv$

�̄�.ℰ̄ (𝐸) + 𝑞𝑑/2𝜏 .

At the beginning of the second step of the proof, we point out that

Advmrae
𝛱 (𝐴) = 𝑝 + Pr

[︂
𝐴

𝛱̃︀𝑅(·,·,·),𝛱−1̃︀𝑅 (·,·,·)
⇒ 1

]︂
−Pr

[︂
𝐴

�̄�̃︀𝑅,𝜌
(·,·,·),�̄�−1̃︀𝑅,𝜌

(·,·,·)
⇒ 1

]︂
.

We construct an adversary 𝑅 for attacking 𝛱.𝐻𝐴𝑆𝐻 as PRF, that uses 𝐴 as a
subroutine. 𝑅 is equipped with its own oracle 𝑟(·, ·, ·), which implements either
𝛱.𝐻𝐴𝑆𝐻 or a corresponding RF 𝜌. The adversary 𝑅 picks ̃︀𝑅 $←− Func𝒯 (𝑚 +
𝑛, 𝑛) and runs 𝐴. On 𝐴’s query (𝑁, 𝐴, 𝑀) to encryption query, 𝑅 sets IV ←
𝑟(𝑁, 𝐴, 𝑀), computes 𝐶 ← 𝛱.ℰ̄̃︀𝑅(𝐼𝑉, 𝑀) and returns IV||𝐶 to 𝐴. When 𝐴 asks
a decryption query (𝑁, 𝐴, IV||𝐶), 𝑅 first computes 𝑀 ← 𝛱.�̄�̃︀𝑅(IV, 𝐶), then
it returns 𝑀 to 𝐴 only if IV = 𝑟(𝑁, 𝐴, 𝑀), otherwise it returns ⊥. When 𝐴
stops and outputs bit 𝑏, let 𝐸 stop and output 𝑏. It is easy to see, that if 𝑟 =
𝜌, then 𝑅 correctly simulates �̄�̃︀𝑅,𝜌

(·, ·, ·), �̄�−1̃︀𝑅,𝜌
(·, ·, ·). It remains to show, that

if 𝑟 = 𝛱.𝐻𝐴𝑆𝐻 ̃︀𝑅′ the adversary 𝑅 simulates 𝛱̃︁𝑅*(·, ·, ·), 𝛱−1̃︁𝑅*
(·, ·, ·) correctly

for some ̃︁𝑅* ∈ Func𝒯 (𝑚 + 𝑛, 𝑛). To do so, we give following argument. If we
indeed have that 𝑟 = 𝛱.𝐻𝐴𝑆𝐻 ̃︀𝑅′ , then the challenger for 𝑅 has picked the
tweakable RF ̃︁𝑅′ $←− Func𝒯 (𝑚 + 𝑛, 𝑛), while 𝑅 has picked the tweakable RF̃︀𝑅 $←− Func𝒯 (𝑚+𝑛, 𝑛) independently. The construction of 𝛱 is such, that the set
of tweaks 𝒯𝑒 = ℐ𝒱 ×N used in 𝛱.ℰ̄ is disjoint with the set of tweaks 𝒯ℎ = 𝒯 ∖𝒯𝑒

used in 𝛱.𝐻𝐴𝑆𝐻. For every 𝑅, 𝑅′ ∈ Func𝒯 (𝑚 + 𝑛, 𝑛) there is some 𝑅* ∈
Func𝒯 (𝑚 + 𝑛, 𝑛) such that:

𝑅*⟨𝑡𝑒⟩(·) = 𝑅⟨𝑡𝑒⟩(·) for all 𝑡𝑒 ∈ 𝒯 ′𝑒 , 𝑅*⟨𝑡ℎ⟩(·) = 𝑅′
⟨𝑡ℎ⟩(·) 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑡ℎ ∈ 𝒯 ′ℎ,

so the oracles simulated by 𝑅 are equivalent with oracles 𝛱̃︁𝑅*(·, ·, ·), 𝛱−1̃︁𝑅*
(·, ·, ·).

We will denote, that three tweakable functions 𝑅, 𝑅′, 𝑅* have the property just
described by 𝑅, 𝑅′ ↔ 𝑅*. It remains to show, that the distribution of ̃︁𝑅* is
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uniform. We have

Pr
[︁̃︁𝑅* = 𝑅*

]︁
=

∑︁
𝑅,𝑅′: 𝑅,𝑅′↔𝑅*

Pr
[︁ ̃︀𝑅 = 𝑅, ̃︁𝑅′ = 𝑅′

]︁
=

∑︁
𝑅,𝑅′: 𝑅,𝑅′↔𝑅*

(︂
1

2𝑛·|𝒯 |·2𝑚+𝑛

)︂2

= |{𝑅, 𝑅′|𝑅, 𝑅′ ↔ 𝑅*}| ·
(︂

1
2𝑛·|𝒯 |·2𝑚+𝑛

)︂2

=2𝑛·|𝒯ℎ|·2𝑚+𝑛

· 2𝑛·|𝒯𝑒|·2𝑚+𝑛

·
(︂

1
2𝑛·|𝒯 |·2𝑚+𝑛

)︂2

= 1
2𝑛·|𝒯 |·2𝑚+𝑛

so the distribution of ̃︀𝑅* is indeed uniform, and simulation of 𝐴’s oracles is
correct. We deduce Advmr−ae

𝛱 (𝐴) ≤ 𝑝 + Advprf
𝛱.𝐻𝐴𝑆𝐻(𝑅). This concludes the

proof.
⊓⊔

5.1.2 Instantiating Tweakable RFs with PRFs The proof of Theorem 1
is completed in the same way as in [8]. First, the tweakable RF ̃︀𝑅 is replaced by

a tweakable PRF ̃︀𝐹 : 𝒦×𝒯 × ({0, 1}𝑛×{0, 1}𝑚)→ {0, 1}𝑛, where 𝒦 = {0, 1}𝑘.
This will increase the security bound as shown in Lemma 4.

