
Containers and Aggregates, Mutators
and Isolates for Reactive Programming

Aleksandar Prokopec
EPFL, Switzerland

aleksandar.prokopec@gmail.com

Philipp Haller
Typesafe Switzerland

philipp.haller@typesafe.com

Martin Odersky
EPFL, Switzerland

martin.odersky@ep�.ch

Abstract
Many programs have an inherently reactive nature imposed
by the functional dependencies between their data and ex-
ternal events. Classically, these dependencies are dealt with
using callbacks. Reactive programming with first-class reac-
tive values is a paradigm that aims to encode callback logic
in declarative statements. Reactive values concisely define
dependencies between singular data elements, but cannot ef-
ficiently express dependencies in larger datasets. Orthogo-
nally, embedding reactive values in a shared-memory con-
currency model convolutes their semantics and requires syn-
chronization. This paper presents a generic framework for
reactive programming that extends first-class reactive val-
ues with the concept of lazy reactive containers, backed by
several concrete implementations. Our framework addresses
concurrency by introducing reactive isolates. We show ex-
amples that our programming model is efficient and conve-
nient to use.

Categories and Subject Descriptors D.3.2 [Programming
Languages]: Data-Flow Languages

General Terms Algorithms, Languages

Keywords reactive programming, reactive signals, reduc-
tion tree, reactive collections, isolates, reactive mutations

1. Introduction
Functional programming is a programming model of choice
for declarative, stateless, functional-style computations whose
output depends only on well-defined inputs available when
the program starts. However, in applications like discrete
event simulations, user interfaces, game engines or operating

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
Scala ’14, July 28-29, 2014, Uppsala, Sweden.
Copyright c© 2014 ACM 978-1-4503-2868-5/14/07. . . $15.00.
http://dx.doi.org/10.1145/2637647.2637656

system kernels encoding state into a functional programming
model can be cumbersome. Moreover, many programs are
reactive in nature – their inputs change or become available
during the execution of the program. Reactive programming
addresses these issues by introducing callback functions that
are called when inputs become available.

Classical reactive programs are sprinkled with callbacks.
It is hard to reason about properties of such programs, as
they lack the structure to identify information flow – their
algorithmic structure is obscured by unstructured callback
declarations. We identify various callback patterns and ex-
press them as higher-order functions parametrized by spe-
cific logic, making them equivalent to corresponding sets of
callbacks.

This approach is similar in spirit to the methodology seen
in functional programming. The arbitrary use of recursion is
abandoned there in favour of structured higher-order prim-
itives such as left and right folds, maps and filters. For re-
active programming the goal is to isolate patterns of call-
backs that should form the basis for writing programs. To
paraphrase Erik Meijer [6] in a slightly different context –
callbacks are the GOTO of reactive programming.

In this paper we describe a reactive programming frame-
work called Reactive Collections based on efficient func-
tional composition of reactive values and data structures.
Specific data structures support incremental queries that are
updated along with the data structure. Special care is taken
to show that event propagations run within optimal bounds.
In particular:

• We describe reactive data-types and their functional com-
position, focusing on manipulating mutable data.

• We show reactive aggregates that efficiently fold reactive
values by means of aggregation trees.

• We show generic data containers for reactive program-
ming, and discuss their event propagation complexities.

• We propose reactive isolates for concurrent reactive pro-
gramming, used to express and encapsulate concurrency.

Sections 2, 3 and 4 study reactive values and their usage,
generalize them to reactive containers and introduce reactive

isolates. Section 5 contains the evaluation for our model.
Section 6 discusses related work and Section 7 concludes.

Note that there is no motivation section in this paper.
Many reactive programming abstractions are shown and we
motivate each of them with usage examples as we go. One
abstraction will lead naturally to another and higher abstrac-
tions will be built in terms of simpler ones, intuitively evolv-
ing a more elaborate reactive programming stack.

2. Reactive values
We will build abstractions and design patterns for reac-
tive programming by means of a specific data-type called
Reactive[T]. A reactive of type T denotes a data-type that
may produce values of type T. We call such values events.

By itself, this data-type is not very useful, as there is
no way for the outside world to interact with the events it
produces. We therefore introduce the type Reactor[T] and
extend reactives with a method subscribe – instances of
reactors can be subscribed to events that reactives produce.
trait Reactor[T] {

def react(value: T): Unit
def unreact(): Unit }

trait Reactive[T] {
def subscribe(r: Reactor[T]): Subscription }

The above constitutes the basis of what is called the ob-
server pattern. After subscribe is given a reactor, that reac-
tor’s react method is called each time the reactive produces
a new value. The return type Subscription is a value used
to unsubscribe that specific reactor.

We now turn to a concrete reactive – Reactive.Never,
which never produces an event. When a reactor subscribes
to it, its unreact is called immediately.
trait Never[T] extends Reactive[T] {
def subscribe(r: Reactor[T]) = {
r.unreact(); Subscription.empty } }

Another reactive called Reactive.Emitter produces
events when its emit method is called. Emitters are useful
when bridging the gap between existing polling-based APIs
and reactives. We factor out useful Emitter functionality
into a separate reactive called Default (here simplified).
class Default[T] extends Reactive[T] {
val reactors = Buffer[Reactor[T]]()
def subscribe(r: Reactor[T]) = {

reactors += r
Subscription { reactors -= r } }

def reactAll(value: T) =
for (r <- reactors) r.react(value)

def unreactAll() =
for (r <- reactors) r.unreact() }

class Emitter[T] extends Default[T] {
def emit(value: T) = reactAll(value)
def close() = unreactAll() }

2.1 Composing reactive values
The facilities provided so far are sufficient to express reac-
tive programs, but using them in large codebases results in

what is known as the callback hell, where the programmer
can no longer make sense of the semantics of the program.

