
Recurrent Greedy Parsing with Neural Networks

Joël Legrand∗+ and Ronan Collobert+

∗Idiap Research Institute,

Rue Marconi 19, Martigny, Suisse

+Ecole Polytechnique Fédérale de Lausanne (EPFL)

Lausanne, Switzerland

joel.legrand@idiap.ch

ronan@collobert.com

Abstract. In this paper, we propose a bottom-up greedy and purely discrimina-

tive syntactic parsing approach that relies only on a few simple features. The core

of the architecture is a simple neural network architecture, trained with an ob-

jective function similar to that of a Conditional Random Field. This parser lever-

ages continuous word vector representations to model the conditional distribu-

tions of context-aware syntactic rules. The learned distribution rules are naturally

smoothed, thanks to the continuous nature of the input features and the model.

Generalization accuracy compares favorably to existing generative or discrimi-

native (non-reranking) parsers (despite the greedy nature of our approach), while

the prediction speed is very fast.

Keywords: Syntactic Parsing, Natural Language Processing, Neural Networks

1 Introduction

While discriminative methods are at the core of most state-of-the-art approaches in

Natural Language Processing (NLP), historically the task of syntactic parsing has been

mainly solved with generative approaches. A major contribution in the parsing field is

certainly probabilistic context-free grammar (PCFGs)-based parsers [1–3]. These types

of parsers model the syntactic grammar by computing statistics of simple grammar rules

occurring in a training corpus. Inference is then achieved with a simple bottom-up chart

parser. These methods face a classical learning dilemma: on one hand PCFG rules have

to be refined enough to avoid any ambiguities in the prediction. On the other hand, too

much refinement in these rules implies lower occurrences in the training set, and thus

a possible generalization issue. PCFGs-based parsers are thus judiciously composing

with carefully chosen PCFG rules and clever regularization tricks.

Given the success of discriminative methods for various NLP tasks, similar methods

have been attempted for the syntactic parsing task. One of the first successful discrimi-

native parsers [4] was based on MaxEnt classifiers (trained over a large number of dif-

ferent features) and a greedy shift-reduce strategy. However, it did not perform on par

with the best generative parsers of the time. Costa et al. [5] introduced a left-to-right

2 Recurrent Greedy Parsing with Neural Networks

incremental parser which used a recursive neural network to re-rank possible phrase

attachments. They showed that RNN was able to capture enough information to make

correct parsing decisions. Their system was, however, only tested on a subset of 2000

sentences. One had to wait a few more years before discriminative parsers could match

Collins’ parser performance. To this extent , Taskar et al. [6] proposed an approach

which discriminates the entire space of parse trees, with a max margin criterion applied

to Context Free Grammars. Other discriminative approaches [7, 8] also outperformed

standard PCFG-based generative parsers, but only by discriminatively re-ranking the

K-best predicted trees coming from a generative parser.

Turian and Melamed [9] later proposed a bottom-up greedy algorithm to construct

the parse tree, using a feature boosting approach. The parsing is performed following

a left-to-right or a right-to left strategy. The greedy decisions regarding the tree con-

struction are made using decision tree classifiers. However, both of these parsers were

limited to sentences of less than 15 words, due to a training time growing exponentially

with the size of the input.

McClosky et al. [10] successfully leveraged unlabeled data to train a parser using a

self-training technique. In this approach, a re-ranker is trained over a generative model.

The re-ranker is used to generate “labels” over a large unlabeled corpus. These “labels”

are then used to retrain the original generative model. This work is currently considered

the state-of-the-art in syntactic parsing.

Most recent discriminative parsers [11, 12] rely on Conditional Random Fields (CRFs)

with PCFG-like features. Carreras et al. [13] used a global-linear model (instead of a

CRF) with PCFGs and various new advanced features.

While PCFG-based parsers are widely used, other approaches do exist. In [14], the

proposed parser relies on continuous word vector representations, and a discriminative

model to predict “levels” of the syntactic tree. Socher et al. [15] also relies on continu-

ous word vector representations, which are “compressed” in a pairwise manner to form

higher level chunk representations. Their approach is used as a re-ranker of the Stanford

Parser [16].

