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a  b  s  t  r  a  c  t

Models  of chemical  reaction  systems  can  be  quite  complex  as  they  typically  include  information  regarding
the reactions,  the  inlet  and  outlet  flows,  the  transfer  of species  between  phases  and  the  transfer  of heat.
This  paper  builds  on  the  concept  of reaction  variants/invariants  and  proposes  a linear  transformation
that  allows  viewing  a  complex  nonlinear  chemical  reaction  system  via  decoupled  dynamic  variables,
each  one  associated  with  a particular  phenomenon  such  as  a  single  chemical  reaction,  a specific  mass
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transfer  or  heat  transfer.  Three  aspects  are  discussed,  namely,  (i)  the  decoupling  of  reactions  and  transport
phenomena  in open  non-isothermal  both  homogeneous  and  heterogeneous  reactors,  (ii) the  decoupling
of  spatially  distributed  reaction  systems  such  as  tubular  reactors,  and  (iii)  the potential  use  of  the  decou-
pling transformation  for  the  analysis  of complex  reaction  systems,  in  particular  in  the  absence  of a kinetic
model.

©  2014  Elsevier  Ltd. All  rights  reserved.
. Introduction

The (bio)chemical industry utilizes reaction processes to con-
ert raw materials into desired products that include polymers,
rganic chemicals, vitamins, vaccines and drugs. If these pro-
esses involve chemical reactions, they also deal with (i) material
xchange via inlet/outlet flows, mass transfers, convection, dif-
usion, and (ii) energy exchange via heating and cooling. Hence,

odeling these phenomena is essential for improved process
nderstanding, design and operation.

Models of chemical reaction processes are typically first-
rinciples models that describe the state evolution (the mass, the
oncentrations, the temperature) by means of balance equations
f differential nature (e.g. continuity equation, molar balances,
eat balances) and constitutive equations of algebraic nature (e.g.
quilibrium relationships, rate expressions). These models usu-
lly include information regarding the underlying reactions (e.g.
toichiometries, reaction kinetics, heats of reaction), the trans-
ers of mass within and between phases, and the operating mode
f the reactor (e.g. initial conditions, external exchange terms,
perating constraints). A reliable description of reaction kinet-
cs and transport phenomena represents the main challenge in

uilding first-principles models for chemical reaction systems. In
ractice, such a description is constructed from experimental data

∗ Corresponding author. Tel.: +41 21 693 3843; fax: +41 21 693 2574.
E-mail address: dominique.bonvin@epfl.ch (D. Bonvin).

ttp://dx.doi.org/10.1016/j.compchemeng.2014.10.009
098-1354/© 2014 Elsevier Ltd. All rights reserved.
collected both in the laboratory and during production (Marquardt,
2008).

The presence of all these phenomena, and in particular their
interactions, complicates the analysis and operation of chemical
reactors. The analysis would be much simpler if one could some-
how separate the effect of the various phenomena and investigate
each phenomenon individually. Ideally, one would like to have true
variants, whereby each variant depends only on one phenomenon,
and invariants that are identically zero and can be discarded. Note
that some of the state variables are often redundant, as there are
typically more states (balance equations) than there are indepen-
dent source of variability (reactions, exchange terms). Hence, one
would like to have a systematic way of discarding the redun-
dant state variables, thereby reducing the dimensionality of the
model.

Asbjørnsen and co-workers (Asbjornsen and Fjeld, 1970;
Asbjornsen, 1972; Fjeld et al., 1974) introduced the concepts of
reaction variants and reaction invariants and used them for reac-
tor modeling and control. However, the reaction variants proposed
in the literature encompass more than the reaction contributions
since they are also affected by the inlet and outlet flows. Hence,
Friedly (1991, 1996) proposed to compute the extents of “equiv-
alent batch reactions”, associating the remainder to transport
processes. For open homogeneous reaction systems, Srinivasan
et al. (1998) developed a nonlinear transformation of the numbers

of moles to reaction variants, flow variants, and reaction and flow
invariants, thereby separating the effects of reactions and flows.
Later, the same authors (Amrhein et al., 2010) refined that trans-
formation to make it linear (at the price of losing the one-to-one
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roperty) and therefore more easily interpretable and applicable.
hey also showed that, for a reactor with an outlet flow, the con-
ept of vessel extent is most useful, as it represents the amount of
aterial associated with a given process (reaction, exchange) that

s still in the vessel. Bhatt et al. (2010) extended that concept to het-
rogeneous G–L reaction systems for the case of no reaction and no
ccumulation in the film, the result being decoupled vessel extents
f reaction, mass transfer, inlet and outlet, as well as true invari-
nts that are identically equal to zero. An extension regarding the
ncorporation of calorimetric measurements into the extent-based
dentification framework has been proposed recently by Srinivasan
t al. (2012).

Various implications of reaction variants/invariants have been
tudied in the literature. For example, Srinivasan et al. (1998) dis-
ussed the implications of reaction and flow variants/invariants
or control-related tasks such as model reduction, state accessi-
ility, state reconstruction and feedback linearizability. On the one
and, control laws using reaction variants have been proposed for
ontinuous stirred-tank reactors (Hammarstrom, 1979; Waller and
äkilä, 1981; Dochain et al., 2009; Favache and Dochain, 2009). The

oncept of extent of reaction is very useful to describe the dynamic
ehavior of a chemical reaction since a reaction rate is simply
he derivative of the corresponding extent of reaction. Bonvin and
ippin (1990) used batch extents of reaction to identify stoichio-
etric models without the knowledge of reaction kinetics. Reaction

xtents have been used extensively for the kinetic identification of
oth homogeneous and G–L reaction systems using either concen-
ration (Bhatt et al., 2012) or spectroscopic (Billeter et al., 2013)

easurements.
On the other hand, the fact that reaction invariants are inde-

endent of reaction progress has also been exploited for process
nalysis, design and control. For example, reaction invariants have
een used to study the state controllability and observability of con-
inuous stirred-tank reactors (Fjeld et al., 1974; Bastin and Lévine,
993). Reaction invariants have also been used to automate the
ask of formulating mole balance equations for the non-reacting
art (such as mixing and splitting operations) of complex processes,
hereby helping determine the number of degrees of freedom for
rocess synthesis (Gadewar et al., 2002). Furthermore, Waller and
äkilä (1981) demonstrated the use of reaction invariants to con-

rol pH, assuming that the equilibrium reactions are very fast.
rüner et al. (2006) showed that, through the use of reaction invari-
nts, the dynamic behavior of reaction-separation processes with
ast (equilibrium) reactions resembles the dynamic behavior of cor-
esponding non-reactive systems in a reduced set of transformed
ariables. Aggarwal et al. (2011) considered multi-phase reactors
perating at thermodynamic equilibrium and were able to use the
oncept of reaction invariants, which they labeled invariant inven-
ories, to reduce the order of the dynamic model and use it for
ontrol.