Assume we have a reactive of mouse events and need to
react to only left clicks. Instead of sprinkling the callback
code with conditionals checking which button was pressed,
we construct a new reactive value that only produces left
clicks.

val leftClicks =
clicks.filter(ev => ev.button == Mouse.Left)

The filter method returns both a reactive and a reactor.
It subscribes to its parent reactive as if it were a reactor and
produces only events that pass the user-specified predicate:

class Reactive[T] { self =>
def filter(p: T => Boolean) =

new Default[T] with Reactor[T] {
def react(value: T) =
if (p(value)) reactAll(value)

def unreact() = unreactAll()
self.subscribe(this) } }

A plethora of useful reactive combinators is defined in
this way – map, union, concat, until or after, to name
a few. The after operator ignores events of this reactive
until an argument reactive produces an event, and until

does the opposite. We single out the scanPast combinator
[1] that scans over the past events, much like the functional
scanLeft combinator scans values of a list.

def scanPast[S](z: S)(op: (S, T) => S) =
new Default[S] with Reactor[T] {
var last: S = z
def react(value: T) {

last = op(last, value); reactAll(last) }
def unreact() = unreactAll()
self.subscribe(this) }

The scanPast combinator be used to express other com-
binators like the total event count:

def total = scanPast(0) { (n, ev) => n + 1 }

Detecting scroll events using callbacks is cumbersome,
but reactive combinators make it straightforward. Scrolling
is essential when displaying zoomed parts of a picture, web
page or a large document. A reactive scrollEvents of
scrolls produces differences in coordinates on the screen that
are triggered by dragging the mouse. Dragging starts when
the user presses a mouse button and stops once it is released.

Assume first a MouseEvent has the last cursor position
xy and information on whether a button is down. First, we
need to extend mouse events with the information if the drag
has just started – we use Stat objects for this purpose.

class Stat(xy: (Int, Int), down: Boolean,
started: Boolean)

We will scan the reactive of mouse events into a reactive
of status updates stats. Next, we will filter only those
statuses for which the mouse button is pressed, as only
those comprise dragging – we call these statuses drags. To

go from dragging to scrolling means to produce a reactive
of scrolls that hold that last and current dragging position.
The final step is just mapping a sequence of scrolls into
coordinate diffs. The complete example is shown below:

class Scroll(last: (Int, Int), cur: (Int, Int))
def scrollEvents(ms: Reactive[MouseEvent]) = {
val zstat = Stat((0, 0), false, false)
val stats = ms.scanPast(zstat) { (st, ev) =>
Stat(ev.xy, ev.down, !st.down && ev.down) }

val drags = stats.filter(st => st.down)
val zscroll = Scroll((0, 0), (0, 0))
val scrolls = drags.scanPast(zscroll) {

(scr, drag) =>
if (drag.started) (drag.xy, drag.xy)
else (scr.cur, drag.xy) }

scrolls.map(scr => scr.cur - scr.last) }

A reactive of the current screen position then becomes:

scrollEvents(mouse).scanPast((0, 0)) {
(pos, diff) => pos + diff }

That said, the application rendering logic might want to
read the current scroll position at any time, and not as the
events arrive by subscribing to this reactive. For this we
introduce a special type of a reactive – we discuss this next.

2.2 Reactive signals
Reactive signals are a special kind of reactive values that
cache the last event. The apply() method allows accessing
this last event, i.e., the signal’s value:

trait Signal[T] extends Reactive[T] {
def apply(): T }

When a signal produces an event, we say that its value
changed. A Signal.const never changes its value.

def const[T](v:T) = new Never[T] with Signal[T]
{ def apply() = v }

Some reactive combinators return signals instead of reac-
tives. In fact, the result of the scanPast method is already
a signal in disguise, so we change its return value. Lifting a
reactive into a signal with an initial value z then becomes:

def signal(z: T): Signal[T] = scanPast(z) {
(last, current) => current }

Some reactive combinators are specific to reactive sig-
nals. The reducePast combinator is similar to scanPast,
but it takes the current value of the signal as the initial value:

def reducePast(op: (T, T) => T) =
scanPast(apply())(op)

The past2 combinator produces the previous signal value:

def past2: Signal[(T, T)] = scanPast
((apply(), apply())) { (p, v) => (p._2, v) }

The zip combinator takes the current signal self, an-
other signal that, and a merge function f, and produces a
signal of zipped values. Unlike union that outputs events
produced by either reactive, zip relies on the current value
to merge the values of both signals when an event arrives:

def zip[S, R](that: Signal[S])(f: (T,S) => R) =
new Default[R] with Signal[R] {
val self = Signal.this
var last = f(self.apply(), that.apply())
var live = 2
def apply() = last
def decrease() {

live -= 1; if (live == 0) unreactAll() }
self.subscribe(new Reactor[T] {

def react(v: T) {
last = f(v, that()); reactAll(last) }

def unreact() = decrease() })
that.subscribe(new Reactor[S] {

def react(v: S) {
last = f(self(), v); reactAll(last) }

def unreact() = decrease() }) }

Dependencies between reactives and signals induce a
dataflow graph in which events flow from event sources
like emitters seen earlier to reactives created by combinators.
Combinators zip and union are the only combinators shown
so far that merge nodes in this graph rather than branching
out, but they work on only two signals. A more powerful
combinator called Signal.aggregate merges any number
of signals. Implementing reactive aggregates as a chain of
zip calls results in a chain of updates of an O(n) length:

def aggregate[T](ss: Signal[T]*)(f: (T,T)=>T) =
ss.reduceLeft { (_ zip _)(f) }

Above we apply the reduceLeft operation [6] to zip

the signals. This is unsatisfactory – if the first signal in ss

changes, values of all the other signals need to be reduced
again. A better scheme organizes signals into a balanced tree
to ensure at most O(log n) updates when a signal changes.
Signals from ss are leaves in this tree and inner nodes are
zipped consecutive pairs of signals. Signal.aggregate

constructs the tree by levels starting from the leaves and
going up to the root. We use the list grouped combinator
that produces a new list of pairs of consecutive values.