Lemma 4. Let ̃︀𝑅 : 𝒯 × ({0, 1}𝑛 × {0, 1}𝑚) → {0, 1}𝑛 be a tweakable RF and̃︀𝐹 : 𝒦 × 𝒯 × ({0, 1}𝑛 × {0, 1}𝑚)→ {0, 1}𝑛 be a tweakable PRF. Then

Advmrae
MR - OMD[̃︀𝐹 ,𝜏 ]

(𝑡, 𝑞𝑒, 𝑞𝑑, 𝜎) ≤ Advmrae
MR - OMD[̃︀𝑅,𝜏 ]

(𝑞𝑒, 𝑞𝑑, 𝜎) + Adṽ︁prf̃︀𝐹 (𝑡′, 𝜎)

where 𝑞𝑒 and 𝑞𝑑 are, respectively, the number of encryption and decryption
queries, 𝑡′ = 𝑡 + 𝑐𝑛𝜎 for some constant 𝑐 and 𝜎 is the total number of calls
to the underlying tweakable PRF ̃︀𝐹 in all queries asked by the MR-AE adver-
sary.

Consequently, we instantiate the tweakable PRF from an ordinary PRF by
the means of xoring a mask to (a part of) the input of the PRF, exactly as
in [8]. The tweaks in MR-OMD are either of the form 𝑇 = (𝛼, 𝑖, 𝑗) where 𝛼 ∈ 𝒩 ,
1 ≤ 𝑖 ≤ 2𝑛−5 and 𝑗 ∈ {0, . . . , 5} or of the form 𝑇 ′ = (IV, 𝑖) with 𝛼 ∈ ℐ𝒱,
1 ≤ 𝑖 ≤ 2𝑛−5. We can have a unified notation for all the tweaks as 𝑇 = (𝛼, 𝑖, 𝑗)
where 𝛼 ∈ 𝒩 ∪ ℐ𝒱, 1 ≤ 𝑖 ≤ 2𝑛−5 and 𝑗 ∈ {0, . . . , 5} if 𝛼 ∈ 𝒩 and 𝑗 = 6
if 𝛼 ∈ ℐ𝒱. The masking function 𝛥𝐾(𝑇 ) = 𝛥𝐾(𝛼, 𝑖, 𝑗) outputs an 𝑛-bit mask
such that the following two properties hold for any fixed string 𝐻 ∈ {0, 1}𝑛:

1. Pr[𝛥𝐾(𝛼, 𝑖, 𝑗) = 𝐻] ≤ 2−𝑛 for any (𝛼, 𝑖, 𝑗)
2. Pr[𝛥𝐾(𝛼, 𝑖, 𝑗)⊕𝛥𝐾(𝛼′, 𝑖′, 𝑗′) = 𝐻] ≤ 2−𝑛 for (𝛼, 𝑖, 𝑗) ̸= (𝛼′, 𝑖′, 𝑗′)
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where the probabilities are taken over random selection of the secret key 𝐾.
It is easy to verify that these two properties are satisfied by the specific

masking scheme of MR-OMD as described in Section 4.

FK

Y

F̃
〈T 〉
K

Y

X X

m m

n n nn n

∆K(T )

Fig. 4: Building a tweakable PRF ̃︀𝐹 ⟨𝑇 ⟩𝐾 : {0, 1}𝑛 × {0, 1}𝑚 → {0, 1}𝑛 using a
PRF 𝐹𝐾 : {0, 1}𝑛 × {0, 1}𝑚 → {0, 1}𝑛 by applying the method of [17].

The transition from tweakable PRFs to PRFs with xor-masks being exactly
the same, we use the result on security bound from [8].

Lemma 5. Let ̃︀𝐹 : 𝒦 × ({0, 1}𝑛 × {0, 1}𝑚) → {0, 1}𝑛 be a function family
with key space 𝒦. Let ̃︀𝐹 : 𝒦 × 𝒯 × ({0, 1}𝑛 × {0, 1}𝑚) → {0, 1}𝑛 be defined bỹ︀𝐹 ⟨𝑇 ⟩𝐾 (𝑋||𝑌 ) = 𝐹𝐾((𝑋 ⊕𝛥(𝑇 ))||𝑌 ) for every 𝑇 ∈ 𝒯 , 𝐾 ∈ 𝒦, 𝑋 ∈ {0, 1}𝑛

, 𝑌 ∈
{0, 1}𝑚 and 𝛥𝐾(𝑇 ) is the masking function of MR-OMD as defined in Section 4.
If 𝐹 is PRF then ̃︀𝐹 is tweakable PRF; more precisely

Adṽ︁prf̃︀𝐹 (𝑡, 𝑞) ≤ Advprf
𝐹 (𝑡′, 2𝑞) + 3𝑞2

2𝑛

.
For the proofs for both Lemma 4 and Lemma 5, the reader can refer to [8]
and [17].

