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Abstract—Image processing and computer vision algorithms
extensively use projections, such as homography, as one of the
processing steps. Systems for homography calculation usually
observe homography as an inverse problem and provide an
exact solution. However, the systems processing larger resolu-
tion images cannot meet inherently tight real-time constraints.
Look-up table based systems provide an option for forward
homography solutions, but they require large memory availability.
Recent compressed look-up table methods reduce the memory
requirements at the expense of lower peak signal-to-noise-ratio.
In this work, we present a forward homography estimation
algorithm which provides higher image quality than compressed
look-up table methods. The algorithm is based on bounding the
homography error, and neglecting the pixels out of the determined
bound. The presented FPGA implementation of the estimation
system requires a small amount of hardware, and no memory
storage. The prototype system project an image frame onto a
spherical surface at 295 Mpixels/s rate which is, up to our
knowledge, currently the fastest homography system.

I. INTRODUCTION

A homography, or projective transformation, is a mapping
of vectors belonging to the same projective space. It is often
used in image processing and computer vision to change the
perspective view of the image [1]–[3]. An illustration of a
projective transformation is shown in Fig. 1(a). The planar
view I of the scene is transformed into an alternate view J .
The point x in the scene is observed at different locations in
two given views, which is illustrated in Fig. 1(b) on a real
image example.

A homography can be defined for any N -dimensional
projective space. However, the most common ones are two-
dimensional (planar) and three-dimensional (spherical and
cylindrical) projections. Besides changing the perspective view,
planar homography is used for camera calibration [4], stereo
camera rectification [5]–[8], and object tracking and focusing
[9], [10]. Applications of 3D homography vary from estimation
of 3D scene models [11] and volume [12] to generating
cylindrical and spherical panoramas [13], [14].

In this work, we consider applications such as real-time
spherical panorama construction. Real-time homography is
usually perceived as an inverse problem thanks to rather sim-
ple reconstruction pipeline. Reconstructing panoramic views
requires multiple shots that are stitched into one single image.
Inverse homography is suitable for this application, since the
raw images can be stored into memory before performing
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Fig. 1. a) Illustration of 2D homography on the example of two different
views of the same scene point x. Points xi and xj are related by homography;
b) Homography example on a real photograph. The same photograph is
projected on two different view planes. Intersection line of the two planes
is marked by a dashed line. Change of perspective is noticed in the right part
of the image.

the actual reconstruction. For each desired pixel in the re-
construction, the most appropriate pixel can be found in the
original images. The mapping function is either determined by
using runtime calculations [14] or pre-calculated and stored
in lookup tables (LUTs) [13]. Thus, inverse homography is
determined by straightforward implementation of mathematical
functions [14].

However, timing constraints become very tight when the
desired output resolution is high. The image processing sys-
tems can hardly meet the real-time constraints of 25-30 frames
per second (fps) when reconstructing high resolution images.
Forward homography is suggested as a possible solution to this
problem in stereo image rectification systems [6]–[8], where
the same real-time constraints apply.

The forward homography solves the issue of system con-
straints, such as memory bandwidth, since the correct des-
tination is calculated for each input pixel. Hence, only the
necessary pixels for the final reconstruction are stored in
memory, thus reducing the required bandwidth. The destination
coordinates are pre-calculated offline and stored in registers of
the processing system. Another advantage of the LUT-based
approach is that LUT size is independent of the final image
resolution.

However, LUT size linearly increases with respect to
the raw image resolution. Modern cameras have more than
10 Mpixels, and LUTs become too large for on-chip storage.
Compressed LUT methods [8] may partially solve this prob-
lem, but the peak-signal-to-noise ratio (PSNR) drops signifi-978-1-4799-6016-3/14/$31.00 c©2014 IEEE
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Fig. 2. Geometric transformations during image formation process. The
world, camera, and image coordinate systems are shown with relations
between them. A light ray passing through the world scene point X and the
sensor’s focal point intersects the image plane in point d, which represents a
pixel in the acquired image. The back-projection procedure reconstructs the
original light ray l and locates the intersection point with the back-projection
hemisphere, Xsph.

cantly in the presence of large differences between input and
output image resolution. These differences are observed in the
majority of modern cameras, whose high resolution images
are usually displayed on 2 Mpixels monitors. Analysis of this
problem is given in Section III.