def aggregate[T](ss: Signal[T]*)(f: (T,T)=>T) =
if (ss.length == 1) ss(0) else {

val pairs = ss.grouped(2).map { pair =>
if (pair.length == 1) pair(0)
else pair(0).zip(pair(1))(f) }

aggregate(pairs)(f) }

The signal shown above works for an arbitrary set of input
signals, but this set is fixed when the signal is created. It is
therefore called a static reactive aggregate.

def invAggregate[T](ss: Signal[T]*)
(f: (T, T) => T)(inv: (T, T) => T) =
new Signal[T] with Default[T]
with Reactor[(T, T)] {
var last = ss.foldLeft(ss.head)(f(_, _()))
var live = ss.length
def apply() = last
def react(v: (T, T)) {

last = op(inv(last, v._1), v._2) }
def unreact() {

live -= 1; if (live == 0) unreactAll() }
for (s <- ss) s.past2.subscribe(this) }

An O(1) static aggregate invAggregate exists given an
inverse inv of the associative merge function f [4]. In other
words, elements of T and f must form a group. This aggre-
gate uses the merge inverse to update its value.

2.3 Higher-order reactives
Higher-order reactive values are best motivated by an exam-
ple. Let’s assume we are developing a game engine in which
the player moves through open and closed virtual areas. We
want to express the light intensity as a function of the player
position and the time of day. In the outside areas the light
depends on the time of the day, in the inside it is constant:

val out: Int => Double = h => sin(2*Pi*h/24)
val in: Int => Double = h => 0.5
val light: Reactive[Int => Double] =
position.map(p => if (isIn(p)) in else out)

val intensity: Reactive[Double] =
hours.zip(light) { (h, f) => f(h) }

This is unsatisfactory because it constraints all light

contributions to be functions of the current hour. This is
reflected in the type Reactive[Int => Double] of light.
If we want to change the intensity inside so that it depends
on the number of windows or candles, we have a problem.

The advantage of the Reactive type is that it encodes
events it produces, but not inputs it depends on, as is the case
with functions. We encode both out and light differently:

val out: Reactive[Double] =
hours.map(h => sin(2 * Pi * h / 24))

val in: Reactive[Double] = const(0.5)
val light: Reactive[Reactive[Double]] =
position.map(p => if (isIn(p)) in else out)

The light type is now Reactive[Reactive[Double]]

– we call light a higher-order reactive since the events it
produces are other reactive values, similar to how higher-
order functions include other functions as part of their type.
The question is: how do we pull the light intensity updates
Double from the nested reactive? We could do the following:

val intensity = new Emitter[Double]
light.subscribe { (r: Reactive[Double]) =>
r.subscribe(i => intensity emit i) }

That is clumsy – we even forgot to unsubscribe from the
nested reactives. What we want is to multiplex the events
from the current nested reactive, much like the digital mul-
tiplexer circuit produces values based on the control signal.
Here, the control signals are the events Reactive[Double]
produced by the outer reactive. We rely on a combinator mux
that allows declaring the intensity as follows:

val intensity: Reactive[Double] = light.mux

This allows replacing the inside light intensity const

(0.5) with an arbitrary Reactive[Double] without affect-
ing the rest of the codebase. The mux combinator exists only
on higher-order reactives, but it is not the only higher-order
combinator. Recall the dragging example from Section 2.1 –
higher-order reactives allow expressing it more intuitively:

val down = mouse.past2
.filter(e => !e._1.down && e._2.down)

val up = mouse.past2
.filter(e => e._1.down && !e._2.down)

val drags = down.map(_ => mouse.until(up))
drags.map(ds => ds.map(_.xy).past2.map2(_ - _))

.concat

Here we isolate reactives of mouse presses down and
releases up. The mouse drags are then sequences of mouse
events between the next mouse press down and before the
subsequent mouse release up. The postfix concat operator
above concatenates nested reactives of drags together into
scrolls. Only after one sequence of drags unreacts, the
events from the next nested sequence of drags are taken.
Similarly, the postfix union operator applied to a higher-
order reactive produces a reactive with the events from all
the nested reactives, but imposes no ordering on the nested
reactives.

2.4 Reactive mutators
Reactive programming models typically strive towards declar-
ative style and shun mutable state. However, current APIs
expose side-effecting operations and mutability. Future APIs
might be entirely reactive or might partially expose mutable
state, but in either case, having a way to deal with muta-
bility is currently useful. Furthermore, allocating immutable
event objects for reactives on the heap, as shown so far, can
be costly. For example, a simple real-time 3D game engine
typically requires eight 4 × 4 double precision matrices.
Allocating these matrices in each frame requires allocating
60kB of memory per second. If the reactives that produce
these matrices are used in combinators to produce other re-
actives these 60kB are multiplied as many times. Moreover,
there are other types of objects that are even more expensive
to allocate. Most automatic memory management systems
are currently limited when delivering smooth performance
in real time systems with excessive allocations.