5.2 Security in the Nonce-Respecting Case
Intuitively, one would expect that the security bound in the nonce-respecting
setting should be somewhat better than the one in the nonce-reuse case. Theorem
2 gives a bound on the AE security of MR-OMD in the nonce-respecting scenario,
confirming this intuition.

Theorem 2. Fix 𝑛 ≥ 1 and 𝜏 ∈ {0, 1, · · · , 𝑛}. Let 𝐹 : 𝒦×({0, 1}𝑛×{0, 1}𝑚)→
{0, 1}𝑛 be a PRF, where the key space 𝒦 = {0, 1}𝑘 for 𝑘 ≥ 1 and 1 ≤ 𝑚 ≤ 𝑛.
Then

Advnr-ae
MR-OMD[𝐹,𝜏 ](𝑡, 𝜎, 𝑞𝑒, 𝑞𝑑) ≤ Advprf

𝐹 (𝑡′, 2𝜎) + 3𝜎2

2𝑛
+ 0.5𝑞2

𝑒

2𝜏
+ 𝑞𝑑

2𝜏

where 𝑞𝑒 and 𝑞𝑑 are, respectively, the number of encryption and decryption
queries, 𝑡′ = 𝑡 + 𝑐𝑛𝜎 for some constant 𝑐 and 𝜎 is the total number of calls
made to the underlying compression function 𝐹 .



Misuse-Resistant Variants of the OMD Authenticated Encryption Mode 19

Remark 2. We can verify that 𝜎 = ⌈𝜎𝐴/(𝑚+𝑛)⌉+⌈𝜎𝑀 /(𝑚+𝑛)⌉+⌈𝜎𝑀 /(𝑚)⌉+∑︀𝑞𝑒

𝑖=1 1|𝑀𝑖|=0 +
∑︀𝑞𝑑

𝑗=1 1|C𝑗 |=𝜏 + 𝑞𝑒 + 𝑞𝑑.

Proof. The steps to prove this theorem are in fact almost the same as for Theo-
rem 1. The only difference is in the proof for the security of the HASH algorithm
as a PRF. This is easy to see, as HASH is the component of MR-OMD where
the nonce is used. Lemma 6 gives the PRF security bound for HASH in the
nonce-respecting setting. The bound stated in Theorem 2 is obtained combining
Lemma 6 with Lemma 3 and Lemma 2 in subsection 5.1.1 and Lemma 4 and
Lemma 5 in subsection 5.1.2.

⊓⊔

Lemma 6. Assume that adversaries are nonce-respecting. Let MR -OMD[ ̃︀𝑅, 𝜏 ]
be the MR-OMD scheme that uses tweakable RF ̃︀𝑅. Then

Advprf
MR - OMD[̃︀𝑅,𝜏 ].𝐻𝐴𝑆𝐻

(𝑞, 𝜎) = 0

where 𝜎 =
∑︀𝑞

𝑖=1(|𝐴𝑖|𝑚+𝑛 +max{|𝑀 𝑖|𝑚+𝑛, 1}) is the total number of calls to the
underlying tweakable RF ̃︀𝑅 in all 𝑞 queries asked by a nonce-respecting adversary.

Proof. Recall the proof of Lemma 1: the MR -OMD[ ̃︀𝑅, 𝜏 ].𝐻𝐴𝑆𝐻 behaves as
a RF unless there is a collision in the input to the final RF. This is because
the final random function, determined by the final tweak, may be the same for
several messages.

Now, considering that adversaries are nonce-respecting, we have that for ev-
ery query (𝑁 𝑖, 𝐴𝑖, 𝑀 𝑖), 1 ≤ 𝑖 ≤ 𝑞 made by the adversary the nonce is distinct,
i.e. 𝑁 𝑖 ̸= 𝑁 𝑗 if 𝑖 ̸= 𝑗. Each query is processed using a subset 𝒯 , that is dis-
joint with tweak sets used to process all the other queries. Therefore, when
a query is processed, the final tweak is always fresh (never used before) and
the random function is independent from all others so far. The distribution of
MR -OMD[ ̃︀𝑅, 𝜏 ].𝐻𝐴𝑆𝐻 is then identical with that of Func𝒯 (𝑚 + 𝑛, 𝑛).

⊓⊔

6 Parallelizable MR-OMD

The MR-OMD scheme described in section 4 is designed to be substantially
similar to OMD; hence, being able to share a lot of common code/hardware, while
achieving different (stronger) security goals than OMD itself. This similarity also
implies that the encryption/decryption process in MR-OMD is kept serial as it
is in OMD. However, we notice that the two-pass construction (in contrast to
OMD which is one-pass) also opens up the possibility of having a parallelizable
encryption/decryption process.

The IV in MR-OMD is computed from both associated data and message
using a PRF. Thus, the encryption is always dependent on the whole query (via
IV) and we no longer need to apply the serial, chaining encryption of OMD.
So, in specific applications where there are possibilities for parallel computation,
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we might want to modify MR-OMD to exploit this fact. For this purpose, we
propose PMR-OMD. PMR-OMD uses the same algorithms Initialize and HASH
as MR-OMD, while the encryption/decryption algorithm uses counter mode.
Schematic visualisation can be found in Figure 1. This replacement will of course
get us further from the original OMD, which may be inconvenient in hardware
implementations; however, in software implementations, the parallel execution
might be exactly what we want, especially in general purpose CPUs with multiple
cores. The PMR-OMD is almost fully parallelizable, with a single bottleneck in
processing the final message block in its HASH algorithm.