Finally, it is worth noting that generative parsers are still evolving. PCFGs with

latent-variables [17] have been used in various ways to improve the performance of

classical PCFG as in [18].

In this paper, we propose a greedy and purely discriminative parsing approach. In

contrast with most existing methods, it relies on a few simple features. The core of

our architecture is a simple neural network which is fed with continuous word vector

representations (as in [19, 15]). It models the conditional distributions of context-aware

syntactic rules. The learned distribution rules are naturally smoothed, thanks to the

continuous nature of the input features.

Section 2 introduces our algorithm and relates it to PCFG-based parsers. Section 3

describes the classification model at the core of our architecture. Section 4 reports ex-

perimental comparisons with existing approaches. We conclude in Section 5.

Recurrent Greedy Parsing with Neural Networks 3

2 A greedy discriminative parser

2.1 Smoothed Context Rule Learning

PCFG-based parsers rely on the statistical modeling of rules of the form A → B, C,

where A, B and C are tree nodes. The context-free grammar is always normalized in

the Chomsky Normal Form (CNF) to make the global tree inference practical (with

a dynamic programming like CYK or similar). In general a tree node is represented

as several features, including for example its own parsing tags and head word (for

non-terminal nodes) or word and Part Of Speech (POS) tag (for terminal nodes) [2].

State-of-the-art parsers rely on a judicious blending of carefully chosen features and

regularization: adding features in PCFG rules might resolve some ambiguities, but at

the cost of sparser occurrences of those rules. In that respect, the learned distributions

must be carefully smoothed so that the model can generalize on unseen data. Some

parsers also leverage other types of features (such as bigram or trigram dependencies

between words [13]) to capture additional regularities in the data.

In contrast, our system models non-CNF rules of the form A → B1, ..., BK . The

score of each rule is determined by looking at a large context of tree nodes. More

formally, we learn a classifier of the form:

f(Cleft, B1, ..., BK , Cright) = (s1, ..., s|T |) (1)

where the Bk are either terminal or non-terminal nodes, K is the size of the right part

of the rule, Cleft and Cright are context terminals or non-terminals and st is the score

for the parsing tag t ∈ T . Each possible rule Ai → B1, ..., BK is thus assigned a score

si by the classifier (with Ai ∈ T). These scores can be interpreted as probabilities by

performing a softmax operation. We used a Multi Layer Perceptron (MLP) as classifier.

Formal details will be given in Section 3.2.

The only tree node features considered in our system are parsing tags (or POS tags

for terminals), as well as the headword (or words for terminals). We overcome the

problem of data sparsity which occurs in most classical parsers by leveraging contin-

uous vector representations for all features associated to each tree node. In particular,

word (or headword) representations are derived from recent distributed representations

computed on large unlabeled corpora (such as [19, 20]). Thanks to this approach, our

system can naturally generalize a rule like NP → a, clever, guy to a possibly unseen

rule like NP → a, smart, guy, as the vector representation of smart and clever are

close to each other, given that they are semantically and syntactically related.

Several works leveraging continuous vector representations have been previously

proposed for syntactic parsing. [14] introduced a neural network-based approach, itera-

tively tagging “levels” of the parse tree where the full sentence was seen at each level. A

complex pooling approach was introduced to capture long-range dependencies, and per-

formance only matched early lexicalized parsers. [21] introduced a recursive approach,

where representations are “compressed” two by two to form higher-level representa-

tions. However, the system was limited to bracketing, and did not produce parsing tags.

The authors later proposed an improved version in [15], where their approach was used

to re-rank the output of the Stanford Parser, approximately reaching state-of-the-art

4 Recurrent Greedy Parsing with Neural Networks

performance. In contrast, our approach does not rely on CNF grammars and does not

re-rank an external generative parser.

2.2 Greedy Recurrent Algorithm

It ’s a real dog .

NP NP

(a)

It ’s a real dog .

NP NP

PP

(b)

It ’s a real dog .