We propose a novel method for real-time forward homog-
raphy based on direct calculation of destination pixels. The
system operates on a pixel stream coming from a camera,
and it is appropriate even for large ratios of input and output
resolutions. We determine the optimal projection error bound
based on camera calibration, and disregard all projections with
the error higher than the determined bound. The chosen error
bound provides the highest PSNR of the projected image. The
algorithm is prototyped on an FPGA development system for
the spherical panorama application. The prototype provides
input/output pixel ratio of more than 200, i.e. more than 200
pixels are mapped into a single one.

II. THEORETICAL BACKGROUND

The image formation can be approximated by the pinhole
camera model for many computer vision applications [1]. The
pinhole camera projects a 3D world scene into a 2D image
plane. In order to perform this projection, three coordinate
systems are considered, as depicted in Fig. 2. The coordinates
of point X are expressed in the world coordinate system with
its origin at the point O. The same point can also be expressed
in the camera coordinate system by coordinates Xc. Origin of
the camera coordinate system coincides with the camera’s focal
point Oc = C. The relation between the world and camera
coordinates is unique and consists of a single translation and
a single rotation:

Xc = R(X− c) (1)

The vector c denotes the distance between origins of the
world and the camera coordinate systems, whereas the rotation

matrix R expresses three Euler rotations in order to align
the mentioned systems’ axes. Parameters R and c are called
extrinsic camera calibration parameters.

The image coordinate system, has aligned axes with the
camera coordinate system. Position of the projected point in
the image coordinate system is expressed by:

d = M(X− c) = KXc =

[

f 0 0
0 f 0
0 0 1

]

Xc (2)

where d is the pixel position in the image coordinate system,
f is the focal length, M is the projection matrix, and K is
the intrinsic calibration matrix. The origin of the system is
coincident with one of the corners of the image sensor. Thus,
an additional shift of the sensor’s central point to the sensor’s
corner is needed to obtain the final pixel position.

III. ESTIMATION ALGORITHM

Estimating a forward homography in real-time is not a
trivial problem. The system should determine the final pixel
position, e.g. position in a panoramic image, based only on
the pixel coordinates in the original frame. The problem arises
due to non-integer values of the mapped pixel coordinates (see
Fig. 4). When observing homography as an inverse problem,
it is easy to scan through the desired pixel grid and choose the
closest pixel from the original frame. Forward homography
processes a pixel stream, and the system can determine the
closest position on the destination pixel grid. However, it
cannot determine if the current pixel in the stream is the best
option. Thus, pixels that are mapped to the same position are
overwritten and the last pixel that appears in the stream will be
considered as the correct one. Hence, the PSNR is significantly
decreased. This problem is even more emphasized in modern
high-resolution cameras when hundreds of pixels are mapped
into a single one, which is shown in the results section.

We developed a new homography estimation algorithm to
overcome this issue. Equation (2) expresses the projection of a
point in the 3D space onto the image plane. The first step of the
algorithm is to back-project the pixels from the image frame.
Each pixel d is back-projected into a line l in a 3D world that
includes the focal point (projection center) Oc. The line is
illustrated in Fig. 2 and expressed by the inverse of Equation
(2):

l = M+ [ d 1 ]
⊤

(3)

where M+ denotes a Moore-Penrose pseudoinverse of the
projection matrix. Thus, back-projection results in a set of lines
(light rays), where each of them contains the focal point of the
lens. In order to obtain 3D world coordinates, we should define
a back-projection surface. We choose a unit sphere, |r| = 1, for
the purpose of panorama construction. Other options include
a cylindrical projection, or a planar projection for image rec-
tification or disparity estimation applications. Back-projection
onto the unit sphere is performed by normalizing the line l by
its L2 norm, and transforming Cartesian (x, y, z) coordinates
into spherical (θ, φ, r), where θ is the polar angle, φ is the
azimuth, and r is the radius:
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Fig. 3. The pixelized hemisphere on which the pixels are back-projected
is shown on the left. The hemisphere can be unwrapped into an equivalent
planar image shown on the right. The back-projection problem is regarded
as homography between the original image coordinate system (source frame)
and the unwrapped hemisphere (destination frame).

Xsph = l / ||l||2
θ = arccos (Xsph(z))

φ = arctan (Xsph(y)/Xsph(x))

|r| = 1

(4)

The spherical pixel grid is defined by the equidistant angles
(θs, φs, 1), where each pixel corresponds to a single angle pair.
Fig. 3 shows a pixelized sphere and its unwrapped, planar
representation.