The same mutable object should therefore be reused for
multiple events. In the case of transformation matrices, we
would like to recompute the elements of the model-view
matrix at each frame depending on the viewing angle:
angle.mutate(modelviewMatrix) {
(m, a) => setUsingAngle(m, a) }

All the mutation events must be produced by a single
signal that encapsulates the mutable object. A signal that
holds such a mutable object is called a mutable signal.
class Mutable[M](val m: M) extends Signal[M]
with Default[M] { def apply() = m }

The modelviewMatrix is a signal that wraps a matrix
object m. The object m can only be modified with mutate:
def mutate[M](s: Mutable[M])(f: (M, T)=>Unit) =

{ f(s.m); s.reactAll(s.m) }

Mutable signal declarations allow back edges in the
dataflow graph and can cause infinite event propagations:

val fibonacci = new Mutable(Array[Int](0, 1))
val nextFibo = fibonacci.map(a => a.sum)
nextFibo.mutate(fibonacci) { (a, s) =>

a(0) = a(1); a(1) = s }

As soon as one of the last two Fibonacci numbers changes,
the next Fibonacci is computed. This updates the last two
Fibonacci numbers and the process begins again. A reac-
tion from a mutable signal triggers a feedback event and
Fibonacci numbers are computed forever. Mutability al-
lows infinite event propagation in this reactive programming
model. A natural question arises – can we express mutability
without mutable signals, or are mutable signals its necessary
precondition? In other words, can we express a mutable cell
that produces events without mutable signals? It turns out
that mutability was hidden all the time – a ReactCell is a
union of functionality in signals, which inspect the current
value, and emitters, which produce events with emit.

def ReactCell[T](v:T): (Emitter[T],Signal[T]) =
{ val emitter = new Emitter[T]
(emitter, emitter.signal(v)) }

We implement ReactCell separately and name the cell
mutator :=, to honour the creators of ALGOL and Pascal.

class ReactCell[T](var value: T)
extends Default[T] {

def apply() = value
def :=(v: T) { value = v; reactAll(v) } }

One can consider the reactive cell a very limited form of
a collection, i.e., a data container. This particular container
consists of a single element at all times, but, unlike common
containers, allows reactions whenever this element changes.
We will see more powerful forms of such containers next.

3. Reactive containers
A data structure is a way of organizing data so that a par-
ticular operation can be executed efficiently. Efficiency here
may refer to running time, storage requirements, accuracy,
scalability, energy consumption, or a combination thereof.

How data structures are related to reactive programming
is best shown using an example. Given an image raster, an
image viewing application needs to know the changes in a
particular part of the raster to refresh the visible part of the
image on the screen. Assume that drawing a line changes the
state of n pixels. The application can simultaneously display
multiple parts of the image in r different windows – there
are r reactive dependencies on the image raster. Finally, each
such window shows m pixels of the image.

Reactives can produce events of any datatype – events
could be immutable data structures. However, representing
an image raster with any of the known immutable data struc-
tures is far from optimal. Mutable signals from Section 2.4
can store mutable data structures, but they are also unsatis-
factory. A mutable signal event does not encode which part
of the raster changed:

val img = new Mutable(new Raster(wdt, hgt))
for (i <- 0 until r)

img.subscribe(ra => refreshWindow(ra, i))

This updates all the windows and results in Θ(r ·m) up-
date operations each time n pixels change – it is potentially
much larger than the pixel changeset. Instead of updating all
the windows, we can do better by keeping a reactive of pixel
coordinates that change, and filter them for each window:
type XY = (Int, Int)
val raster = new Raster(wdt, hgt)
val img = new Emitter[(Int, Int)]
def update(xy: XY, c: Color) {

raster(xy) = c; img.emit(xy) }
for (i <- 0 until r)

img.filter(xy => withinWindow(xy, i))
.subscribe(xy => refreshPixel(xy, i))

This still requires Θ(r · n) updates, because r filter

operations are triggered for each raster update. An optimal
number of updates is bound by Ω(n) and O(r · n).
val raster = new Raster(wdt, hgt)
val img = new Matrix[Emitter[Color]](wdt, hgt)
for (xy <- (0, 0) until (wdt, hgt))

img(xy) = new Emitter[Color]
def update(xy: XY, c: Color) {

raster(xy) = c; img(xy).emit(c) }
for (i <- 0 until r; xy <- bounds(i))

img(xy).subscribe(c => refreshPixel(xy, i))

In the last example updating n raster pixels results in
notifying exactly n emitters, and each of them notifies up
to r reactors, but possibly less. This array of reactive cells
constitutes a simple data-structure – a way of organizing data
so that the reactions can propagate more efficiently.

Definition (Reactive container) Let r be the total number
of subscribers, n the update size and m the relevant event
space size. If a reactive value of data structure updates has
event propagation running time bounds Ω(n) and O(r · n)
we call it an efficient reactive value. A reactive container is
a data structure with at least one efficient reactive value, and
is represented with the ReactContainer[T] type.

3.1 Reactive associative containers
Associative containers, or maps, are data structures that store
pairs of keys and values, and efficiently retrieve and change
values mapped to specific keys. Sets are special cases of
maps where values carry no information. A ReactMap is a
map that exposes a reactive value keys of the modified keys.
trait ReactMap[K, V]
extends ReactContainer[(K, V)] {

def keys: Reactive[K]
def +=(k: K, v: V): Unit
def apply(k: K): Option[V] }

def reactHash[K, V] = new ReactMap[K, V] {
val data = new HashMap[K, V]
val keys = new Emitter[K]
def +=(k: K, v: V) {
data += (k, v); keys.emit(k) }

def apply(k: K) = data(k) }

This reactive map is lacking something. Imagine that we
use the reactive map in an OS to map monitors to threads cur-
rently holding them. At any point there are r threads waiting
for a monitor. When a monitor is assigned to a thread, the
thread must be notified. We use the keys reactive to do this,
with a Θ(r) propagation time for each notification:

val monitors = reactHash[Monitor, Thread]
def wait(thread: Thread, target: Monitor) =

monitors.keys.filter(
m => m == target && monitors(m) == thread

).subscribe(m => t.notify())

In the vocabulary of the previous section, this reactive
container does not expose a reactive value that propagates
update events in Ω(n) and O(r·n) bounds, where n is the up-
date size and r is the total number of subscribers. In this case
n = 1, since an update always changes a single mapping, so
updating monitors should only trigger 0 ≤ r0 ≤ r event
propagations, where r0 is the number of threads waiting for
a particular monitor. The filter expresses subscribing to
one specific monitor. Filtering is inefficient, so we add the
reactive.apply method to ReactMap, to allow reacting to
a particular key:

def wait(t: Thread, target: Monitor) =
monitors.reactive(target)