NP NP

PP

S

(c)

Fig. 1: Illustration of our greedy algorithm: at each iteration (a)→(b)→(c), the classifier

sees only the previous tree heads (ancestors), shown here in italics. It predicts new nodes

(here in bold). New tree heads become the ancestors at the next iteration. All other

previously discovered tree nodes (shown in regular black here) will remain unchanged

and ignored in subsequent iterations.

Our parser follows a bottom-up iterative approach: the tree is constructed starting

from the terminal nodes (sentence words). Assuming that a part of the tree has been

already predicted (see Figure 1), the next iteration of our algorithm looks for all possible

new tree nodes which combine ancestors (i.e., heads of the trees predicted so far). New

nodes are found by maximizing the score of our context-rule classifier (1), constrained

in such a way so that two new nodes cannot overlap, thanks to a dynamic programming

approach. The system is recurrent, in the sense that new predicted parsing labels are

used in the next iteration of our algorithm.

For each iteration, assuming N ancestors

X = [X1, ..., XN] ,

finding all possible new nodes with K ancestors would require to apply

f(Cleft, B1, ..., BK , Cright)

Recurrent Greedy Parsing with Neural Networks 5

over all possible windows of K ancestors in X . One would also have to vary K from

1 to N , to discover new nodes of all possible sizes. Obviously, this could quickly be-

come time consuming for large sentence sizes. This problem of finding nodes with a

various number of ancestors can be viewed as the classical NLP problem of finding

“chunks” of various sizes. This problem is typically transformed into a tagging task:

finding the chunk with label A in the rule A → Xi, Xi+1, . . . , Xj can simply be

viewed as tagging the ancestors with B-A, I-A, . . . E-A, where we use the standard

BIOES label prefixing (Begin, Intermediate, Other, End, Single). See Table 1 for a con-

crete example. The classifier outputs the “Other” tag, when the considered ancestors do

not correspond to any possible rule.

In the end, our approach can be summarized as the following iterative algorithm:

1. Apply a sliding window over the current ancestors: the neural network classifier (1)

is applied over all K consecutive ancestors X1, ..., XN , where K has to be carefully

tuned.

2. Aggregate BIOES tags into chunks: a dynamic program (based on a CRF, as de-

tailed in Section 3.3) finds the most likely sequence of BIOES parsing tags. The

new nodes are then constructed by simply aggregating BIES tags

B-A, I-A, . . . E-A

into A (for any label A).

3. Ancestors tagged as O, as well as newly found tree nodes are passed as ancestors

to the next iteration.

The tree construction ends when there is only one ancestor remaining, or when the

classifier did not find any new possible rule (everything is tagged as O).

Table 1: A simple example of a grammar rule extracted from the sentence “It ’s a real

dog .”, and its corresponding BIOES grammar. In both cases, we include a left and

right context of size 1. The middle column shows the required classifier evaluations.

The right column shows the type of scores produced by the classifier.

GRAMMAR CLASSIFIER EVALUATIONS SCORES

NP → ’S A REAL DOG . f(’S, A, REAL, DOG, .) sNP , ..., sV P , sO

B-NP → ’S A REAL f(’S, A, REAL)
I-NP → A REAL DOG f(A, REAL, DOG) sB-NP , ..., sE-V P , sO
E-NP → REAL DOG . f(REAL, DOG, .)

3 Architecture

In this section, we formally introduce the classification architecture used to find new

tree nodes at each iteration of our greedy recurrent approach. A simple two-layer neural

6 Recurrent Greedy Parsing with Neural Networks

network is at the core of the system. It leverages continuous vector word representa-

tions. In this respect, the network is clearly inspired by the work of [22] in the context

of language modeling, and later re-introduced in [23] for various NLP tagging tasks.

Given an input sequence of N tree node ancestors X1, ..., XN (as defined in Sec-

tion 2.2), our model outputs a BIOES-prefixed parsing tag for each ancestor Xi, by

applying a sliding window approach. These scores are then fed as input to a properly

constrained graph on which we apply the Viterbi algorithm to infer the best sequence of

parsing tags. The whole architecture (including transition scores in the graph) is trained

in an end-to-end manner by maximizing the graph likelihood. The end-to-end neural

network training approach was first introduced in [24]. The system can be also viewed

as a particular Graph Transformer Network [25], or a particular non-linear Conditional

Random Field (CRF) for sequences [26]. Each layer of the architecture is presented in

detail in the following paragraphs. The objective function will be introduced in Sec-

tion 3.4.