The camera projection matrix M is obtained by camera
calibration and the back-projection pixel grid (θs, φs) is de-
fined a priori. If Xsph is the back-projected pixel, and Xs is
the desired pixel on the hemispherical pixel grid, we define a
projections error as:

e = ||Xsph −Xs||2 (5)

Afterwards, we find a threshold value ǫ, such that at least
one distinct back-projected pixel Xsph exists for each grid
pixel Xs with the error e ≤ ǫ ≤ ∆√

2
, where ∆ is the distance

between two pixels on the hemisphere.

Five outcomes are possible in a 2D homography depending
on the source and destination pixel positions. The simplest
one is a 1-to-1 mapping when each pixel from the source
frame maps to one in the destination frame. Furthermore, 1-
to-0 and 0-to-1 are also possible, when the source pixel does
not have a corresponding pixel in the destination frame, and
vice versa. These three mappings are trivial cases and they
will not be considered in the analysis. Complex 1-to-N and
N -to-1 mappings occur when destination and source frames
are oversampled, respectively. A possible real-time solution
for 1-to-N mapping is suggested in [8]. However, a real-time
solution with high PSNR has not yet been presented for N -to-1
mapping.

We resolve the 1-to-N mapping in the estimation algorithm
by choosing the optimal ǫ. The optimal ǫ value ensures a
distinct source pixel for each ǫ-neighborhood in the destination
frame. Hence, a 1-to-N mapping is replaced by N 1-to-1
mappings.

Oppositely, ǫ value should be kept as low as possible in
order to efficiently resolve N -to-1 mappings. The problem that
arises in forward homography is that the N th pixel in the
stream is considered as the correct, unless a full mapping is

Source frame Destination frame

εΔ

Fig. 4. Possible results of the proposed forward homography estimator.
Intersections of black lines represent source and destination grid pixels,
whereas red lines and dots are projections and projected pixel locations.
The blue circles of radius ǫ mark the area in which the projected pixels are
considered correct. When more than one pixel is within the blue circle, value
of the last pixel in the incoming pixel stream is assigned to the pixel in the
circle’s center.

stored in internal LUT or external memory. Thus, the optimal
ǫ is the lowest value that ensures 1-N resolving. Reduction of
the ǫ value in the proposed estimation, also reduces the number
of pixel candidates to M < N . The benefit of this reduction is
two-folded: 1) increased chance of choosing the optimal pixel,
and 2) lower error and higher PSNR when non-optimal pixel
is chosen.

The homography between the image frame and unwrapped
hemispherical surface is shown in Fig. 4. Intersections of black
lines represent pixel positions on the respective grids. Red
dashed lines illustrate homography between two frames, and
red dots are projected pixel positions in the destination frame.
Distances between red points and the closest intersection of
black lines is the corresponding error e. The blue circles mark
the ǫ-neighborhood in which projected pixels are considered
as potential candidates for the final pixel value.

Fig. 4 illustrates two different cases of N -to-1 homography.
Two source pixels on the left are mapped to the vicinity of a
single destination pixel. The ǫ-neighborhood around the central
destination pixel is set such that only one of the mapped
pixels is inside the circle. Hence, the central destination pixel
is given the value of the pixel inside the circle, which is
indeed the closest projected pixel. In another situation, three
pixels on the right side of the source frame are projected
around one destination pixel. Two projections are inside the ǫ-
neighborhood and one of them will be chosen as the destination
pixel, i.e. the last one read out from the sensor.

IV. FPGA IMPLEMENTATION

An FPGA-based system is developed for the purpose of
prototyping the real-time forward homography estimation. The
full system architecture is shown in Fig. 5. The camera
provides pixel values p in the raster scan order, i.e. line-
by-line. Image is acquired using a single CMV20000 sensor,
which outputs 20 Mpixels frames at maximum 30 frames per
second (fps) rate. Pixels are streamed out of the camera as
serialized 12-bit raw Bayer data. The Camera Interface block
in Fig. 5 deserializes the pixel values and performs image pre-
processing operations, such as white balancing and demosaic-
ing. Additionally, an internal counter generates horizontal and
vertical coordinates (u, v) of the processed pixel in the image
frame (Fig. 2).



Camera

External

Memory

M
u

lt
i-

P
o
rt

M
em

o
ry

 C
o
n

tr
o
ll

er

C
a

li
b

ra
ti

o
n

 D
a

ta

P
ro

ce
ss

o
r 

B
u

s

Application Unit

USB / DVI

Controller

FPGA

Camera

Interface

Forward

Homography

Estimator

PC / Display

θ, φ, p

u, v, p p

θ
s 
, φ

s

M +

ε

Fig. 5. Top-level FPGA architecture of the implemented system with the
external peripherals. Dataflow is denoted by arrow directions.