.filter(m => monitors(m) == t)

.subscribe(m => t.notify())

Subscriptions in wait are only as efficient as reactive

.apply. To ensure that reactive.apply event propagation
time is Ω(1) and O(r) we store an emitter for each key.

trait ReactMap[K, V]
extends ReactContainer[(K, V)] {
def keys: Reactive[K]
def +=(k: K, v: V): Unit
def apply(k: K): Option[V]
def reactive: Lifted }

trait Lifted[K] { def apply(k: K):Reactive[K] }
def reactHash[K, V] = new ReactMap {
val data = new HashMap[K, V]
val perkey = new HashMap[K, Emitter[K]]
val keys = new Emitter[K]
val reactive = new Lifted {

def apply(k: K) = perkey(k) }
def +=(k: K, v: V) {

data += (k, v)
perkey.getOrUpdate(k, new Emitter).emit(k)
keys.emit(k) }

def apply(k: K) = data(k) }

There is a correspondence between the apply method
that returns the scalar value at the specified key, and the re-
active variant of the apply method that returns the reactive
of the specified key. We will refer to the process of convert-
ing a data structure query into a reactive signal as reactive
lifting, and call these signals reactive queries. Making reac-
tive queries efficient reactive values requires data structure-
specific knowledge, as was shown with hash maps.

3.2 Reactive aggregates
Recall that Section 2.3 introduced the higher-order reactives
– special reactive values that produce events of other reac-
tive values. This increase in complexity surprisingly lead to
shorter and more concise programs. Reactive containers can
also be higher-order – they can contain reactive values and
other reactive containers. Again, how this is useful is best
motivated by a concrete example. Consider the game engine
from Section 2.3 one more time. In the previous example we
expressed the light intensity as a higher-order reactive that
produces either the light intensity outside or inside. In a real
game, the rules of computing scene brightness are more dy-
namic. Next to a fire even the darkest night appears bright.
A flash of a lightning is short, but brighter than a sunny day.
The tavern in the night grows darker as you move away, but
wielding a sword against a rock gives sparkles of light.

We identify several dependencies above – position, activ-
ity, weather conditions, proximity to light sources and cur-
rent time. As discussed in Section 2.3, expressing lights as
functions requires encoding their input and violates separa-
tion of concerns. We encode each light source as a signal:

def pulse(t: Millis) = time.millis.until(at(t))
val outside = time.hours.map(lightAtHour)

.zip(weather)(lightAtWeather)
val flash = pulse(90.ms).map(t=>exp(-t/30.ms))
val fire = player.position.map(p=>dist(fire,p))
val sparks = action.filter(isWielding)

.map(a => pulse(90.ms)).union

New signals could be dynamically added to a container:

val lights = ReactSet.hashMap[Signal[Double]]
lights += outside += flash += fire += sparks

However, a set only allows querying if a signal is present
and we need to compute the gross intensity using the screen
blend mode. Based on insights from Sections 2.2 and 2.3 we
can produce a signal by aggregating values of all the lights:

def blend(a: Double, b: Double) = 1-(1-a)*(1-b)
val lights = new ReactCell(
List(outside, flash, fire, sparks))

val intensity =
lights.map(ls => aggregate(ls)(blend)).mux

The intensity is a dynamic reactive aggregate – an ag-
gregate whose value is not bound to a fixed set of signals.
Reassigning to lights ensures that the intensity is appro-
priately recomputed. As argued in Section 2.2, this particu-
lar aggregate is inefficient – changing the set of the signals
or any signal value requires O(s) updates, where s is the
total number of signals. We now show a dynamic reactive
aggregate with O(log s) event propagation time.

Similar to the static aggregate from Section 2.2, a dy-
namic aggregate uses a balanced tree and assigns signals to
leaves. When a signal changes, O(log s) values on the path
to the root are updated. Correspondingly, when a new sig-
nal is added, the tree is rebalanced in O(log s) time. This
commutative aggregation tree is shown in Figure 1.

class CommuteTree[S, T](
val get: S => T, val z: T, val op: (T, T) => T

) extends Signal[T]
with Default[T] with ReactContainer[S] {
private val leaves = new HashMap[S, Leaf]
private var root: Node = new Empty
trait Node {

def depth: Int
def above: Inner
def apply(): T
def add(leaf: Leaf): Node
def pushUp() {}
def housekeep() {} }

class Empty extends Node {
def depth = 0
def above = null
def apply() = z
def add(lf: Leaf) = lf }

class Leaf(s: S) extends Node {
def depth = 0
var above = null
def apply() = get(s)
override def pushUp() =

if (above != null) above.pushUp()
def add(leaf: Leaf) = {
val n = new Inner(1, this, leaf, null)
this.above = n
leaf.above = n
n.housekeep(); n }

def remove(): Node = {
if (above == null) new Empty
else {
if (above.left == this)
above.left = null

else above.right = null
above.fixUp() } } }

def pushUp(x: S) = {
val leaf = leaves(x)
leaf.pushUp()
reactAll(root()) }

def +=(x: S) = {
if (leaves(x) == null) {

val leaf = new Leaf(x)
root = root.add(leaf)
leaves(x) = Some(leaf)
reactAll(root()) } }

class Inner(
var depth: Int, var left: Node,
var right: Node, var above: Inner

) extends Node {
var value: T = _
def apply() = value
override def pushUp() {

value = op(left(), right())
if (above != null) above.pushUp() }

def fixHeight() =
depth = 1 + max(left.depth, right.depth)

override def housekeep() {
value = op(left(), right()); fixHeight() }

def add(leaf: Leaf) {
if (left.depth < right.depth) {

left = left.insert(leaf)
left.above = this }

else {
right = right.insert(leaf)
right.above = this }

housekeep()
this }

def contractLeft(): Node = {
if (above == null) {

right.above == null
right

} else {
if (above.left == this) above.left = right
else above.right = right
right.above = above
right } }

def fixUp(): Node = {
val n = {
if (left == null) contractLeft()
else if (right == null) contractRight()
else rebalance() }

n.housekeep()
if (n.above != null) n.above.fixUp()
else n } }

def apply(): T = root.apply()
def -=(x: S) {
val leaf = leaves(x)
if (leaf != null) {
root = leaf.remove()
leaves(x) = None
reactAll(root()) } } }