3.1 Words Embeddings

Our system relies on raw words, following the idea of [19]. Each word is mapped into

a continuous vector space. For efficiency, words are fed into our architecture as indices

taken from a finite dictionary W . Word vector representations, as other network param-

eters, are trained by back-propagation.

More formally, given a sentence of N words, w1, w2, ..., wN , each word wn ∈ W is

first embedded in a D-dimensional vector space by applying a lookup-table operation:

LTW (wn) = Wwn
,

where the matrix W ∈ R
D×|W| represents the parameters to be trained in this

lookup layer. Each column Wn ∈ R
D corresponds to the vector embedding of the nth

word in our dictionary W .

These types of architectures allow us to take advantage of word vector representa-

tions trained on large unlabeled corpora, by simply initializing the word lookup table

with a pre-trained representation [19]. In this paper, we chose to use the representations

from [27], obtained by a simple PCA on a matrix of word co-occurrences. As shown in

[14] for various NLP tasks, we will see that these representations can provide a great

boost in parsing performance.

In practice, it is common to give several features (for each tree node) as input to the

network. This can be easily done by adding a different lookup table for each discrete

feature. The input becomes the concatenation of the outputs of all these lookup-tables:

LTW1,...,WK
(wn) =(LTW1

(wn))
T ,

...,

(LTW|F|(wn))
T

where |F| is the number of features. For simplicity, we consider only one lookup-table

in the rest of the architecture description.

Recurrent Greedy Parsing with Neural Networks 7

3.2 Sliding Window BIOES Tagger

The second module of our architecture is a simple neural network which applies a slid-

ing window over the output of the lookup tables, as shown in Figure 2. The nth window

is defined as

un = [LT (Xn−K−1

2

), ..., LT (Xn), ..., LT (Xn+K−1

2

)] ,

where K is the size of window. The module outputs a vector of scores s(un) = [s1, ..., s|T |]
(where st is the score of the BIOES-prefixed parsing tag t ∈ T for the ancestor Xn).

The ancestors with indices exceeding the input boundaries (n − (K − 1)/2 < 1 or

n + (K − 1)/2 > N) are mapped to a special padding vector (which is also learned).

As any classical two-layer neural network, our architecture performs several matrix-

vector operations on its inputs, interleaved with some non-linear transfer function h(·),

s(un) = M2 h(M1 un) ,

where the matrices M1 ∈ R
H×K|D| and M1 ∈ R

|T |×H are the trained parameters of

the network. The number of hidden units H is a hyper-parameter to be tuned.

As transfer function, we chose in our experiments a (fast) “hard” version of the

hyperbolic tangent:

h(x) =







−1 if x < −1
x if −1 <= x <= 1
1 if x > 1

(2)

3.3 Aggregating BIOES Predictions

The scores obtained from the previous module of our architecture are in BIOES format.

The next module in our system aggregates these tags and finds the new tree nodes at

each iteration of our greedy recurrent approach. We introduce a graph G of scores as

shown in Figure 3: each node of the graph corresponds to a BIOES score produced for

each ancestor by the neural network module. This graph is constrained in such a way

that only feasible sequences of tags are possible (e.g. B-A tags can only be followed by

I-A tags, for any parsing label A). Our graph also includes a duration model: on each

edge, we add a transition score Att
′ for jumping from tag t ∈ T to t′ ∈ T .

A score for a sequence of tags [t]N1 in the lattice G is obtained as the sum of scores

along [t]N1 in G:

S([t]N1 , [u]N1 , θ) =

N
∑

n=1

(Atn−1tn + s(un)tn) ,

where θ represents all the trainable parameters of the complete architecture. The se-

quence of tags [t∗]N1 for the input sequence of tree node ancestors X1, . . . , XN is then

inferred by finding the path which leads to the maximal score:

[t∗]N1 = argmax
[t]N

1
∈T N

S([t]N1 , [u]N1 , θ)

The Viterbi algorithm is the natural choice for this inference. From this optimal BIOES

tag sequence, we extract sub-sequences B-A, . . . , E-A and S-A as new nodes for the

tree. O tags are simply ignored. See Section 2.2 for more details.