This paper addresses the computation of variant and invariant
tates for reaction systems. It presents both existing approaches
nd novel techniques on a unified basis, which eases comparison.
ne will see that, not only reaction-variant states can be separated

rom reaction-invariant states, but a much finer separation can be
chieved. The objective of this paper is therefore to sketch new
venues that could possibly lead to improved analysis, estimation,
ontrol and optimization of reaction systems.

The paper is organized as follows. Section 2 presents a novel
ay of computing the vessel extents of reaction and flow for open
on-isothermal homogeneous reactors. The approach is extended
o models that include a heat balance in Section 3 and to fluid–fluid

eaction systems in Section 4, while Section 5 generalizes the trans-
ormation to distributed tubular reactors. The applicability of the
ecoupling transformation is discussed in Section 6, while Section 7
oncludes the paper.
ical Engineering 73 (2015) 23–33

2. Homogeneous reaction systems

This section presents the computation of the extents of reaction
and flow for a homogeneous reaction system with several inlets and
one outlet. Although the computed extents are exactly the same
as those in Amrhein et al. (2010), the computational approach is
different and provides considerable insight in the transformation.
This insight will help extend the transformation to more complex
reaction systems in Sections 3–5.

2.1. Mole balance equations

Let us consider a general open non-isothermal homogeneous
reactor. The mole balance equations for a reaction system involving
S species, R reactions, p inlet streams, and one outlet stream can be
written as follows:

ṅ(t) = NTrv(t) + Win uin(t) − ω(t)n(t), n(0) = n0, (1a)

with

rv(t) := V(t) r(t) (1b)

ω(t) := uout(t)
m(t)

,  (1c)

where n is the S-dimensional vector of numbers of moles, r the R-
dimensional reaction rate vector, uin the p-dimensional inlet mass
flowrate vector, uout the outlet mass flowrate, V and m the volume
and the mass of the reaction mixture. N is the R × S stoichiomet-
ric matrix, Win = M−1

w W̌in the S × p inlet-composition matrix, Mw

the S-dimensional diagonal matrix of molecular weights, W̌in =
[w̌1

in. . .w̌p
in

] with w̌j
in

being the S-dimensional vector of weight frac-
tions of the jth inlet flow, and n0 the S-dimensional vector of initial
numbers of moles. Note that ω(t) corresponds to the inverse of the
reactor residence time.

The mole balance Eq. (1a) holds independently of the oper-
ating conditions since the reaction rates are simply modeled as
the unknown time signals rv(t). The operating conditions such as
the concentrations c(t) and the temperature T(t) affect the reac-
tion rates through the relations rv(t) = V(t) r(c(t), T(t)), but these
dependencies are not needed at the level of Eq. (1a). If needed, the
concentrations can be computed as c(t) = n(t)/V(t), while the tem-
perature can be described by a heat balance as shown in Section 3.
Note that the signals rv(t) represent endogenous inputs.

The flowrates uin(t) and uout(t) are considered as independent
(input) variables in Eq. (1a). The way these variables are adjusted
depends on the particular experimental situation; for example,
some elements of uin can be adjusted to control the temperature
in a semi-batch reactor, or uout is a function of the inlet flows in
a constant-mass reactor. The continuity equation (or total mass
balance) is given by:

ṁ(t) = 1T
puin(t) − uout(t), m(0) = m0, (2)

where 1p is the p-dimensional vector filled with ones and m0 the
initial mass. Note that the mass m(t) can also be computed from the
numbers of moles n(t) as

m(t) = 1T
S Mw n(t), (3)

which indicates that Eqs. (1a) and (2) are in fact linearly dependent.
Hence, the continuity equation is not needed per se, but it is often
useful to express the mass as a function of the flows rather than the

numbers of moles. The volume V(t) can be inferred from the mass
and knowledge of the density � as V(t) = m(t)/�(c(t), T(t)).

The analysis that follows will use intensively the following four
integer numbers:
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S: the total number of species (reacting or not) in the reactor,
R: the total number of independent reactions,
p: the total number of independent inlet streams,
q: the number of invariant (redundant) states (introduced later).

.2. Reaction variants/invariants in the literature

The concept of reaction variants/invariants as introduced by
sbjornsen and Fjeld (1970), Asbjornsen (1972), Fjeld et al. (1974)

s briefly reviewed next. The idea is to use the stoichiometric
atrix to construct a linear transformation of the states n to the

eaction-variant states yr and the reaction-invariant states yiv. This
ransformation T involves the stoichiometric matrix N and its null
pace of dimension q = S − R described by the S × q matrix P, that is

 P = 0R×q:[
yr(t)

yiv(t)

]
= T n(t) :=

[
R

Q

]
n(t) T = [NT P]

−1
. (4)

t follows from N P = 0R×q and T T−1 =
[

R
Q

]
[NT P] =

IR 0
0 Iq

]
that R = NT+

and Q = P+, where NT+
and P+ represent the

oore–Penrose pseudo-inverse of NTand P, respectively.1

The resulting dynamical system contains the R state variables yr

hat depend on the reactions and the q state variables yiv that do
ot:

ẏr(t) = rv(t) + NT+
Win uin(t) − ω(t) yr(t) yr(0) = NT+

n0

ẏiv(t) = P+ Win uin(t) − ω(t) yiv(t) yiv(0) = P+ n0.
(5)

ore specifically, one sees that the reaction variants are decoupled
ith respect to the reaction rates, that is, yr,i(t) depends on rv,i(t)

ut not on the other reaction rates:

ẏr,i(t) = rv,i(t) + (NT+
Win)i uin(t) − ω(t) yr,i(t)

yr,i(0) = (NT+
)i n0 i = 1, . . .,  R ,

(6)

here (.)i represents the ith row of the matrix (.).
However, note that

yr are reaction and flow variants, and not solely reaction variants,
yiv are reaction invariants but flow variants, hence not truly
invariants,
yr are pure reaction variants and yiv are true invariants only for
batch reactors, that is, for uin(t) = 0p and ω(t) = 0, for which one can
write:

ẏr(t) = rv(t) yr(0) = NT+
n0 yiv(t) = P+ n0, (7)

yr and yiv are abstract mathematical quantities with no direct
physical meaning.

ence, the question arises whether it is possible to compute true

eaction variants and true invariants for open reactors, thereby
emoving the effect of the inlet and outlet flows. The next section
ill show that this is possible with the concept of vessel extents.