Figure 1. Commutative aggregation tree implementation

The commutative aggregation tree is a signal of events T
and a reactive container of type S simultaneously. As a sig-
nal, it produces events when the aggregation is updated. As
a container, it has += and -= methods. The get parameter
transforms container values S to aggregation values T. The
pushUp method can be used to update the tree if the aggre-
gation value of some container value changes – this method
climbs the tree and updates the values of nodes on the path
to the root. After checking if the value is already present, +=
updates the root by adding a new leaf with add.

The tree consists of three types of nodes – an Empty

node, a Leaf node and an Inner node. At any point the

root might be an empty node or a balanced tree of inner
and leaf nodes. Each node type has a value apply that
returns the aggregation in the corresponding subtree. Empty
nodes return the neutral element z, leaves call get on the
corresponding value S and inner nodes return the cached
aggregation in their subtree. Each node supports the add

operation that adds a new leaf and returns the modified tree.
Adding a leaf to an empty tree returns the leaf itself and
adding to a leaf returns an inner node with two children.
The tree maintains the following invariant – the absolute
difference in left and the right subtree depths is less than
or equal to 1. Also, the inner nodes have a non-null left and

right child. To maintain these invariants, adding to an inner
node adds the new signal to the subtree with fewer elements.
Adding a single signal increases the height of the subtree by
at most one, so the tree is guaranteed to be balanced after
the add returns. The fact that there are no tree rotations may
be surprising, but this follows from the lack of ordering. The
tree is called CommuteTree for a reason – it works correctly
only given that the aggregation operator is a commutative
monoid. It is easy to check that the screen blend mode is
commutative, associative and has a neutral element 0.0.

Removing a signal from the tree with -= removes the
corresponding leaf. First, the leaf nulls out its reference in
the parent. Then, all inner nodes on the path from the leaf
to the root are fixed in fixUp. The fixUp method climbs
the tree and restores the invariants. If it detects that a child
is null, it calls contractLeft to eliminate the inner node.
Otherwise, it calls rebalance to restore the depth invariant.

A commutative reactive aggregate is a higher-order con-
tainer that uses the commutative aggregation tree:

class CommuteAggregate[T]
(val z: T, val op: (T, T) => T)

extends Signal[T] with Default[T]
with ReactContainer[Signal[T]] {
val tree = new CommuteTree(s => s(), z, op)
def +=(s: Signal[T]) = {
tree += s; s.subscribe(tree.pushUp(_)) }

def -=(s: Signal[T]) = tree -= s
def apply() = tree() }

We rewrite our previous example to use this aggregate:

val intensity = new CommuteAggregate(0, blend)
intensity += outside += flash += fire += sparks

The motivating example for reactive dynamic aggregates
has the property that the aggregation operator is commuta-
tive. In general, programs can require non-commutative op-
erators – the associative reactive aggregate MonoidAggregate
is similar to the commutative aggregate and achieves the

same event propagation time bounds, but is more complex –
its MonoidTree relies on tree rotations to maintain the rela-
tive order. We omit the implementation for brevity, but note
that its balancing strategy is similar to that of an AVL tree.

As an example of a non-commutative aggregation, as-
sume we have a large document with thousands of para-
graphs of text. Each paragraph is a signal of strings. We want
to display a list of search term occurrences in real time, up-
dated as the user modifies the document, so we implement
the reactive search using monoid aggregates:

type Parag = Signal[String]
def search(term: String,
doc: (Set[Parag], Reactive[Parag])) = {
val results =

new MonoidAggregate(Results.empty)(concat)
for (s <- doc._1)

results += s.searchFor(term)
doc._2.subscribe {

s => results += s.searchFor(term) }
results }

The search encodes the document as a tuple of existing
paragraphs and a stream of future ones. It is more natural
to encode it as a reactive Signal[String] set and then
construct a reactive aggregate. We study how to do this next.

3.3 Composing reactive containers
We saw how different reactive containers expose different
reactive queries, but are there queries common to all con-
tainers? Containers seen so far had methods += and -= that
allowed adding and removing elements. It is reasonable for
them to react when elements are inserted and removed, so we
extend the reactive containers with inserts and removes:

trait ReactContainer[T] {
def inserts: Reactive[T]
def removes: Reactive[T] }

These reactives allow expressing common container com-
binators. Container size, the count of elements satisfying a
predicate, exists and contains are as simple as:

def count(p: T => Boolean) =
new Signal[Int] with Default[Int] {
var n = scalarCount(p)
def apply() = n
inserts.subscribe { x =>
if p(x) { n += 1; reactAll(n) } }

removes.subscribe { x =>
if p(x) { n -= 1; reactAll(n) } } }

def size = count(x => true)
def exists(p: T => Boolean) = count(p).map(_>0)
def contains(y: T) = exists(x => x == y)

Operators above are aggregates with an operator that
forms an Abelian group, so they have O(1) event propa-
gation time. For operators that do not have an inverse, the
monoidFold uses the aggregation tree to produce a signal:

def monoidFold(z: T)(op: (T, T) => T) = {
val tree = new MonoidTree(z, op)
foreach(x => tree += x)
inserts.subscribe { x => tree += x }
removes.subscribe { x => tree -= x }
tree }

Methods monoidFold and commuteFold, are catamor-
phisms for reactive containers – they produces a single re-
active from a container of values. Their expressive power is
akin to foldLeft in functional programming [6].