Calibration Data block contains a bank of software acces-
sible registers, and it is accessed by a MicroBlaze softcore
microprocessor. The data stored in registers is obtained through
the processes of intrinsic and extrinsic camera calibration and
projection matrix calculation. The calibration data comprises
the lens focal length f , sensor’s central point position (u0, v0),
the rotation matrix R, and the translation vector c. These
four parameters are used to calculate the projection matrix
M and its pseudo-inverse. Only the elements of the pseudo-
inverse matrix M+ are stored in the registers of the Calibration
Data block, since they are required for forward homography
estimation.

The real-time image processing is realized inside the Appli-
cation Unit. We implement the spherical panorama projection,
which provides pixel positions on the spherical grid (θs, φs)
to the Forward Homography Estimator (FHE). Since only one
camera is connected in the current implementation, the final
panorama results in a reduced field-of-view.

Internal architecture of the Forward Homography Estimator
is shown in Fig. 6. Subtraction of the camera center point
position translates the image frame origin to the frame center.
Different row vectors of the matrix M+ are provided to the
dot product blocks, that evaluate the matrix multiplication in
(3). A single dot product block in Fig. 6 is implemented as
a pipelined multiply-accumulate unit in order to increase the
speed performance of the system.

Equation (4) expresses the hemispherical back-projection
and coordinate system change from Cartesian to spherical.
The L2 norm sub-block in Fig. 6 consists of two consecutive
square root calculations. The square root module implements
a CORDIC algorithm in the vectoring mode, which calculates
the L2 norm of its two inputs, i.e.

√
a2 + b2. The dividers for

coordinate normalization are implemented using the iterative
fast Anderson algorithm [15]. The transformation of coordinate
system requires evaluation of inverse trigonometrical functions
arctan and arccos. The spherical angles (θ, φ) are calculated
by applying the CORDIC algorithm to the Cartesian coordi-
nates, as illustrated in Fig. 6.

The Application Unit provides information on the desired
pixel grid . The error e from (5) is evaluated by the identical
square root module used for the previous L2 norm calcula-
tions. The error is compared to the pre-calculated ǫ, which is
provided by MicroBlaze through a software accessible register.
Output of the comparator serves as the output enable signal
for a set of output registers, and as a write enable signal for
the Multi-Port Memory Controller.

The FHE is a fully pipelined block. Each computation is
followed by a register to shorten the critical path and increase
the maximum frequency. Furthermore, each sub-block, e.g.
dot product, square root, or trigonometric functions, is also
pipelined providing a very fast operation of the system. The
pipeline registers are not shown in Fig. 6.

A. Reconfigurability

The presented system is highly reconfigurable and has
five degrees of freedom: camera resolution and frame rate,
display frame resolution, projection surface, and the number of
cameras. Fully pipelined processing allows change of camera
resolution and frame rate even during the operation. The
counter in the Camera Interface block uses horizontal and
vertical synchronization signals from the camera to properly
reset u and v values, hence it does not require resolution and
frame rate information neither during synthesis, nor in run
time. Modifying the display resolution or projection surface is
performed in MicroBlaze and it does not influence the internal
architecture of the FHE. MicroBlaze recalculates inverse M+

of the projection matrix and the optimal ǫ, whereas operation
of the FHE remains unchanged.

Additionally, the system can be reconfigured to support
more than one camera. Multiple Camera Interface and FHE
blocks can be instantiated and operated in parallel and indepen-
dently. Thanks to the parallel operation, the maximum number
of cameras is not constrained by system’s performance, but by
number of I/O pins and external memory bandwidth.

Furthermore, the proposed forward homography estimation
is not dedicated to the developed prototype, and it can be used
in any real-time system requiring image projections.