1 Note that both PT and P+ span the q-dimensional null space of the stoichio-
etric matrix. Note also that the stoichiometric matrix N satisfies the relationship

 NT = 0A×R , where M is the A × S atomic matrix indicating the number of each atom
ype in the various species (Schneider and Reklaitis, 1975; Bonvin and Rippin, 1990).
he maximum number of independent reactions is given by Rmax = S − rank(M) ≥ R.
Gadewar et al., 2001) It follows that q = S − R ≥ S − Rmax = rank(M).
ical Engineering 73 (2015) 23–33 25

2.3. Vessel extents and true invariants

For the sake of deriving the transformation, we  will express the
initial conditions as a unit impulse at time 0.2 As a result, the balance
Eq. (1a) can be written with zero initial conditions:3

ṅ(t) = NTrv(t) + Win uin(t) + n0 ı(t) − ω(t) n(t), n(0) = 0S. (8)

Eq. (8) clearly explicits the fact that the initial conditions can be
considered as a rate process (the process of instantaneously loading
the reactor) that can be put on the same footing as the other rate
processes. The right-hand side of Eq. (8) has four contributions that
indicate the effects of the reactions, the inlets, the initial conditions,
and the outlet, respectively. Note that the first three contributions
have a particular structure, namely, they are expressed as the prod-
uct of a constant term and a rate signal. This particular structure will
be exploited for decoupling next.

2.3.1. Decoupling transformation
We  look for a full-rank linear transformation that transforms

n(t) into the three decoupled parts xr(t), xin(t) and xic(t) and an
orthogonal remaining part xiv(t). The first three parts correspond
to the reactions, the inlets and the initial conditions, while the
remaining part is invariant as will be seen below. The linear trans-
formation T reads:

⎡
⎢⎢⎢⎢⎣

xr(t)

xin(t)

xic(t)

xiv(t)

⎤
⎥⎥⎥⎥⎦ = T n(t) :=

⎡
⎢⎢⎢⎣

R

F

iT

Q

⎤
⎥⎥⎥⎦ n(t), (9)

and brings the dynamic model (8) to the following decoupled form:

ẋr(t) = RNT︸︷︷︸
IR

rv(t) + RWin︸︷︷︸
0R×p

uin(t) + R n0︸︷︷︸
0R

ı(t) − ω(t) xr(t) xr(0) = 0R

ẋin(t) = FNT︸︷︷︸
0p×R

rv(t) + FWin︸︷︷︸
Ip

uin(t) + F n0︸︷︷︸
0p

ı(t) − ω(t) xin(t) xin(0) = 0p

ẋic(t) = iTNT︸︷︷︸
0T

R

rv(t) + iTWin︸︷︷︸
0T

p

uin(t) + iT n0︸︷︷︸
1

ı(t) − ω(t) xic(t) xic(0) = 0

ẋiv(t) = QNT︸︷︷︸
0q×R

rv(t) + QWin︸︷︷︸
0q×p

uin(t) + Q n0︸︷︷︸
0q

ı(t) − ω(t) xiv(t) xiv(0) = 0q,

(10)

where R, F and Q are matrices of dimension R × S, p × S, and q × S,
respectively, and i is a S-dimensional vector, with q = S − R − p − 1
being the number of invariant quantities.

Upon choosing T as
T = [NT Win n0 P]
−1

, (11)

2 For example, ṅ(t) = 0S , n(0) = n0 can be written equivalently as ṅ(t) = n0 ı(t),
n(0) = 0S .

3 Another way to have zero initial conditions is to work in terms of deviation
variables as shown in Appendix A.
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imensional reaction subspace, a p-dimensional inlet subspace, a one-dimensional
ubspace describing the contribution of the initial conditions and a q-dimensional
nvariant subspace.

here the S × q matrix P describes the q-dimensional null space

f the matrix [NT Win n0]
T
,4 the transformation gives the condi-

ions shown under the braces in Eq. (10), namely:

R

F

iT

Q

⎤
⎥⎥⎥⎦ [NT Win n0 P] =

⎡
⎢⎢⎢⎣

IR 0 0 0

0 Ip 0 0

0 0 1 0

0 0 0 Iq

⎤
⎥⎥⎥⎦ . (12)

It follows from P being orthogonal to [NT Win n0] and Q P = Iq

hat Q = P+. Furthermore, NT R + Win F + n0 iT + P P+ = IS, where NTR
epresents the R-dimensional reaction subspace, WinF the p-
imensional inlet subspace, n0 iT the one-dimensional subspace
escribing the contribution of the initial conditions, and P P+ the
-dimensional invariant subspace (Fig. 1). All subspaces add up to
he S-dimensional species space R

S . Note that the invariant sub-
pace is orthogonal to the other subspaces by construction, while
he other subspaces are typically not orthogonal to each other.

.3.2. Vessel extents and invariants
If rank([NT Win n0]) = R + p + 1, the linear transformation (11)

rings the dynamic model (8) to:5

ẋr,i(t) = rv,i(t) − ω(t) xr,i(t) xr,i(0) = 0 i = 1, . . .,  R (13a)

˙ in,j(t) = uin,j(t) − ω(t) xin,j(t) xin,j(0) = 0 j = 1, . . .,  p (13b)

ẋic(t) = −ω(t) xic(t) xic(0) = 1 (13c)

xiv(t) = 0q, (13d)
here xr,i(t) is the extent of the ith reaction at time t expressed in
mol, xin,j(t) the extent of the jth inlet flow at time t expressed in

4 [NT Win n0]
T

P = 0(S−q)×q or, equivalently, PT [NT Win n0] = 0q×(S−q) . In this case,
he  matrix P spans the space that is orthogonal to the reactions, the inlets and the
nitial conditions.

5 The differential equation ẋic(t) = ı(t) − ω(t) xic(t), xic(0) = 0, can be written as Eq.
13c), which is easier to simulate.
ical Engineering 73 (2015) 23–33

kg, xic(t) the dimensionless extent of initial conditions, which jumps
from 0 to 1 and indicates the fraction of the initial conditions that is
still in the reactor at time t, and xiv(t) the vector of invariants at time
t. Note that each extent is affected by its corresponding rate process
(rv,i(t), uin,j(t), ı(t)) and, in the presence of an outlet (ω(t) > 0), also
by the inlet and outlet flows. Since each extent is discounted by the
amount that has left the reactor and thus represents the amount
of material associated with the corresponding rate that is still in
the vessel, these extents are called “vessel extents”. The numbers
of moles n(t) can be reconstructed from the various extents by pre-
multiplying (9) by T−1 = [NT Win n0 P] and considering the fact
that xiv(t) = 0q:

n(t) = NTxr(t) + Winxin(t) + n0 xic(t). (14)

Note that the mass m(t) can also be reconstructed from xin(t) and
xic(t) as follows:

m(t) = 1T
pxin(t) + m0 xic(t). (15)

Remarks

• The invariants xiv(t) are identically equal to zero and can be dis-
carded from the model. The invariant relationships P+ n(t) = 0q,
which represent q constraints prevailing among the variables
n(t), can be rather useful in practice to reduce the number of
degrees of freedom in a given problem.

• The extents xin(t) and xic(t) can be computed from uin(t) and
uout(t) in Eqs. (13b) and (13c) and the continuity Eq. (2):

ẋin(t) = uin(t) − ω(t)xin(t) xin(0) = 0p

ẋic(t) = −ω(t)xic(t) xic(0) = 1

ṁ(t) = 1T
puin(t) − uout(t), m(0) = m0.