8 Recurrent Greedy Parsing with Neural Networks

Sliding Window

h(M1un)

D
a
te

/
N
P

h
a
s
/
V
B
Z

’n
t
/
R
B

been
/
V
B
N

set
/
V
P

.
/
.

D

p
a
d

p
a
d

H

|T |

...

M2 .

Fig. 2: Sliding window tagger. Given the concatenated output of lookup tables (here

the ancestor words/headwords and ancestor tags), the tagger outputs a BIOES-prefixed

parsing tag for each ancestor node. The neural network itself is a standard two-layer

neural network.

3.4 Training Likelihood

Our architecture sees sequences of ancestor tree nodes, and outputs new possible syn-

tactic tree nodes only from this history. Technically speaking, the training set can be

prepared by iterating over each tree in the training corpus, removing all possible leaves

in an iterative process so that all training rules are uncovered (see Figure 4).

The neural network is trained by maximizing a likelihood over the training data,

using stochastic gradient ascent. The score for a path can be interpreted as a conditional

probability over this path by exponentiating score (thus making it positive) and normal-

izing it with respect to all possible paths. We define P as the set of possible tag paths

in the constrained graph G, as shown in Figure 3. The log-probability of a sequence of

tags [t]N1 given the lookup table representations [u]N1 is given by:

logP ([t]N1 |[u]N1 , θ) =S([t]N1 , [u]N1 , θ) (3)

− logadd
∀[t′]N

1
∈P

S([t′]N1 , [u]N1 , θ))

where we adopt the notation logaddzn = log (
∑

i e
zi), as in [23].

Recurrent Greedy Parsing with Neural Networks 9

...

...

...

...

...

...

D
a
te

/
N
P

h
a
s
/
V
B
Z

’n
t
/
R
B

been
/
V
B
N

set
/
V
P

.
/
.

B-NP

I-NP

E-NP

...

S-VP

...

Fig. 3: Constrained graph for tag inference. Only feasible sequences of tags are consid-

ered. The nodes of the graph are assigned a score from the tagger shown in Figure 2.

Edges of the graph are assigned a transition score which is learned similarly to other

parameters in the architecture.

Computing the log-likelihood efficiently is not straightforward, as the number of

terms in the logadd grows exponentially with the length of the sentence. Fortunately,

it can be computed in linear time with the Forward algorithm, which derives a recur-

sion similar to the Viterbi algorithm (see [28]). The complete architecture is trained by

simply backpropagating through this recursion, up to the lookup layers (for further de-

tails, see [14]). Note that the likelihood (3) corresponds to a standard CRF model for

sequences. The only difference here is that the underlying model is non-linear, while

CRFs are often considered as linear models.

4 Experiments

4.1 Corpus

Experiments were performed using the standard English Penn Treebank data set (Mar-

cus et al., 1993). We used the classical parsing setup, with sections 02-21 used to train

our model, section 22 used as validation for choosing all our hyper-parameters, and sec-

tion 23 used for testing. We applied only a small subset of the typical pre-processing set

over the data: (1) functional labels, traces were removed, (2) the PRT label was replaced

as ADVP [1].

The Penn Treebank data set contains non-terminal tree nodes which only have one

non-terminal child, as shown in Figure 5. To avoid possible looping issues in our parsing

10 Recurrent Greedy Parsing with Neural Networks

S

VP

PP

NP

watch
NN

my
PRP

at
IN

looked
VDB

NP

I
PRT

H : I looked at my watch
P : PRT VDB IN PRP NN
L : S-NP O O B-NP E-NP

(a)

S

VP

PP

watch
NP

at
IN

looked
VDB

I
NP

H : I looked at watch
P : NP VDB IN NP
L : O O B-PP E-PP

(b)

S

VP

at
PP

looked
VDB

I
NP

H : I looked at
P : NP VDB PP
L : O B-VP E-VP

(c)

S

looked
VP

I
NP

H : I looked
P : NP VP
L : B-S E-S

(d)

Fig. 4: Iterative procedure (a)→(b)→(c)→(d) to generate the training data, which in-

volves cutting out all tree leaves at each step. The data fed to our network architecture

is then easily uncovered (H: ancestor headwords/words, P: ancestor POS/parsing tags,

L: parsing labels to be predicted).