6.1 Security of PMR-OMD

The security bound of PMR-OMD is exactly the same as those of MR-OMD,
both in the nonce-misusing and nonce-respecting settings. This is because the
proof of $-privacy of the counter mode is essentially the same as the one of
$-privacy of the original OMD encryption. The remaining components of MR-
OMD (and thus also the proofs) remain unchanged. We therefore omit the proofs
of the following theorems.

Theorem 3. Fix 𝑛 ≥ 1 and 𝜏 ∈ {0, 1, · · · , 𝑛}. Let 𝐹 : 𝒦×({0, 1}𝑛×{0, 1}𝑚)→
{0, 1}𝑛 be a PRF, where the key space 𝒦 = {0, 1}𝑘 for 𝑘 ≥ 1 and 1 ≤ 𝑚 ≤ 𝑛.
Then

Advmrae
PMR-OMD[𝐹,𝜏 ](𝑡, 𝜎, 𝑞𝑒, 𝑞𝑑) ≤ Advprf

𝐹 (𝑡′, 2𝜎) + 3.5𝜎2

2𝑛
+ 0.5𝑞2

𝑒

2𝜏
+ 𝑞𝑑

2𝜏

where 𝑞𝑒 and 𝑞𝑑 are, respectively, the number of encryption and decryption
queries, 𝑡′ = 𝑡 + 𝑐𝑛𝜎 for some constant 𝑐 and 𝜎 is the total number of calls
made to the underlying compression function 𝐹 .

Remark 3. We can verify that 𝜎 = ⌈𝜎𝐴/(𝑚+𝑛)⌉+⌈𝜎𝑀 /(𝑚+𝑛)⌉+⌈𝜎𝑀 /(𝑚)⌉+∑︀𝑞𝑒

𝑖=1 1|𝑀𝑖|=0 +
∑︀𝑞𝑑

𝑗=1 1|C𝑗 |=𝜏 + 𝑞𝑒 + 𝑞𝑑.

Theorem 4. Fix 𝑛 ≥ 1 and 𝜏 ∈ {0, 1, · · · , 𝑛}. Let 𝐹 : 𝒦×({0, 1}𝑛×{0, 1}𝑚)→
{0, 1}𝑛 be a PRF, where the key space 𝒦 = {0, 1}𝑘 for 𝑘 ≥ 1 and 1 ≤ 𝑚 ≤ 𝑛.
Then

Advnr-ae
PMR-OMD[𝐹,𝜏 ](𝑡, 𝜎, 𝑞𝑒, 𝑞𝑑) ≤ Advprf

𝐹 (𝑡′, 2𝜎) + 3𝜎2

2𝑛
+ 0.5𝑞2

𝑒

2𝜏
+ 𝑞𝑑

2𝜏

where 𝑞𝑒 and 𝑞𝑑 are, respectively, the number of encryption and decryption
queries, 𝑡′ = 𝑡 + 𝑐𝑛𝜎 for some constant 𝑐 and 𝜎 is the total number of calls
made to the underlying compression function 𝐹 .

Remark 4. We can verify that 𝜎 = ⌈𝜎𝐴/(𝑚+𝑛)⌉+⌈𝜎𝑀 /(𝑚+𝑛)⌉+⌈𝜎𝑀 /(𝑚)⌉+∑︀𝑞𝑒

𝑖=1 1|𝑀𝑖|=0 +
∑︀𝑞𝑑

𝑗=1 1|C𝑗 |=𝜏 + 𝑞𝑒 + 𝑞𝑑.
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A Proof of Lemma 1

We assume w.l.o.g. that the adversary does not repeat a query. Let 𝑞 denote the
number of queries asked by the adversary and let 𝑟 denote the number of distinct
nonces among all the nonces in the 𝑞 queries. We partition the queries into sets
𝒬1, . . . ,𝒬𝑟, so that for any two queries 𝑁, 𝐴, 𝑀 ∈ 𝒬𝑖 and 𝑁 ′, 𝐴′, 𝑀 ′ ∈ 𝒬𝑗 we
have 𝑁 = 𝑁 ′ if 𝑖 = 𝑗 and 𝑁 ̸= 𝑁 ′ otherwise. Let 𝑞𝑖 = |𝒬𝑖| for 𝑖 = 1, . . . , 𝑟,
then we have 𝑞 =

∑︀𝑟
𝑖=1 𝑞𝑖. For any 1 ≤ 𝑖 ≤ 𝑟, we will denote the queries from

𝒬𝑖 as 𝒬𝑖 = {(𝑁 𝑖, 𝐴𝑖,1, 𝑀 𝑖,1), . . . , (𝑁 𝑖, 𝐴𝑖,𝑞𝑖 , 𝑀 𝑖,𝑞𝑖)}. Let 𝑏 = 𝑛 + 𝑚. We will use
notation 𝐻𝜏̃︀𝑅 instead of MR−OMD[ ̃︀𝑅, 𝜏 ].𝐻𝐴𝑆𝐻 throughout the proof. First,
we claim that