Container combinators so far return reactive values, and
not reactive containers. We call such methods reactive
queries. The other class of combinators returns reactive con-
tainers. We call them reactive transformers. For example,
the map combinator is a transformer that takes an injective
mapping function and returns a mapped container:

def map[S](f: T => S) = new ReactContainer[S] {
val inserts = self.inserts.map(f)
val removes = self.removes.map(f) }

Reactive transformers such as filter, union and scan

are similarly expressed with inserts and removes. They

do not store the elements in memory – the resulting contain-
ers are lazy. This is efficient, but not extremely useful, as the
resulting containers support no reactive queries other than
inserts and removes. To force a lazy container into a con-
tainer with specific reactive queries, we rely on the builder
abstraction [7] [9]. All the containers so far had some form
of methods += and -= used the add and remove elements. We
factor these methods into an incremental builder. A special
transformer called to uses incremental builders to construct
a container from inserts and removes.

def to[R](b: ReactBuilder[T, R]) = {
foreach(x => b += x)
inserts.subscribe { x => b += x }
removes.subscribe { x => b -= x }
b.container }

trait ReactBuilder[T, R] {
def +=(elem: T): Unit
def -=(elem: T): Unit
def container: R }

Coming back to the example from Section 3.2, we can
express reactive document search in a more concise fashion:

def search(t: String, doc: ReactSet[Parag]) =
doc.map(p => p.searchFor(t))

.to[MonoidAggregate[Results]]

4. Reactive isolates
Shared-memory multithreaded programming is difficult to
master. Not only is it non-deterministic and prone to data
races, but traditional synchronization also allows deadlocks.

A careful reader will notice that the presented abstrac-
tions work correctly exclusively in a single-threaded pro-
gram. This is intentional – a signal or a reactive container
must only be used by the thread that created it. Still, utiliz-
ing parallel computing resources such as multicore CPUs is
crucial. Assume we want to implement a UI that needs to re-
act to mouse and key presses. We could repetitively poll for
input events, and forward them to a reactive emitter.

val mouse = new Reactive.Emitter[MouseEvent]
while (!terminated) pollMouseEvent() match {

case Some(me) => mouse emit me }

While this might be appropriate in a game engine that
repetitively updates frames anyway, it does not suffice when
the input API blocks or is callback-based. In these situations,
other events cannot propagate until a mouse event arrives.
A reactive framework has to express concurrency – a mouse
event must be able to arrive concurrently to a keyboard event.

Reactive isolates are control flow entities executed by
at most one thread at a time. If two events like a mouse
event and a keyboard event arrive at the same time, they are
enqueued in the isolate’s event queue and serially emitted
to the reactive called source specific to each isolate. By
extending the Isolate[T] type, we define a new isolate
template. In the following example the SimpleUI isolate
reacts to different types of UIEvents.

class SimpleUI extends Isolate[UIEvent] {
source.subscribe {
case MouseEvent(xy, down) => println(xy)
case KeyEvent(c) => if (c==’q’) exit(0) } }

Declaring an isolate template does not start an isolate.
Reactive Collections require an isolate system to start an
isolate:

def isolate[T](newIsolate: =>Isolate[T])
(implicit s: Scheduler): Channel[T]

An isolate system creates an isolate frame that encapsu-
lates isolate state – e.g. its name, event queue and its sched-
uler. It then creates the isolate’s channel – the entity which
delivers events to the isolate’s event queue. The event queue
is an internal data structure inaccessible to the programmer.
It enqueues and dequeues events in a thread-safe manner:

trait EventQueue[T] {
def enqueue(event: T): Unit
def listen(f: IsolateFrame[T]): Unit
def dequeue(): T }

The channel is the only connection to the isolate acces-
sible to the programmer. All events emitted to the channel
eventually end up on the event queue. However, events can-
not be sent to the channel directly – instead, reactive values
can be attached to the channel. After they are attached, the
channel can be sealed. An isolate terminates once its channel
is sealed and all the attached reactives unreact.

trait Channel[T] {
def attach(r: Reactive[T]): Channel[T]
def seal(): Channel[T] }

The isolate system implementation decides on a particu-
lar event queue and a channel implementation. The sched-
uler decides where and when to execute an isolate. After its
schedule method is called, it assigns the isolate frame to a
thread whenever its event queue is non-empty.

trait Scheduler {
def schedule[T](f: IsolateFrame[T]): Unit }

The scheduler can start an isolate on a pool of worker
threads, on a UI event thread, on a dedicated thread, piggy-
back the caller thread or even spawn a new process.

The event queue, the channel and the scheduler encap-
sulate three different facets of concurrency in Reactive Col-
lections. The event queue determines how to concurrently
buffer incoming events [10], the channel specifies how to
deliver events to the isolate and agree on its termination, and
the scheduler determines where and when to execute an iso-
late. While the first two are specific to the choice of an iso-
late system, the third is specified by the programmer when
starting an isolate.

5. Evaluation
We compared Reactive Collections against RxJava and
Scala.React implementations on an Intel i5-2500 3.30 GHz

1 1.5 2 2.5 3 3.5 4 4.5 5

·105

0

1

2

3

A Input size

ru
nn

in
g

tim
e/
m
s Reactive Colls

Rx
Rx - custom reduce

Scala.React

Figure 2. Performance of scanPast

quad-core CPU and JVM 1.7 on a simple scanPast mi-
crobenchmark. As shown in Figure 2, the Rx version was
slightly slower than Reactive Collections due to the lack of
primitive type specialization. Although this is currently not
addressed, Scala allows future versions of Rx to resolve this.
The immediate work-around in Rx is to implement a cus-
tom reduction observable using the Observable.create

method. This results in roughly the same performance in
Scala.React, RxJava and Reactive Collections.