Recurrent Greedy Parsing with Neural Networks 11

ADJP

SBAR

S

VP

VP

understand
VB

to
TO

easy
JJ

⇒

ADJP

SBAR#S#VP

VP

understand
VB

to
TO

easy
JJ

Fig. 5: Training corpus pre-processing. Original Penn Treebank trees containing non-

terminal nodes with only one non-terminal node (left), and after concatenating those

nodes (right).

algorithm (e.g. a node being repetitively tagged with two different tags in our iterative

process), we transformed the training corpus so that non-terminal nodes having only

one non-terminal child were merged together, and take as tag the concatenation of all

merged node tags (see Figure 5). This way, the system learns that a node must contain at

least two ancestors. The iterative process is thus guaranteed to converge. We kept only

concatenated labels which occurred at least 30 times (corresponding to the lowest num-

ber of occurrences of the less common original parsing tag), leading to 11 additional

parsing tags. Added to the original 26 parsing tags, this resulted in 161 tags produced

by our parser. At test time, the inverse operation is performed: concatenated tag nodes

are simply expanded into their original form.

4.2 Features

We consider the following features to train our architecture:

– Words and headwords:

• For terminal nodes, the word itself, in low caps1. As in [2], words occurring 5

times or less were mapped to an “UNKNOWN” word.

• For non-terminal nodes: headwords, following the procedure described in [2].

– POS tags (for terminals) or parsing tags of the node’s ancestors (for non-terminals).

POS tags were produced with SENNA [23].

– POS tags of headwords.

1 Adding a capital feature had no impact on the performance of our parser. Note that POS tags

were generated with the original caps in the sentence.

12 Recurrent Greedy Parsing with Neural Networks

4.3 Results

We train the network using stochastic gradient descent over the available training data,

until convergence on the validation set. We chose the following hyper-parameters ac-

cording to the validation. Lookup-table sizes for the words and tags (part-of-speech and

parsing) are 100 and 20, respectively. The window size for the tagger is K = 7 (3

neighbors from each side). The size of the tagger’s hidden layer is H = 500. We used

the word embeddings obtained from [27] to initialize the word lookup-table. These em-

beddings were then fine-tuned during the training process. Finally, we fixed the learning

rate to λ = 0.025 during the stochastic gradient procedure. The only “trick” used during

training was to divide the learning rate by the input size of each linear layer [29].

Table 2 shows the importance of the different features we used. Even though the

training procedure is non-convex, the variance of the F1 score over 20 different runs

(for the architecture Word + POS + hw + wi) was only 0.01.

Table 2: Influence of different features. Results are given in terms of F1-score. POS =
part-of-speech, hw = head-word, wi = word initialization from [27].

FEATURE F1

WORD + POS 85.1

WORD + POS + HW 86.9

WORD + POS + WI 86.2

WORD + POS + HW + WI 88.3

Since our architecture performs the decoding very quickly, we additionally per-

formed a voting procedure using several models learned from different random initial-

izations. We averaged all neural network classifiers (ignoring their own respective CRF

decoding part) and trained a new CRF on top of it (without fine-tuning any of the neural

network classifiers). The scores obtained with 10 classifiers are shown in Table 3.

Results in Table 3 are reported in terms of recall (R), precision (P) and F1 score.

Scores were obtained using the Evalb implementation2. We compare our system with

several other parsers. We chose to report the scores of the three main generative parsers,

as well as those of known re-ranking parsers. We also considered two major purely

discriminative parsers.

2 Available at http://nlp.cs.nyu.edu/evalb/

Recurrent Greedy Parsing with Neural Networks 13

Table 3: Results in terms of Precision (P), Recall (R), and F1 score. The reported time

is the time to parse the full WSJ test corpus.