Advprf
𝐻𝜏̃︀𝑅 (𝜎) ≤ max

{︃
𝑟∑︁

ℎ=1

∑︁
1≤𝑖<𝑗≤𝑞ℎ

Pr
[︀
(𝑁ℎ, 𝐴ℎ,𝑖, 𝑀ℎ,𝑖), (𝑁ℎ, 𝐴ℎ,𝑗 , 𝑀ℎ,𝑗) collide

]︀}︃

where the maximum is taken over the choice of 𝑟, 𝑞1, 𝑞2, . . . , 𝑞𝑟 and the queries
(𝑁1,1, 𝐴1,1, 𝑀1,1), . . . , (𝑁𝑟,𝑞𝑟 , 𝐴𝑟,𝑞𝑟 , 𝑀𝑟,𝑞𝑟 ) so that we have

∑︀𝑟
𝑖=1

∑︀𝑞𝑖

𝑗=1 |𝐴𝑖,𝑗 |𝑏 +
||𝑀 𝑖,𝑗 ||𝑏 ≤ 𝜎 and where for two queries (𝑁, 𝐴, 𝑀) and (𝑁, 𝐴′, 𝑀 ′), with 𝑎 = |𝐴|𝑏,

https://software.intel.com/en-us/articles/intel-sha-extensions
https://software.intel.com/en-us/articles/intel-sha-extensions
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𝑡 = ||𝑀 ||𝑏, 𝑎′ = |𝐴′|𝑏, 𝑡′ = ||𝑀 ′||𝑏, the event ‘(𝑁, 𝐴, 𝑀), (𝑁, 𝐴′, 𝑀 ′) collide’
means that (𝑁, 𝐴, 𝑀) and (𝑁, 𝐴′, 𝑀 ′) are distinct (as tuples) and we have 𝑋 =
𝑋 ′, where

𝑋 =
(︁ ̃︀𝑅⟨𝑁,1,1⟩ (𝐴1)⊕ . . .⊕ ̃︀𝑅⟨𝑁,𝑎−1,1⟩ (𝐴𝑎−1)⊕ ̃︀𝑅⟨𝑁,𝑎−1,𝑗𝐴⟩ (𝐴*𝑎)⊕

̃︀𝑅⟨𝑁,1,0⟩ (𝑀1)⊕ . . .⊕ ̃︀𝑅⟨𝑁,𝑡−1,0⟩ (𝑀𝑡−1)
)︁
⊕𝑚𝑠𝑏 𝑀*

𝑡

𝑋 ′ =
(︁ ̃︀𝑅⟨𝑁,1,1⟩ (𝐴′1)⊕ . . .⊕ ̃︀𝑅⟨𝑁,𝑎′−1,1⟩ (︀𝐴′𝑎′−1

)︀
⊕ ̃︀𝑅⟨𝑁,𝑎′−1,𝑗′

𝐴⟩ (𝐴′*𝑎′)⊕

̃︀𝑅⟨𝑁,1,0⟩ (𝑀 ′
1)⊕ . . .⊕ ̃︀𝑅⟨𝑁,𝑡′−1,0⟩ (︀𝑀 ′

𝑡′−1
)︀)︁
⊕𝑚𝑠𝑏 𝑀 ′*

𝑡′

That is, we claim that the advantage Advprf
𝐻𝜏̃︀𝑅 is bounded by the probability

of collision on the input to the final tweakable RF among queries with the same
nonce. To prove this claim, note that the HASH algorithm can be viewed as

𝐻𝜏̃︀𝑅(𝑁, 𝐴, 𝑀) = ̃︀𝑅⟨𝑇final⟩(ℎ̃︀𝑅(𝑁, 𝐴, 𝑀))

where the function ℎ̃︀𝑅 ∈ 𝐹𝑢𝑛𝑐({0, 1}|𝑁 | × {0, 1}* × {0, 1}*, 𝑛) is defined as

ℎ̃︀𝑅(𝑁, 𝐴, 𝑀) ↦→
(︁ ̃︀𝑅⟨𝑁,1,1⟩(𝐴1)⊕ . . .⊕ ̃︀𝑅⟨𝑁,𝑎−1,1⟩(𝐴𝑎−1)⊕ ̃︀𝑅⟨𝑁,𝑎−1,𝑗𝐴⟩(𝐴*𝑎)⊕

̃︀𝑅⟨𝑁,1,0⟩(𝑀1)⊕ . . .⊕ ̃︀𝑅⟨𝑁,𝑡−1,0⟩(𝑀𝑡−1)
)︁
⊕𝑚𝑠𝑏 𝑀*

𝑡 .

The final tweakable RF ̃︀𝑅⟨final⟩ is independent from ℎ̃︀𝑅, because its tweak 𝑇final
is not used anywhere in ℎ̃︀𝑅. Moreover, the final tweakable RFs of queries with
different nonces are completely independent as well. Therefore, unless there is
a collision on the output of ℎ̃︀𝑅 among queries that share the same value of the
nonce, the construction ̃︀𝑅{𝑇final}(ℎ̃︀𝑅(𝑁, 𝐴, 𝑀)) behaves as a truly RF and cannot
be distinguished from such. This completes the proof of the claim. We note that
this claimed bound can be also proven using a straightforward extension of the
game-playing argument from [6].