V. EXPERIMENTAL RESULTS

The proposed FPGA design is implemented on a Xilinx
Virtex-5 XUPV5-LX110T Evaluation Platform. A CMOSIS
CMV20000 camera is mounted on a custom designed PCB,
which is connected to the evaluation board. A photograph of
the built setup is shown in Fig. 7. FPGA utilization summary
of the FHE block and comparison with the designs that can
perform the same function is given in Table I. The utilization
reports were taken from the original publications. Even though
these designs present their results for the image rectification
applications, they are essentially implementations of forward
homography. All of the compared works implement LUT-
based methods, and hence require a lot of on-chip or off-
chip memory. The proposed design uses less than 2% of
the available LUTs and flip-flops on the used FPGA, and
no internal nor external memory. Slightly higher utilization
in terms of FPGA logic is due to real-time calculation of
homography. The advantage of this design over the LUT-based
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Fig. 6. Internal architecture of Forward Homography Estimator. The presented hardware evaluates expressions (3) – (5) using pipelined architecture. Pipeline
registers are not shown for better visibility. The sub-blocks for square root and trigonometric functions evaluation utilize the CORDIC algorithm, whereas the
fast Anderson algorithm [15] is used for implementation of the dividers.

Fig. 7. Setup of the prototype system. A custom-made PCB with the installed
image sensor is connected to the XUPV5 board with a VHDCI cable. A 50 mm
Nikon F-mount lens is installed on top of the sensor.

TABLE I. FPGA DEVICE UTILIZATION SUMMARY AND COMPARISON

FHE [6] [7] [8]

Platform Virtex-5 Virtex-5 Virtex-E Virtex-5

Resolution 5120×3840 1280×720 640×512 1024×768

LUTs 1848 N/A 2459 784

Registers 1422 N/A 2075 427

BRAM [kB] 0 1300 99 104

DSP48Es 32 N/A N/A N/A

methods is that it can support very high image resolutions
without any addition to the inferred hardware.

The measured maximum operating frequency of the im-
plemented system is 308.16 MHz, which allows the system
to process 15 fps of the full-resolution 20 Mpixels frames,
i.e. 295 Mpixels/s. Furthermore, the input image resolution is
reduced to 1024 × 768 for the purpose of comparison with

TABLE II. PSNR COMPARISON OF HOMOGRAPHY ESTIMATION

PSNR [dB] Downsampled Indoor Indoor Outdoor

Resolution 1024×768 5120×3840 5120×3840

FHE 42.20 42.03 38.44

[8] 39.58 36.72 33.41

[8]. The measured frame rate is 391 fps, compared to 347 fps
in [8].

The place and route tool reports a critical path through the
large adders in the dot product evaluation sub-block. These
adders utilize the FPGA logical elements, unlike multipliers
that infer DSP48 blocks. Thus, it is possible to further increase
the bandwidth by manually replacing the large adders with
faster DSP48 blocks.

Results of the proposed forward homography estimation
and its FPGA implementation are shown in Fig. 8(a) - 8(f).
Fig. 8(a) and Fig. 8(d) represent an indoor and an outdoor
scene at the input of the FHE system. Fig. 8(b) and Fig. 8(e)
show the reduced field-of-view spherical panorama, at the
output of the FHE system. Fig. 8(c) and Fig. 8(f) illustrate the
unwrapped sphere suitable for display on 2 Mpixels screens.

The image quality loss is also evaluated for FHE and
compared to the loss of LUT-based implementations. PSNR of
the image in Fig. 8(c) and Fig. 8(f) are calculated, considering
the inverse homography results as the ground truth images.
Resolution of the reconstructed frame is 1920 × 1080, and
region where the source frames are projected contains 87823
pixels.

Table II shows that the PSNR is increased compared to the
LUT-based methods even in low-resolution projections, such
as the downsampled Indoor image. Effects of the proposed ho-
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Fig. 8. Results of the proposed forward homography estimation: (a) and (d) The original 20 Mpixels Indoor and Outdoor images; (b) and (e) Outputs of the
forward homography estimator displayed as true spherical projections; (c) and (f) unwrapped spherical projections displayed as 1920 × 1080 pixels panoramas.

mography estimation are emphasized with large input images.
The PSNR of the full resolution Indoor image homography
suffers a negligible drop, while the PSNR of the LUT-based
method drops by 3 dB. The input image resolution does
not influence the PSNR thanks to the flexibility of the ǫ
parameter. The optimal error bound for the full resolution
image is ǫ = 0.0061, whereas ǫ = 0.11 for the low resolution
projection.

VI. CONCLUSION

In this manuscript, we presented a real-time forward ho-
mography estimation system. The proposed estimation is based
on bounding the projection error, and reducing the number of
incorrect pixels. The proposed FPGA implementation does not
require internal LUTs or external memory for large projection
data storage. The inferred hardware consumes a small amount
of resources and provides real-time output, without significant
loss in image quality. The presented estimation algorithm and
its implementation outperform the state-of-the-art systems in
terms of both system bandwidth and PSNR of the resulting
image.
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