MODEL (R) (P) F1 (R) (P) F1 TIME

MAGERMAN (1995) 84.6 84.9 84.8

GENERATIVE COLLINS (1999) 88.5 88.7 88.6 88.1 88.3 88.2 1247

CHARNIAK (2000) 90.1 90.1 90.1 89.6 89.5 89.6

GENERATIVE HENDERSON (2004) 89.8 90.4 90.1

WITH CHARNIAK AND JOHNSON (2005) 92.0 91.1

RE-RANKING SOCHER ET AL (2013) 91.1 92.1 390

MCCLOSKY ET AL (2006) 92.1

PETROV AND KLEIN (2008) 90.0 89.4

PURELY CARRERAS ET AL. (2008) 90.7 91.4 91.1

DISCRIMINATIVE OUR MODEL 88.4 89.0 88.7 88.0 88.6 88.3 110

OUR MODEL (VOTING) 90.0 90.1 90.1 89.6 89.7 89.6

4.4 Rule Prediction Analysis

Figure 6 shows the output of the classifier (applied on every possible window of size 7)

for the sentence ”When the little guy gets frightened, the big guys hurt badly.”. For this

sentence, the expected rule are the following:

WHADVP → When

NP → the little guy

ADJP → frightened

NP → the big guys

ADVP → badly

It is interesting to see that the network alone is able to predict all the rules of the sen-

tence. The CRF is however essential to produce a consistent output, by aggregating

BIES prefixed chunks.

14 Recurrent Greedy Parsing with Neural Networks

W
hen

the
little

guy
gets

frightened

, the
big

guys
hurt

badly

.

FRAG

NAC

UCP

NX

SINV

WHADVP

PRN

QP

WHNP

VP

ADJP

SBAR

ADVP

NP

NP

PP

O

S

E

I

B

S

E

I

B

S

E

I

B

S

E

I

B

S

E

I

B

S

E

I

B

S

E

I

B

S

E

I

B

S

E

I

B

S

E

I

B

S

E

I

B

S

E

I

B

S

E

I

B

S

E

I

B

S

E

I

B

S

E

I

B

Fig. 6: Normalized scores from the network classifier (black means high score) for the

sentence ”When the little guy gets frightened, the big guys hurt badly.”. Each tag is in

BIOES form (y axis). Each ancestor in the input is on the x axis.

Recurrent Greedy Parsing with Neural Networks 15

5 Conclusion

We presented a very simple model that is able to learn syntactic grammar rules sur-

prisingly well, considering the simple features employed. This parser achieves perfor-

mance very close to state-of-the-art re-ranking systems and is almost the best among the

purely generative parsers. Due to its simplicity, there are many possibilities for further

improvement. In particular, the head-word procedure from Collins could be revisited,

e.g. by learning a higher-level chunk representation in the same spirit as [15]. We could

also investigate re-ranking approaches, as well as the use of unlabeled corpora.

Acknowledgments. This work was supported by NEC Laboratories America. We

would like to thank Leonidas Lefakis and Pedro Oliveira Pinheiro for proofreading

this paper and Dimitri Palaz for his contribution on figures 2 and 3.

References

1. D. M. Magerman, “Statistical decision-tree models for parsing,” in In Proceedings of the

33rd Annual Meeting of the Association for Computational Linguistics, 1995.

2. M. Collins, “Head-driven statistical models for natural language parsing,” Comput. Linguist.,

2003.

3. E. Charniak, “A maximum-entropy-inspired parser,” in Proceedings of the 1st North Ameri-

can Chapter of the Association for Computational Linguistics Conference, 2000.

4. A. Ratnaparkhi, “Learning to parse natural language with maximum entropy models,” Mach.

Learn., Feb. 1999.

5. F. Costa, P. Frasconi, V. Lombardo, and G. Soda, “Towards incremental parsing of natural

language using recursive neural networks,” 2002.

6. B. Taskar, D. Klein, M. Collins, D. Koller, and C. D. Manning, “Max-margin parsing,” in In

Proceedings of EMNLP, 2004.

7. J. Henderson, “Discriminative training of a neural network statistical parser,” in Proceedings

of the 42Nd Annual Meeting on Association for Computational Linguistics, 2004.