To validate that Reactive Collections are practical in
larger systems we implemented a simplistic 3D game en-
gine, consisting of 8000 lines of user interface and game
logic code written in Scala, GLSL and the Reactive Col-
lections framework. Figure 3 shows the engine in action,
achieving 50 FPS at high resolution. The first column shows
the same scene at different times of the day where light
angle, color and intensity are expressed as reactive values
depending on the time of the day. By using mutable signals
for input events and transformation matrices we were able
to avoid most memory allocation and GC-related glitches.

Previously, we wrote the same codebase in a pure FRP
style where events were propagated by topologically sort-
ing the signals [3]. We rewrote the engine to the more asyn-
chronous reactive model in this paper. The amount of refac-
toring required was minimal and consisted of creating sev-
eral emitters for the phases in each frame. The rest of the
game and UI logic surprisingly stayed identical. This seems
to indicate that ordering may be overestimated in classical
FRP systems and that a minimal amount of programmer in-
teraction can ensure proper semantics.

6. Related work
Reactive programming is a programming paradigm focused
around propagation of values and the flow of data. Func-
tional reactive programming aims to express reactive depen-
dencies declaratively, and was established by the work of El-
liott and Hudak on Fran [2]. Elm [1], Rx [5] and other FRP
frameworks have no concept of containers.

Figure 3. Reactive game engine screenshots

Rx [5] is a reactive programming framework for com-
posing asynchronous and event-based programs using ob-
servable collections and LINQ-style query operators. There
are several differences with respect to Reactive Collections.
First of all, Rx observables can be shared between threads,
which can be convenient. Conversely, in Reactive Collec-
tions, a reactive can only be used inside one thread (more
generally, isolate), and events are propagated between iso-
lates through separate entities called channels. Rx observ-
ables have a special observeOn combinator that forwards
events to a custom event scheduler, which, in turn, may
be multithreaded. Reactive Collections use the isolate

method to bind specific sets of event propagations to a
scheduler. Different sets of event propagations communi-
cate through channel objects. Finally, Reactive Collections
allow using mutable objects as events inside reactives. Rx
also allows mutable objects in observables, but the program-
mer must guarantee that such events are never propagated to
other threads.

Scala.React [4] [3] is a reactive framework written in
Scala that aims to fully implement the FRP model. It intro-
duces the concept of opaque nodes that define signals as ar-
bitrary expressions of other signals – their dependencies are
dynamic and resolved during computation. This occasion-
ally requires rollbacks and makes signal computation slower.

Scala.React has a single reactive container called reactive
sequence [4]. Due to opaque signals, sequence combinators
are divided in two – slower variants that can use opaque
signals and their more efficient scalar versions. In Reactive
Collections, this division is avoided by relying on higher-
order containers such as aggregates.

Pinte et al. describe a distributed reactive framework
known as ambient clouds [8]. In ambient clouds the re-
active collections are considered volatile – there are no
atomic guarantees when querying and composing collec-
tions. Where Reactive Collections can distribute isolates us-
ing channels and build distributed collections on top of that,
in ambient clouds all reactive collections can be accessed
concurrently, trading performance and intuitive semantics
for convenience.

For reasons of space, in this paper we steered clear from
the topic of time and memory leaks [2]. Within our frame-
work we rely on the approach by Maier [3], in which signals
keep weak references to their reactors. This allows automat-
ically garbage collecting no longer reachable reactives.

7. Conclusion
Our reactive programming model is based on reactive values
and their functional composition. We showed how reactive
containers propagate events more efficiently than their coun-
terparts based on just reactive values. Finally, we introduced
reactive isolates to tackle concurrency. The abstractions in
this work can be expressed in terms of three basic primi-
tives: emitters, subscriptions and isolate creation. A calculus
that captures the Reactive Collections programming model
in terms and shows its expressive power is important future
work.

8. Acknowledgements
We would like to thank Erik Meijer for the discussions we
had, his useful advice and feedback on this work.

References
[1] E. Czaplicki and S. Chong. Asynchronous functional reactive

programming for GUIs. In PLDI, 2013.

[2] C. Elliott and P. Hudak. Functional reactive animation. In
ICFP, 1997.

[3] I. Maier and M. Odersky. Deprecating the Observer Pattern
with Scala.react. Technical report, 2012.

[4] I. Maier and M. Odersky. Higher-order reactive programming
with incremental lists. In ECOOP, 2013.

[5] E. Meijer. Your mouse is a database. CACM, 55(5), 2012.

[6] E. Meijer, M. M. Fokkinga, and R. Paterson. Functional pro-
gramming with bananas, lenses, envelopes and barbed wire.
In FPCA, 1991.

[7] M. Odersky and A. Moors. Fighting bit rot with types (expe-
rience report: Scala collections). In FSTTCS, 2009.

[8] K. Pinte, A. Lombide Carreton, E. Gonzalez Boix, and
W. Meuter. Ambient clouds: Reactive asynchronous collec-
tions for mobile ad hoc network applications. In J. Dowling
and F. Taïani, editors, Distributed Applications and Interoper-
able Systems, volume 7891 of Lecture Notes in Computer Sci-
ence, pages 85–98. Springer Berlin Heidelberg, 2013. ISBN
978-3-642-38540-7. . URL http://dx.doi.org/10.
1007/978-3-642-38541-4_7.

[9] A. Prokopec, P. Bagwell, T. Rompf, and M. Odersky. A
generic parallel collection framework. In EuroPar, 2011.

[10] A. Prokopec, H. Miller, T. Schlatter, P. Haller, and M. Oder-
sky. FlowPools: A lock-free deterministic concurrent dataflow
abstraction. In LCPC, 2012.