Now, we proceed to prove the bound in Lemma 1 by bounding the colli-
sion probabilities. We note that the set of final tweaks used to process queries
(𝑁, 𝐴, 𝑀) with |𝑀 | a multiple of 𝑏 and the set of final tweaks used to process
queries (𝑁𝐴′, 𝑀 ′) with 𝑀 ′ whose final block is incomplete are mutually exclu-
sive, so we only need to consider collisions among inputs of the same type. To
bound the probability of collision Pr [(𝑁, 𝐴, 𝑀), (𝑁, 𝐴′, 𝑀 ′) collide], an exhaus-
tive case-analysis needs to be done. Here the queries (𝑁, 𝐴, 𝑀) and (𝑁𝐴′, 𝑀 ′)
are fixed and the probability is over the choice of ̃︀𝑅. We let 𝑎 = |𝐴|𝑏, 𝑡 = ||𝑀 ||𝑏,
𝑎′ = |𝐴′|𝑏, 𝑡′ = ||𝑀 ′||𝑏 throughout all cases.

Case 1: |𝑀 | and |𝑀 ′| are multiples of 𝑏 and (w.l.o.g) |𝐴| is a multiple of 𝑏
and |𝐴′| is not. The collision on ℎ̃︀𝑅 occurs, if ℎ̃︀𝑅(𝑁, 𝐴, 𝑀) = ℎ̃︀𝑅(𝑁, 𝐴′, 𝑀 ′).
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Let 𝑆(1)(𝑁, 𝐴, 𝑀) = ℎ̃︀𝑅(𝑁, 𝐴, 𝑀) ⊕ ̃︀𝑅⟨𝑁,𝑎−1,𝑗𝐴⟩(𝐴𝑎) be a partial result of
evaluating ℎ̃︀𝑅(𝑁, 𝐴, 𝑀). Given any two queries (𝑁, 𝐴, 𝑀), (𝑁, 𝐴′, 𝑀 ′), a
collision on ℎ̃︀𝑅 is then equivalent to

𝑆(1)(𝑁, 𝐴, 𝑀)⊕ ̃︀𝑅⟨𝑁,𝑎−1,3⟩(𝐴𝑎) =𝑆(1)(𝑁, 𝐴′, 𝑀 ′)⊕ ̃︀𝑅⟨𝑁,𝑎′−1,5⟩(𝐴′𝑎′)̃︀𝑅⟨𝑁,𝑎′−1,5⟩(𝐴′𝑎′)⊕ ̃︀𝑅⟨𝑁,𝑎−1,3⟩(𝐴𝑎) =𝑆(1)(𝑁, 𝐴′, 𝑀 ′)⊕ 𝑆(1)(𝑁, 𝐴, 𝑀)

As can be seen in the first equation, the two tweaks used to process the last
blocks of 𝐴 and 𝐴′ come from mutually exclusive sets, so the two RFs used
to process these blocks will always be chosen independently at random. The
collision occurs, if the xor of the outputs of these independent RFs is equal
to a distinct value. Probability of collision is then 1/2𝑛.

Case 2: |𝑀 |, |𝑀 ′| are both multiples of 𝑏 and |𝐴|, |𝐴′| are either both mul-
tiples of 𝑏, or they both are not. In case that both 𝐴 and 𝐴′ have an
incomplete final block, we can assume, that 𝐴 ← 𝐴||10𝑏−1−|𝐴| mod 𝑏 and
𝐴′ ← 𝐴′||10𝑏−1−|𝐴′| mod 𝑏. This does not affect the probability of collision,
because this mapping is injective for associated data with incomplete last
block, and because the set of tweaks used to process final blocks of AD with
full-length final block (𝑗𝐴 = 3) is mutually exclusive with the set of tweaks
used to process final block of messages with incomplete final block (𝑗𝐴 = 5).
Thus in the following sub-cases, we can w.l.o.g. assume that |𝐴|, |𝐴′| are
multiples of 𝑏.
Case 2a: 𝑎 ̸= 𝑎′. W.l.o.g assume that 𝑎 > 𝑎′. Similarly as in Case 1, we

can express partial evaluation of ℎ̃︀𝑅(𝐴, 𝑀) - 𝑆(2𝑎)(𝐴, 𝑀) - as follows:

𝑆(2𝑎)((𝑁, 𝐴, 𝑀)) ↦→
(︁ ̃︀𝑅⟨𝑁,1,1⟩(𝐴1)⊕ . . .⊕ ̃︀𝑅⟨𝑁,𝑎′,1⟩(𝐴𝑎′)⊕

̃︀𝑅⟨𝑁,1,0⟩(𝑀1)⊕ . . .⊕ ̃︀𝑅⟨𝑁,𝑡−1,0⟩(𝑀𝑡−1)
)︁
⊕𝑚𝑠𝑏 𝑀*

𝑡 .

The collision occurs, if ̃︀𝑅⟨𝑁,𝑎′+1,1⟩(𝐴𝑎′+1) ⊕ . . . ⊕ ̃︀𝑅⟨𝑁,𝑎−1,𝑗𝐴⟩(𝐴𝑎) =
ℎ̃︀𝑅(𝑁, 𝐴′, 𝑀 ′)⊕𝑆(2𝑎)(𝑁, 𝐴, 𝑀). Again, this happens if a xor of outputs
of multiple independent RFs equals to a distinct value. The probability
of finding a tuple of RFs’ inputs producing this equality is 1/2𝑛.