(16)

• The extent of reaction xr,i(t) depends only upon the correspond-
ing reaction rate rv,i(t) and the inlet and outlet flows, but not
on the other rate processes. It follows that rv,i(t) can be com-
puted directly from xr,i(t), its time derivative and ω(t), that is,
without having to know the other extents. However, this appar-
ent decoupling is somewhat misleading: indeed, since rv,i(t) is an
endogenous signal (and not an exogenous input), it also depends
on what happens in the reactor, that is, it feels the effect of most
other processes. Hence, the prevailing decoupling is limited to
the relationships between rate and extent signals, as given in
(13a)–(13c).

2.4. Special cases

We  consider next the transformed systems for three special
cases, namely, batch reactors, semi-batch reactors and CSTRs.

2.4.1. Batch reactors
In a batch reactor with p = 0 and no outlet, the linear transfor-

mation (11) reduces to:

T = [NT n0 P]
−1

, (17)

with q = S − R − 1, and the transformed system reads:

ẋr,i(t) = rv,i(t) xr,i(0) = 0 i = 1, . . .,  R (18a)

xic(t) = 1 (18b)

xiv(t) = 0q . (18c)

Note that, since there is no outlet, x = 1 is also invariant. Hence,
ic
there are R reaction variants and S − R invariants. The numbers of
moles n(t) can be expressed as:

n(t) = NTxr(t) + n0. (19)
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where xex is the extent of heat exchange expressed in kJ. Com-
pared to the transformed model (13a)–(13d), the model (28) has
the one-dimensional state xex(t) to describe the evolution of the
heat exchange. Note that the extents xr, xin and xic in Eq. (28) are
D. Rodrigues et al. / Computers and

.4.2. Semi-batch reactors
A semi-batch reactor has p inlets but no outlet. With the linear

ransformation (11), the transformed system becomes:

ẋr,i(t) = rv,i(t) xr,i(0) = 0 i = 1, . . .,  R (20a)

˙ in,j(t) = uin,j(t) xin,j(0) = 0 j = 1, . . .,  p (20b)

xic(t) = 1 (20c)

xiv(t) = 0q , (20d)

ith q = S − R − p − 1. There are R reaction variants, p inlet variants
nd S − R − p invariants. The numbers of moles n(t) can be expressed
s:

(t) = NTxr(t) + Winxin(t) + n0. (21)

.4.3. Continuous stirred-tank reactors (CSTR)
In a CSTR, uout(t) is computed from Eq. (2) and m(t) = V0 �(t), with

0 the constant volume, as follows:

out(t) = 1T
puin(t) − V0 �̇(t) . (22)

If the density varies, the transformed system (13a)–(13d) cannot
be simplified and thus holds with q = S − R − p − 1.
If the density is constant, uout(t) = 1T

puin(t) and thus ω(t) =
(1T

puin(t))/m0. In this case, xic(t) can be computed algebraically

from the states xin(t) as xic(t) = 1 − (1T
pxin(t))/m0, with m0 = V0 �,

which can be shown by differentiating the last expression and
writing ẋin(t) and ẋic(t) using Eqs. (13b) and (13c). The trans-
formed system becomes:

ẋr,i(t) = rv,i(t) − ω(t) xr,i(t) xr,i(0) = 0 i = 1, . . .,  R (23a)

ẋin,j(t) = uin,j(t) − ω(t) xin,j(t) xin,j(0) = 0 j = 1, . . .,  p (23b)

xic(t) = 1 − 1T
pxin(t)

m0
(23c)

xiv(t) = 0q. (23d)

Since xic(t) is linearly dependent on xin(t), the system is of order
R + p, q = S − R − p − 1, and there are q + 1 = S − R − p invariants. The
numbers of moles n(t) can be expressed as:

n(t) = NTxr(t) +
(

Win − n0 1T
p

m0

)
xin(t) + n0. (24)

. Homogeneous reaction systems with heat balance

Let us consider an open non-isothermal homogeneous reactor
hat involves heat exchange via a heating/cooling jacket.

.1. Mole and heat balance equations

The model includes the mole balance Eq. (1a) and a heat balance
round the reactor (Amrhein, 1998):

ṅ(t) = NT rv(t) + Win uin(t) − ω(t) n(t) n(0) = n0

Q̇ (t) = (−�H)T rv(t) + qex(t) + Ť
T
in uin(t) − ω(t)Q (t) Q (0) = Q0,

(25)

here Q = m cp T is the heat of the reaction mixture, with T the reac-
or temperature and cp the specific heat capacity, qex is the heat flow
rom the jacket to the reaction mixture, Ťin the p-dimensional vec-
or of specific heat of the inlet streams with Ťin,j = cp,in,j Tin,j and Tin,j

he temperature of the jth inlet, and �H the R-dimensional vector of
eaction enthalpies. Obviously, the heat flow term qex(t) depends on
he reactor temperature, for example qex(t) = UA (Tj(t) − T(t)) with
he heat transfer coefficient UA and the jacket temperature Tj(t),
ical Engineering 73 (2015) 23–33 27

but this dependency is not needed at the level of Eq. (25). This
model assumes that most physical properties are not temperature
dependent, which is well justified for small temperature variations.
Furthermore, for simplicity, let us assume that the inlet specific heat
vector Ťin is constant.

3.2. Vessel extents and invariants

For the sake of deriving the transformation, we  will express the
initial conditions as a unit impulse at time 0. The model can be
written in compact form using the (S + 1)-dimensional state vector

z(t) =
[

n(t)
Q (t)

]
:

ż(t) = A  rv(t) + b qex(t) + C uin(t) + z0 ı(t) − ω(t) z(t) z(0) = 0S+1,

(26)

where A  =
[

NT

(−�H)T

]
, b =

[
0S

1

]
, C =

[
Win

Ť
T
in

]
and z0 =

[
n0
Q0

]
.

The right-hand side of Eq. (26) has five contributions that indi-
cate the effects of the reactions, the heat exchange, the inlets, the
initial conditions, and the outlet, respectively.

3.2.1. Decoupling transformation
The linear transformation T = [A  b C z0 P]−1 transforms

z(t) into five parts, namely, xr(t), xex(t), xin(t) and xic(t) that are
associated with the reactions, the heat exchange, the inlets and the
initial conditions, and xiv(t) that is orthogonal to the other extents
and invariant as will be seen below:⎡
⎢⎢⎢⎢⎢⎢⎣

xr(t)

xex(t)

xin(t)

xic(t)

xiv(t)

⎤
⎥⎥⎥⎥⎥⎥⎦ = T z(t) :=

⎡
⎢⎢⎢⎢⎢⎣

R

hT

F

iT

P+

⎤
⎥⎥⎥⎥⎥⎦ z(t). (27)

The S × q matrix P describes the q-dimensional null space of the
matrix [A  b C z0]T, with q = S − R − p − 1.