8. E. Charniak and M. Johnson, “Coarse-to-fine N-best parsing and MaxEnt discriminative

reranking,” in Proceedings of the 43rd Annual Meeting on Association for Computational

Linguistics, 2005.

9. J. Turian and I. D. Melamed, “Advances in discriminative parsing,” in In Proceedings of the

Joint International Conference on Computational Linguistics and Association of Computa-

tional Linguistics (COLING/ACL, 2006.

10. D. McClosky, E. Charniak, and M. Johnson, “Effective self-training for parsing,” in Pro-

ceedings of the Main Conference on Human Language Technology Conference of the North

American Chapter of the Association of Computational Linguistics, 2006.

11. J. R. Finkel, A. Kleeman, and C. D. Manning, “Efficient, feature-based, conditional random

field parsing,” in In Proc. ACL/HLT, 2008.

12. S. Petrov and D. Klein, “Sparse multi-scale grammars for discriminative latent variable pars-

ing,” in Proceedings of the Conference on Empirical Methods in Natural Language Process-

ing, 2008.

13. X. Carreras, M. Collins, and T. Koo, “TAG, dynamic programming, and the perceptron for

efficient, feature-rich parsing,” in Proceedings of the Twelfth Conference on Computational

Natural Language Learning, 2008.

16 Recurrent Greedy Parsing with Neural Networks

14. R. Collobert, “Deep learning for efficient discriminative parsing,” in AISTATS, 2011.

15. R. Socher, J. Bauer, C. Manning, and A. Ng, “Parsing With Compositional Vector Gram-

mars,” in ACL, 2013.

16. D. Klein and C. Manning, “Accurate unlexicalized parsing,” in Proceedings of the 41st An-

nual Meeting on Association for Computational Linguistics - Volume 1, 2003.

17. T. Matsuzaki, Y. Miyao, and J. Tsujii, “Probabilistic CFG with latent annotations,” in Pro-

ceedings of the 43rd Annual Meeting on Association for Computational Linguistics, 2005.

18. S. B. Cohen and M. Collins, “Tensor decomposition for fast parsing with latent-variable

PCFGs,” in Proceedings of NIPS, 2012.

19. R. Collobert and J. Weston, “A unified architecture for natural language processing: Deep

neural networks with multitask learning,” in International Conference on Machine Learning,

ICML, 2008.

20. P. S. Dhillon, D. Foster, and L. Ungar, “Multi-view learning of word embeddings via cca,”

in Advances in Neural Information Processing Systems (NIPS), 2011.

21. R. Socher, C. Lin, A. Y. Ng, and C. D. Manning, “Parsing natural scenes and natural language

with recursive neural networks.,” in ICML, 2011.

22. Y. Bengio and R. Ducharme, “A neural probabilistic language model,” in NIPS 13, 2001.

23. R. Collobert, J. Weston, L. Bottou, M. Karlen, K. Kavukcuoglu, and P. Kuksa, “Natural

language processing (almost) from scratch,” Journal of Machine Learning Research, 2011.

24. J. S. Denker and C. J. C. Burges, “Image segmentation and recognition,” in In The Mathe-

matics of Induction, 1995.

25. L. Bottou, Y. LeCun, and Y. Bengio, “Global training of document processing systems using

graph transformer networks,” in Proc. of Computer Vision and Pattern Recognition, 1997.

26. J. Lafferty, A. McCallum, and F. Pereira, “Conditional random fields: Probabilistic mod-

els for segmenting and labeling sequence data,” in Eighteenth International Conference on

Machine Learning, ICML, 2001.

27. R. Lebret and R. Collobert, “Word embeddings through hellinger PCA,” in Proceedings of

the 14th Conference of the European Chapter of the Association for Computational Linguis-

tics, 2014.

28. L. R. Rabiner, “A tutorial on hidden markov models and selected applications in speech

recognition,” in Proceedings of the IEEE, pp. 257–286, 1989.

29. D. C. Plaut and G. E. Hinton, “Learning sets of filters using back-propagation,” Computer

Speech and Language, 1987.