Case 2b: 𝑎 = 𝑎′ and 𝐴 ̸= 𝐴′. Because 𝐴 ̸= 𝐴′, there must be an 𝑖, s.t.
1 ≤ 𝑖 ≤ 𝑎 and 𝐴𝑖 ̸= 𝐴′𝑖. Again, we construct a partial evaluation
𝑆(2𝑏)(𝑁, 𝐴, 𝑀) = ℎ̃︀𝑅(𝑁, 𝐴, 𝑀) ⊕ ̃︀𝑅⟨𝑁,𝑖,𝑗𝑖⟩(𝐴𝑖). The collision occurs if̃︀𝑅⟨𝑁,𝑖,𝑗𝑖⟩(𝐴𝑖)⊕ ̃︀𝑅⟨𝑁,𝑖,𝑗𝑖⟩(𝐴′𝑖) = 𝑆(2𝑏)(𝑁, 𝐴, 𝑀)⊕𝑆(2𝑏)(𝑁, 𝐴′, 𝑀 ′). In other
words, we have a collision if the result of ̃︀𝑅⟨𝑁,𝑖,1⟩(𝐴𝑖)⊕ ̃︀𝑅⟨𝑁,𝑖,1⟩(𝐴′𝑖) equals
to a distinct value. Because 𝐴𝑖 ̸= 𝐴′𝑖, the probability of this event is 1/2𝑛.

Case 2c: 𝐴 = 𝐴′ and 𝑡 ̸= 𝑡′. W.l.o.g. assume that 𝑡 > 𝑡′. Similarly as in
Case 2a, we let 𝑆(2𝑐)(𝑁, 𝐴, 𝑀) be the partial result of ℎ̃︀𝑅(𝑁, 𝐴, 𝑀):

𝑆(2𝑐)(𝑁, 𝐴, 𝑀) ↦→
(︁ ̃︀𝑅⟨𝑁,1,1⟩(𝐴1)⊕ . . .⊕ ̃︀𝑅⟨𝑁,𝑎−1,𝑗𝐴⟩(𝐴𝑎)⊕

̃︀𝑅⟨𝑁,1,0⟩(𝑀1)⊕ . . .⊕ ̃︀𝑅⟨𝑁,𝑡′,0⟩(𝑀𝑡′)
)︁
⊕𝑚𝑠𝑏 𝑀*

𝑡 .
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The collision occurs if ̃︀𝑅⟨𝑁,𝑡′+1,0⟩(𝑀𝑡′+1) ⊕ . . . ⊕ ̃︀𝑅⟨𝑁,𝑡−1,0⟩(𝑀𝑡−1) =
𝑆(2𝑐)(𝑁, 𝐴, 𝑀)⊕ ℎ̃︀𝑅(𝑁, 𝐴′, 𝑀 ′). The probability of this event is 1/2𝑛.

Case 2d: 𝐴 = 𝐴′, 𝑡 = 𝑡′ and 𝑀, 𝑀 ′ differ in blocks with index 𝑖, 𝑖 < 𝑡. We
let 𝑆(2𝑑)(𝑁, 𝐴, 𝑀) = ℎ̃︀𝑅(𝑁, 𝐴, 𝑀) ⊕ ̃︀𝑅⟨𝑁,𝑖,0⟩(𝑀𝑖). The collision occurs
if ̃︀𝑅⟨𝑁,𝑖,0⟩(𝑀𝑖) ⊕ ̃︀𝑅⟨𝑁,𝑖,0⟩(𝑀 ′

𝑖) = 𝑆(2𝑏)(𝑁, 𝐴, 𝑀) ⊕ 𝑆(2𝑏)(𝑁, 𝐴′, 𝑀 ′). By
similar argument as in Case 2b, the probability of collision is thus 1/2𝑛.

Case 2e: 𝐴 = 𝐴′, 𝑡 = 𝑡′ and 𝑀, 𝑀 ′ differ only in the last block. Then we
have ℎ̃︀𝑅(𝑁, 𝐴, 𝑀) ̸= ℎ̃︀𝑅(𝑁, 𝐴′, 𝑀 ′) so the probability of collision is 0.

Case 3: |𝑀 | and |𝑀 ′| are not multiples of 𝑏 and (w.l.o.g) |𝐴| is a multiple of
𝑏 and |𝐴′| is not. This case is analogous to Case 1, the only difference is
that both 𝑀𝑡 and 𝑀 ′

𝑡 will be padded before processing (which is of no con-
sequence). By similar argument as in Case 1, we conclude that probability
of collision is 1/2𝑛.

Case 4: |𝑀 |, |𝑀 ′| are both multiples of 𝑏 and |𝐴|, |𝐴′| are either both mul-
tiples of 𝑏, or they both are not. In case that both 𝐴 and 𝐴′ have an
incomplete final block, we can assume, that 𝐴 ← 𝐴||10𝑏−1−|𝐴| mod 𝑏 and
𝐴′ ← 𝐴′||10𝑏−1−|𝐴′| mod 𝑏. This does not affect the probability of collision
(by the argument in the Case 2). Thus in the following sub-cases, we can
assume that |𝐴|, |𝐴′| are multiples of 𝑏. As in previous case, we can also let
𝑀 ← 𝑀 ||10𝑏−1−|𝑀 | mod 𝑏 and 𝑀 ′ ← 𝑀 ′||10𝑏−1−|𝑀 ′| mod 𝑏 without chang-
ing the probabilities of collisions - again, we make use of the fact, that this
mapping is injective for 𝑀, 𝑀 ′ with incomplete final blocks and that the
tweak set used to process queries where 𝑀 and has incomplete final block is
disjoint with the tweak set used to process queries where 𝑀 has full-length
final block. This effectively transforms this case into Case 2. We therefore
list all the sub-cases only briefly.