3.2.2. Vessel extents and invariants
If rank([A  b C z0]) = R + p + 2, the linear transformation

(27) brings the dynamic model (26) to:

ẋr(t) = rv(t) − ω(t)xr(t) xr(0) = 0R

ẋex(t) = qex(t) − ω(t)xex(t) xex(0) = 0

ẋin(t) = uin(t) − ω(t)xin(t) xin(0) = 0p

ẋic(t) = −ω(t)xic(t) xic(0) = 1

(28)
those in Eqs. (13a)–(13c), which confirms the fact that the trans-
formed model (13a)–(13c) can be used to describe the reactions
and flows in a non-isothermal reactor also in the absence of a heat
balance.
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the convective flow in m/s, and �(z, t) is the pd-dimensional vector
of diffusion rates in kmol/(m3s). It is assumed that only pd ≤ S − R
species are affected by diffusion as indicated by the S × pd matrix
8 D. Rodrigues et al. / Computers and

The numbers of moles n(t) and the heat Q(t) can be reconstructed
rom the transformed variables as follows:

z(t) = A  xr(t) + b xex(t) + C xin(t) + z0 xic(t). (29)

 possible use of this decoupling regards the estimation of qex(t) or
he identification of the heat-transfer coefficient UA in the expres-
ion qex(t) = UA (Tj(t) − T(t)), independently of any kinetic information,
rom discrete measurements of z(t) and computation of xex(t) via
he transformation (27).

. Fluid–fluid reaction systems

This section extends the results obtained for homogeneous reac-
ion systems to heterogeneous fluid–fluid reaction systems. In
ddition to the extents developed above, there will be extents of
ass transfer that describe the material transport between the two

hases.
We consider here a reaction system consisting of two phases,

amely, the G and L phases.6 The two phases are modeled sepa-
ately, with the mass-transfer rates � connecting the two phases.
he L phase contains Sl species, pl inlets and one outlet, while the

 phase contains Sg species, pg inlets and one outlet. There are
m mass transfers taking place between the two phases. The reac-
ions can occur in both phases, with Rl reactions in phase L and Rg

eactions in phase G.

.1. Mole balance equations

The differential mole balance equations for phase F, F ∈ {G, L},
ead:

ṅf (t) = NT
f rv,f (t) ± Wm,f �(t) + Win,f uin,f (t) − ωf (t) nf (t)

nf (0) = nf 0,
(30)

ith a positive sign (+) for phase L and a negative sign (−) for
hase G, and where the subscript (.)f is used to denote phase F,
ith f ∈ {g, l}. The pm mass transfers are treated as pseudo inlets
ith the mass-transfer rates �, and Wm,f = M−1

w,f Em,f is the Sf × pm

ass-transfer matrix, Em,f = [e1
m,f

. . . epm
m,f

] with ej
m,f

being the

f-dimensional vector with the element corresponding to the jth
ransferring species equal to unity and the other elements equal to
ero.

.2. Vessel extents and invariants

Again, we will express the initial conditions as a unit impulse at
ime 0, which gives the following balance equations:

ṅf (t) = NT
f rv,f (t) ± Wm,f �(t) + Win,f uin,f (t) + nf 0 ı(t) − ωf (t) nf (t)

nf (0) = 0Sf
.

(31)

he right-hand side of Eq. (31) has five contributions that indicate
he effects of the reactions, the mass transfers, the inlets, the initial
onditions, and the outlet, respectively.

.2.1. Decoupling transformation
For phase F, the linear transformation Tf :=

NT
f ± Wm,f Win,f nf 0 Pf ]

−1
transforms nf(t) into five parts,

amely, xr,f(t), xm,f(t), xin,f(t) and xic,f(t) that are associated with the
eactions, the mass transfers, the inlets and the initial conditions,
6 Although G and L are often the gas and liquid phases, they can also refer to two
istinct liquid phases.
ical Engineering 73 (2015) 23–33

and xiv,f(t) that is orthogonal to the other extents and invariant as
will be seen below:⎡
⎢⎢⎢⎢⎢⎢⎣

xr,f (t)

xm,f (t)

xin,f (t)

xic,f (t)

xiv,f (t)

⎤
⎥⎥⎥⎥⎥⎥⎦ = [NT

f ± Wm,f Win,f nf 0 Pf ]
−1

nf (t), (32)

where the matrix Pf of dimension Sf × qf describes the qf-

dimensional null space of the matrix [NT
f ± Wm,f Win,f nf 0]

T
,

with qf = Sf − Rf − pm − pf − 1.

4.2.2. Vessel extents and invariants
If rank([NT

f ± Wm,f Win,f nf 0]) = Rf + pm + pf + 1, the linear
transformation (32) brings (31) to:

ẋr,f (t) = rv,f (t) − ωf (t)xr,f (t) xr,f (0) = 0Rf

ẋm,f (t) = �(t) − ωf (t)xm,f (t) xm,f (0) = 0pm

ẋin,f (t) = uin,f (t) − ωf (t)xin,f (t) xin,f (0) = 0pf

ẋic,f (t) = −ωf (t)xic,f (t) xic,f (0) = 1

xiv,f (t) = 0qf
.

(33)

Compared to the transformed model (13a)–(13d), the model
(33) has the pm-dimensional states xm,f(t) to describe the evolu-
tion of the mass transfers. The reconstruction of the numbers of
moles nf(t) reads:

nf (t) = NT
f xr,f (t) ± Wm,f xm,f (t) + Win,f xin,f (t) + nf 0 xic,f (t). (34)

5. Distributed reaction systems

For lumped homogeneous reaction systems, the transformation
(9) is able to isolate the contributions of the reactions, inlets and ini-
tial conditions that are contained in the state vector n(t). In addition,
it is possible to express the invariant states as P+ n(t) = 0q, which is
useful in many applications (Waller and Mäkilä, 1981; Fjeld et al.,
1974; Gadewar et al., 2002). We  develop next a similar transfor-
mation applicable to distributed reaction systems. As illustrative
example, we will consider a one-dimensional single-phase tubular
reactor model (Friedly, 1972).

5.1. Material balance equations

Consider the reaction-convection-diffusion system

∂c(z, t)
∂t

= NT r(z, t) + Ed �(z, t) − ∂(v(z, t)c(z, t))
∂z

, (35)

with the initial conditions c(z, 0) = c0(z) and the boundary con-
ditions c(0, t) = cin(t) and lim

z→∞
(∂c(z, t)/∂z) = 0S .7 Here, c(z, t)

represents the S-dimensional vector of concentrations at the spa-
tial coordinate z and time t in kmol/m3, v(z, t) is the velocity of
7 These boundary conditions correspond to what has been called “approximation
by  a reactor of infinite length” (Fan and Ahn, 1962), since the boundary conditions
are  given at z = 0 and z→ ∞.  Note that the separation of the various effects can also be
achieved when different boundary conditions are assumed, as shown in Appendix
B  for the case of the Danckwerts boundary conditions (Danckwerts, 1953).
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d = [e1
d

· · · epd
d

] , with ej
d

being the S-dimensional vector with
he element corresponding to the jth diffusive species equal to unity
nd the other elements equal to zero. This model includes S species,

 independent reactions, pd diffusive terms and one convective
erm. The reaction and diffusion rates are modeled as the unknown
ignals r(z, t) and �(z, t), which hides the fact that the rates depend
n z and t over the concentrations c(z, t) and the temperature T(z,
).

The right-hand side of Eq. (35) has three contributions that are
ssociated with reactions, diffusion and convection. Since the cor-
esponding terms NT r(z, t), Ed �(z, t) and ∂(v(z, t)c(z, t))/∂z appear
inearly, the principle of superposition is satisfied and each con-
ribution can be computed separately. We  will first remove the
ontribution of the reactions and diffusion and compute the effect
hat convection has on the initial and boundary conditions by solv-
ng the differential equation

∂cibc(z, t)
∂t

+ ∂(v(z, t)cibc(z, t))
∂z

= 0S cibc(z, 0) = c0(z),

cibc(0,  t) = cin(t),
(36)

here cibc(z, t) indicates the concentrations at position z and time t
hat are due uniquely to the non-zero initial and convective bound-
ry conditions.

We  will then remove the effect of the initial and boundary con-
itions by writing the concentrations as deviations from cibc(z, t),

ıc(z, t) := c(z, t) − cibc(z, t), (37)

ith which Eq. (35) becomes:

∂ıc(z, t)
∂t

= NT r(z, t) + Ed �(z, t) − ∂(v(z, t)ıc(z, t))
∂z

, (38)

ith the initial conditions ıc(z, 0) = 0S and the boundary conditions
c(0, t) = 0S and lim

z→∞
(∂ıc(z, t)/∂z) = 0S .8 The right-hand side of Eq.

38) has three contributions, with the first two associated with the
 reactions and the pd diffusion terms, respectively.

.2. Extents and invariants

This section proposes a transformation that generates R extents
f reaction, pd extents of diffusion and, as will be seen, q = S − R − pd
nvariants.

.2.1. Decoupling transformation

The linear transformation T = [NT Ed P]
−1

transforms ıc(z, t)
nto three parts, namely, xr(z, t) and xd(z, t) that are associated with

he reactions and the diffusion, and the part xiv(z, t) that is invariant
s will be seen below:⎡
⎢⎣

xr(z, t)

xd(z, t)

xiv(z, t)

⎤
⎥⎦ = T ıc(z, t) :=

⎡
⎣ R

D

P+

⎤
⎦ ıc(z, t), (39)

here the S × q matrix P describes the q-dimensional null space of

he matrix [NT Ed]
T
.

8 The last boundary condition follows from the assumption lim
z→∞

(∂cibc(z, t)/∂z) =
S .
ical Engineering 73 (2015) 23–33 29

5.2.2. Extents and invariants
If rank([NT Ed]) = R + pd, the linear transformation (39) brings the

dynamic model (38) to:

∂xr(z, t)
∂t

+ ∂(v(z, t)xr(z, t))
∂z

= r(z, t) xr(z, 0) = 0R,

xr(0,  t) = 0R (40a)

∂xd(z, t)
∂t

+ ∂(v(z, t)xd(z, t))
∂z

= �(z, t) xd(z, 0) = 0pd
,

xd(0,  t) = 0pd
, lim

z→∞
∂xd(z, t)

∂z
= 0pd

(40b)

xiv(z, t) = 0q, (40c)

where xr(z, t) indicates the change in concentrations at position
z and time t due to the reactions; xd(z, t) indicates the change in
concentrations at position z and time t due to diffusion; xiv(z, t) rep-
resents variables that are orthogonal to these extents and therefore
invariant. The concentrations ıc(z, t) can be reconstructed from the
various extents by pre-multiplying (39) by T−1 = [NT Ed P]
and considering the fact that xiv(z, t) = 0q:

ıc(z, t) = NT xr(z, t) + Ed xd(z, t). (41)

Finally, the concentrations c(z, t) are obtained from Eqs. (37) and
(41) as:

c(z, t) = NT xr(z, t) + Ed xd(z, t) + cibc(z, t). (42)

Remarks

• The concentration of the S species at a given position and time
can be transformed into R extents of reaction and pd extents of
diffusion. The only requirement is rank([NT Ed]) = R + pd, which
implies that the number of diffusing species pd can be at most
S − R.

• The linear transformation is independent of z and t and does not
assume that the diffusivities of the species are equal. Further-
more, the transformation is valid for any profile of the convective
velocity and of the initial and inlet concentrations.

A possible use of this decoupling regards the identification of
reaction rates independent of diffusion, and the identification of dif-
fusion rates independently of any kinetic information.

6. Application of the decoupling transformation

This section is not meant to discuss a specific case study but
rather to guide the reader through potential uses of the concept
of extents. The decoupling transformation can be used for two  dif-
ferent classes of applications, namely, (i) to simplify the dynamic
model, its analysis and possibly the design of model-based mon-
itoring, estimation, control and optimization schemes, and (ii) to
process measured data by either isolating certain signals that are
useful for kinetic identification or reconstructing certain quantities
in the absence of a kinetic model. These two classes of problems
are briefly discussed next.

6.1. Model-based applications

• Model reduction. The reaction system can be described by either
the S numbers of moles n(t) given by the differential Eq. (1a) or the

(R + p + 1) extents given by the differential Eqs. (13a)–(13c). The
dimensionality of the system is therefore d : = R + p + 1. However,
note that the transformed model (13a)–(13c) is not a minimal-
state representation of the system (1a) since the reaction rates
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rv(t) = V(t) r(c(t)) cannot be computed solely from the reduced
states xr(t), xin(t) and xic(t) (Bhatt et al., 2012, 2010). Indeed,
the description of the concentrations c(t) = n(t)/V(t) requires the
knowledge of n0, of dimension S, to reconstruct n(t) as per Eq.
(14).
State accessibility. The transformed system (13a)–(13d) indicates
that xiv is inaccessible. Hence, the maximal dimension of the
accessible part is R + p + 1. In other words, since q needs to be zero
for full state accessibility, there should be at least S − R − 1 inlet
streams. Note that this result, which has been reported previously
in the literature (Bastin and Lévine, 1993), follows trivially from
the decoupling transformation.
Control. The idea is to work with the reduced model that does
not include the inaccessible invariant part. With the inlet flows
or the heat input as manipulated variables, the resulting models
are typically input-affine and lend themselves well to control via
feedback linearization, for which certain conditions are necessary
(Fliess et al., 1995; Srinivasan et al., 1998). Applications of such
control approaches are available in the literature (Farschman
et al., 1998; Favache and Dochain, 2009; Hoang et al., 2014).