Case 4a: 𝑎 ̸= 𝑎′. The probability of collision is 1/2𝑛, similarly as in the
Case 2a .

Case 4b: 𝑎 = 𝑎′ and 𝐴 ̸= 𝐴′. The probability of collision is 1/2𝑛, similarly
as in the Case 2b .

Case 4c: 𝐴 = 𝐴′ and 𝑡 ̸= 𝑡′. The probability of collision is 1/2𝑛, similarly
as in the Case 2c .

Case 4d: 𝐴 = 𝐴′, 𝑡 = 𝑡′ and 𝑀, 𝑀 ′ differ in blocks with index 𝑖, 𝑖 < 𝑡. The
probability of collision is 1/2𝑛, similarly as in the Case 2d .

Case 4e: 𝐴 = 𝐴′, 𝑡 = 𝑡′ and 𝑀, 𝑀 ′ differ only in last block. The probability
of collision is 0, similarly as in the Case 2e.

We deduce that for any two queries (𝑁, 𝐴, 𝑀) and (𝑁, 𝐴′, 𝑀 ′) we have that
Pr [(𝑁, 𝐴, 𝑀), (𝑁, 𝐴′, 𝑀 ′) collide] ≤ 1

2𝑛
. Using this result, we can bound the
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advantage Advprf
𝐻𝜏̃︀𝑅(𝑞𝑒, 𝜎, ℓ𝑚𝑎𝑥):

Advprf
𝐻𝜏̃︀𝑅 (𝜎) ≤max

{︃
𝑟∑︁

ℎ=1

∑︁
1≤𝑖<𝑗≤𝑞ℎ

Pr
[︀
(𝑁ℎ,𝑖, 𝐴ℎ,𝑖, 𝑀ℎ,𝑖), (𝑁ℎ,𝑗 , 𝐴ℎ,𝑗 , 𝑀ℎ,𝑗) collide

]︀}︃

≤max

{︃
𝑟∑︁

ℎ=1

∑︁
1≤𝑖<𝑗≤𝑞ℎ

1
2𝑛

}︃
≤ max

{︃
𝑟∑︁

ℎ=1

𝑞2
ℎ

1
2𝑛

}︃
≤ 0.5𝜎2

2𝑛

This completes the proof. ⊓⊔

B Proof of Lemma 2

For the sake of readability, we will use 𝛱 to refer to MR−OMD[ ̃︀𝑅, 𝜏 ].ℰ̄ through-
out this proof. We observe the advantage of the adversary 𝐴 in two mutually
exclusive cases:

Adv𝑝𝑟𝑖𝑣$
𝛱 (𝐴) = Adv𝑝𝑟𝑖𝑣$|IVcoll

𝛱 (𝐴) Pr [IVcoll] + Adv𝑝𝑟𝑖𝑣$|¬IVcoll
𝛱 (𝐴) Pr [¬IVcoll]

where IVcoll denotes the event, that there is a collision among IVs and:

Adv𝑝𝑟𝑖𝑣$|IVcoll
𝛱 (𝐴) =

(︁
Pr

[︁
𝐾

$←− 𝒦 : 𝐴𝛱$
𝐾

(·) ⇒ 1
⃒⃒⃒
IVcoll

]︁
− Pr

[︁
𝐴$(·) ⇒ 1

⃒⃒⃒
IVcoll

]︁)︁
Adv𝑝𝑟𝑖𝑣$|¬IVcoll

𝛱 (𝐴) =
(︁

Pr
[︁
𝐾

$←− 𝒦 : 𝐴𝛱$
𝐾

(·) ⇒ 1
⃒⃒⃒
¬IVcoll

]︁
− Pr

[︁
𝐴$(·) ⇒ 1

⃒⃒⃒
¬IVcoll

]︁)︁
First, consider the case that there is no collision on IVs. This implies, that all

tweaks ⟨IV𝑗 , 𝑖⟩, 1 ≤ 𝑗 ≤ 𝑞𝑒 used to encrypt the queried messages 𝑀1, . . . , 𝑀𝑞𝑒 are
distinct and all the RFs ̃︀𝑅⟨IV𝑗 ,𝑖⟩, used in the encryption queries, are independent.
Thus, all the ciphertexts C1, . . . ,C𝑞𝑒 the adversary sees appear to be independent
random strings. We deduce Adv𝑝𝑟𝑖𝑣$|¬IVcoll

𝛱𝐾
(𝐴) = 0.

We bound Adv𝑝𝑟𝑖𝑣$|IVcoll
𝛱 (𝐴) by the probability Pr [IVcoll]. We have

Pr [IVcoll] ≤
∑︁

1≤𝑖<𝑗≤𝑞𝑒

Pr[IVi = IVj] ≤
∑︁

1≤𝑖<𝑗≤𝑞𝑒

1
2𝜏
≤ 0.5𝑞2

𝑒

2𝜏

We deduce Adv𝑝𝑟𝑖𝑣$|IVcoll
𝛱 (𝐴) ≤ 0.5𝑞2

𝑒

2𝜏
. This concludes the proof. ⊓⊔
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