.2. Data-driven applications

Reconstruction of extent and rate profiles. With the knowledge of N,
Win and n0, the transformation T allows computing the various
extents at the time instant th from the discrete measurements
n(th). On the other hand, as expressed by Eq. (13a), the extent of
reaction xr,i(t) is the output of a dynamic system whose input is
the reaction rate rv,i(t). It follows that the rate profile rv,i(th) can
be reconstructed from xr,i(th) by system inversion (Mhamdi and
Marquardt, 2004).
Kinetic identification. Kinetic identification is performed by
comparing the rates or extents computed from measured
concentrations to the values predicted by the model. This com-
parison can be done individually for each reaction (Bardow and
Marquardt, 2004; Brendel et al., 2006; Michalik et al., 2009). This
way, several rate expressions can be compared to experimen-
tal data, one at a time, until the correct expression has been
found and the corresponding parameters identified. The route
over extents has certain advantages, in particular in the presence
of noisy and scarce measurements (see Appendix C) (Bhatt et al.,
2011, 2012).
State reconstruction. The objective is to reconstruct the state n(th)
of dimension S from Sa < S measured species na(th). When all
kinetic models are available and the model is observable, the
unmeasured states can be reconstructed via dynamic reconstruc-
tion (state observers). Alternatively, when there are at least as
many measured species as independent reactions, that is Sa ≥ R,
n(th) can be reconstructed without knowledge of kinetics (Billeter
et al., 2013). This is a two-step procedure, whereby the extents
are first estimated using either Eq. (9) or the approach described
in Appendix C. The unmeasured species are then reconstructed
from the estimated extents. For the case Sa < R, it is no longer pos-
sible to compute all extents of reaction from na(th), in which case
only a part of xr(th) is computed without a kinetic model, with
the remaining extents being computed using a kinetic model.

. Conclusions

The concept of reaction variants/invariants has been around
or nearly 60 years. The reaction invariants, which are typically

omputed from the knowledge of stoichiometry (or, almost equiv-
lently, from the atomic matrix) are not affected by the progress of
he reactions. The reaction variants are often chosen orthogonal to
he reaction invariants. Unfortunately, a reaction variant may  also
ical Engineering 73 (2015) 23–33

be affected by other phenomena such as flows and mass transfers.
Similarly, although a reaction invariant is unaffected by reaction,
it might sense the effect of flows and mass transfers. Hence, the
applicability of the concept of reaction variants/invariants has been
limited to specific reactor arrangements with negligible overlap of
the reaction and transport phenomena.

This paper has addressed the computation of variant and invari-
ant quantities for open both homogeneous and heterogeneous
reaction systems. The concept of reaction variants/invariants that
is used extensively in the context of batch processes has been
extended to take into account the effects of inlet and outlet flows,
of mass transfers between phases, and of convection and diffusion.
In contrast to previously defined variants, each extent developed
in this work describes uniquely and completely the progress of the
corresponding process. Furthermore, the invariants defined in this
work are true invariants that are identically equal to zero and can
be discarded from the dynamic model.

Isolation of the individual phenomena is implemented via
decoupling of the balance equations through linear transformation.
The transformation uses structural information about the reaction
system, in particular the stoichiometry, the inlet composition, the
initial conditions, and the knowledge of the species that transfer
between phases. If these parameters are constant, the transforma-
tion is globally valid and straightforward to implement. Otherwise,
things are more complicated and one might need to rely on a piece-
wise transformation. For a convective and/or diffusive system, it is
also necessary to know the convective velocity and/or the identity
of the species that diffuse.

The significance of this work is twofold: (i) at the scientific
level, the separation of reaction and transport phenomena has sig-
nificant implications for kinetic identification (Bhatt et al., 2012),
model reduction (Bhatt et al., 2012), state reconstruction (Bastin
and Dochain, 1990; Bhatt, 2011) and leads to a better understand-
ing of chemical reaction systems, and (ii) at the application level,
a systematic procedure is available for developing kinetic mod-
els in the laboratory and design targeted monitoring, control and
optimization schemes for production (Georgakis, 1986; Farschman
et al., 1998; Hoang et al., 2014). Both aspects will improve process
operation in the long run.

This paper summarizes the efforts that have been done in the
last decade to extend the concept of reaction variants/invariants,
originally defined for batch homogeneous reactors, to multi-phase
reaction systems with inlets and outlets. Compared to previous
work done by the same research group, this paper has introduced
several novel elements, namely, the key concept of linear trans-
formation, the extension of the approach to distributed reaction
systems as well as the treatment of the initial conditions via
the introduction of deviation variables. More efforts are needed
to develop the theory further and, for example, make it appli-
cable to other lumped or distributed reaction systems, such as
heterogeneous catalytic reaction systems and reaction-absorption
or reaction-distillation columns. Finally, it is expected that simi-
lar decoupling transformations can be found for a wider class of
processing systems as long as the balance equations can be charac-
terized by a well-defined structure as that of Eq. (1a).
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Appendix A. Reaction system in deviation variables

This appendix proposes another way  to perform the decoupling
for homogeneous reaction systems, which parallels the method
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sed above for distributed reaction systems. The idea is to work
ith numbers of moles that represent deviations from the effect of

he initial conditions, nic(t), as shown below.9

ole balance equations

The right-hand side of Eq. (1a) has three contributions that
re associated with the reactions, the inlets and the outlet. Since
he corresponding terms NTrv(t), Win uin(t) and ω(t) n(t) appear
inearly, they satisfy the principle of superposition and each contri-
ution can be computed independently of the others. We  will next
ompute the effect at time t of the initial conditions, that is, the
art of the initial conditions that has not been removed through
he outlet flow, by solving the differential equation

ṅic(t) = −ω(t) nic(t), nic(0) = n0, (43)

ith nic(t) indicating the numbers of moles that are due uniquely
o the non-zero initial conditions. Since each element of nic(t) has
he same dynamics, nic(t) can be expressed as

nic(t) = n0 xic(t), (44)

ith xic(t) given by

ẋic(t) = −ω(t) xic(t), xic(0) = 1. (45)

he extent of initial conditions xic(t) is a scalar that varies between
 and 0 and indicates the fraction of the initial conditions that is
till present in the reactor at time t.

Upon writing the concentrations as deviations from the concen-
rations nic(t),

ın(t) := n(t) − nic(t), (46)

q. (1a) becomes:

ṅ(t) = NTrv(t) + Win uin(t) − ω(t) ın(t), ın(0) = 0S. (47)

essel extents and invariants

The right-hand side of Eq. (47) has three contributions that
ndicate the effects of the reactions, the inlets and the outlet, respec-
ively.

ecoupling transformation

The linear transformation T = [NT Win P]
−1

transforms ın(t)
nto three parts, namely xr(t) and xin(t) that are associated with the
eactions and the inlets, and xiv(t) that is orthogonal to the other
xtents and invariant as will be seen below:⎡
⎢⎣

xr(t)

xin(t)

xiv(t)

⎤
⎥⎦ =

⎡
⎣ R

F

P+

⎤
⎦ ın(t) = T ın(t), (48)

here the S × q matrix P describes the q-dimensional null space

f the matrix [NT Win]
T
, with q = S − R − p. Note that the invari-
nt space corresponding to Eq. (8) is of lower dimension,
 = S − R − p − 1, as one dimension is needed to represent the con-
ribution of the initial conditions.

9 An alternative consists in working with numbers of moles that represent devi-
tions from the initial conditions n0. However, this way, the formulation and the
nterpretation of xic(t) is not as straightforward.
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Vessel extents and invariants
If rank([NT Win]) = R + p, the linear transformation (48) brings the

dynamic model (47) to:

ẋr,i(t) = rv,i(t) − ω(t), xr,i(t) xr,i(0) = 0 i = 1, . . .,  R (49a)

ẋin,j(t) = uin,j(t) − ω(t), xin,j(t) xin,j(0) = 0 j = 1, . . .,  p (49b)

xiv(t) = 0q. (49c)

The numbers of moles ın(t) can be reconstructed from the var-
ious extents by pre-multiplying (48) by T−1 = [NT Win P] and
considering the fact that xiv(t) = 0q:

ın(t) = NTxr(t) + Winxin(t). (50)

Finally, the numbers of moles n(t) are obtained from (50) with (46)
and (44) as:

n(t) = NTxr(t) + Winxin(t) + n0xic(t). (51)

Similarly, the mass m(t) can be reconstructed from xin(t) and xic(t)
as follows:

m(t) = 1T
pxin(t) + m0 xic(t). (52)

Appendix B. Danckwerts boundary conditions

This appendix shows that the transformation in Section 5
still holds when the reaction-convection-diffusion system (35)
is written with the following Danckwerts boundary conditions
(Danckwerts, 1953):

c(0,  t) = cin(t) − 1
v(0,  t)

Ed J(0,  t), (53a)

J(l, t) = 0pd
, (53b)

for a tubular reactor ranging from z = 0 to z = l, where J(z, t) is the
pd-dimensional vector of diffusion fluxes in kmol/(m2s). The par-
tial differential Eq. (38) has now the boundary conditions ıc(0, t) =
−(1/v(0,  t)) Ed J(0,  t) and J(l, t) = 0pd

. The diffusion flux J(z, t) is
unknown, but it can be computed from the diffusion rates as fol-
lows:

∂J(z, t)
∂z

= −�(z, t) J(l, t) = 0pd
. (54)

If rank([NT Ed]) = R + pd, the linear transformation (39) brings
(38) with the corresponding Danckwerts boundary conditions to:

∂xr(z, t)
∂t

+ ∂(v(z, t)xr(z, t))
∂z

=  r(z, t), xr(z, 0) = 0R,

xr(0,  t) = 0R (55a)

∂xd(z, t)
∂t

+ ∂(v(z, t)xd(z, t))
∂z

= �(z, t), xd(z, 0) = 0pd
,

xd(0,  t) = − 1
v(0,  t)

J(0, t) (55b)

xiv(z, t) = 0q, (55c)

which corresponds to (40a)-(40c) with different boundary condi-
tions. The boundary condition J(0, t) is computed from J(l, t) = 0pd

using the ordinary differential Eq. (54).
Note that the Danckwerts boundary conditions assume that

there is a discontinuity in the value of the diffusion fluxes at z = 0
(Pearson, 1959), which is clearly illustrated by the non-zero val-

ues of the extents xd(0, t). A detailed discussion of the differences
between the Danckwerts boundary conditions and alternative for-
mulations for tubular reactors can be found elsewhere (Parulekar
and Ramkrishna, 1984).
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ppendix C. On isolating reaction contributions

We  present two different ways of eliminating the effect of the
nlet and outlet flows in the measured numbers of moles, and we

ill compare these approaches with that based on the linear trans-
ormation. In particular, we are interested in reconstructing the rate
v,i(t), the batch extent �i(t) and the vessel extent xr,i(t).

umbers of moles in reaction-variant form

Re-writting Eq. (8) as:

ṅ(t) − Win uin(t) − n0 ı(t) + ω(t) n(t) = NTrv(t), n(0) = 0S,

(56)

nd integrating gives:

n(t) − Win

∫ t

0

uin(�) d� − n0 +
∫ t

0

ω(�) n(�) d� = NT

∫ t

0

rv(�) d�.

(57)

pon defining the numbers of moles in reaction-variant (RV) form,

nRV (t) := n(t) − n0 − Win

∫ t

0

uin(�) d� +
∫ t

0

ω(�) n(�) d�, (58)

nd the batch extents of reaction,

�(t) :=
∫ t

0

rv(�) d�, (59)

q. (57) gives:

nRV (t) = NT �(t), (60)

r in differential form,

ṅRV (t) = NTrv(t), nRV (0) = 0S. (61)

umbers of moles in vessel reaction-variant form

If the inlet and outlet flow rates uin(t) and uout(t) are known, one
an compute xin(t) and xic(t) according to (16) and then use (14) to
ompute the contribution of the reactions, labeled the numbers of
oles in vessel reaction-variant (vRV) form, as follows:

vRV (t) := n(t) − Winxin(t) − n0 xic(t), (62)

hich leads to:

vRV (t) = NT xr(t), (63)

r in differential form,

ṅvRV (t) = NTrv(t) − ω(t) nvRV (t), nvRV (0) = 0S. (64)

xpression (63) is very useful for analysis purposes as will be seen
ater. Note that nvRV(t) /= nRV(t) in the presence of an outlet.

omparison with linear transformation

A key feature of the linear transformation T is its ability to isolate
nd remove the effect of the inlet and outlet streams from the mea-
ured numbers of moles. Next, we will compare the experimental
mplications of computing rv,i(t) from ṅRV (t), �i(t) from nRV(t) and
r,i(t) via the linear transformation from either n(t) or nvRV(t). It is
ssumed here that the measured numbers of moles n(t) are noisy
nd only available unfrequently at the time instants th, h = 1, 2, . . ..
 Computation of rv,i(th) from ṅRV (th). This is done by inversion of

Eq. (61), with ṅRV (th) computed from Eq. (58) as:

ṅRV (th) = ṅ(th) − Win uin(th) + ω(th) n(th). (65)
ical Engineering 73 (2015) 23–33

One sees that this operation requires the differentiation of the
noisy and scarce signal n(th).

2 Computation of �i(th) from nRV(th). This is done by inversion of
Eq. (60), with nRV(th) computed from Eq. (58). One  sees that this
operation requires the integration of the noisy and scarce signal
n(th).

3 Computation of xr,i(th) via linear transformation from n(th). This is
done via Eq. (9) as xr,i(th) = Ri n(th), which does not require dif-
ferentiation nor integration of noisy signals. The transformation
requires at least R + p + 1 measured species.

4 Computation of xr,i(th) via linear transformation from nvRV(th). This

is done via Eq. (63) as xr,i(th) = (NT+
)i nvRV (th), which does not

require differentiation nor integration of noisy signals either. The
transformation requires only R measured species.

This shows that the path over the linear transformation, in particu-
lar using nvRV(th) and Eq. (63), has a clear experimental advantage.
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