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Abstract

Posterior features have been shown to yield very good perfor-
mance in multiple contexts including speech recognition, spo-
ken term detection, and template matching. These days, poste-
rior features are usually estimated at the output of a neural net-
work. More recently, sparse representation has also been shown
to potentially provide additional advantages to improve discrim-
ination and robustness. One possible instance of this, is referred
to as exemplar-based sparse representation.

The present work investigates how to exploit sparse mod-
elling together with posterior space properties to further im-
prove speech recognition features. In that context, we lever-
age exemplar-based sparse representation, and propose a novel
approach to project phone posterior features into a new, high-
dimensional, sparse feature space. In fact, exploiting the prop-
erties of posterior spaces, we generate, new, high-dimensional,
linguistically inspired (sub-phone and words), posterior dis-
tributions. Validation experiments are performed on the
Phonebook (isolated words) and HIWIRE (continuous speech)
databases, which support the effectiveness of the proposed ap-
proach for speech recognition tasks.
Index Terms: speech recognition, posterior feature, sparse rep-
resentation, hidden variable, exemplar-based modelling.

1. Introduction
Hidden Markov Model (HMM) based modeling and template
(exemplar) based techniques are the two main approaches to-
wards Automatic Speech Recognition (ASR). In the last three
decades though, HMM-based approaches have been dominant
because of their flexibility and their ability to be trained and
generalize to unseen data. However, with the always increas-
ing amount of training data, as well as the growing computa-
tional and memory resources, the potential of exemplar-based
approaches are currently being revisited [1, 2, 3, 4]. These
techniques use labeled speech segments, called exemplars or
templates, such as phones, syllables or words. In theory, as-
suming an “infinite” amount of such examples, as well as the
“right” representation space and the “right” distance measure,
“optimal” recognizers could be sought [5].

One of the emerging approaches in exemplar-based ASR is
exemplar-based sparse representation. Recently, sparse repre-
sentations have gained great attention in signal processing [6]
and speech recognition [7]. In [8], sparse reconstruction is
shown to improve speech recognition in the presence of over-
lapping speech interferences. Exemplar-based sparse represen-
tation is used in noise robust ASR [3] and Continuous Speech
Recognition (CSR) [2]. In [3], the ability of sparse recon-
struction in source separation has been used to separate noise
from the speech exemplars. In addition, sparse representation

is exploited in providing exemplar-based feature vectors for an
HMM-based ASR system [2].

To the best of our knowledge, all of the proposed algo-
rithms which benefit from exemplar-based sparse representation
use spectral-based features [2, 3, 9, 10]. On the other hand,
posterior-based features have shown to yield promising results
in exemplar-based approaches in speech recognition. For in-
stance, it has often been shown that Dynamic Time Wrapping
(DTW) on Multilayer Perception (MLP) based posterior fea-
tures yields better performance than a hybrid HMM/MLP sys-
tem [11]. Deep belief network based posterior [12] features
have also shown promising performance in query-by-examples
spoken term detection task. Of course, such approaches could
also benefit from Deep Neural Networks (DNN) [13] to esti-
mate better phone or sub-phone posteriors.

In the present study, we investigate a new approach in
exemplar-based sparse representation, exploiting the properties
of posterior features, to further enhance speech recognition fea-
tures, and improve the discriminant properties (and hierarchical
structure potential) of exemplar-based ASR. More specifically,
we use sparse recovery to project phone posterior features es-
timated by an MLP (or a DNN) into a new high-dimensional
sparse posterior space (Section 2). This projection is automati-
cally designed to maximize sparsity and discriminant properties
of the new posterior space, which may also represent a linguis-
tic level different than phone. This level can be higher (syllable
or word) or lower (sub-phone or HMM-state) than phone. To
do so, a set of representative exemplars of the new space are
collected in a pool of exemplars which is called “dictionary”
in compressive sensing literature. The rational behind our ap-
proach is that the occurrence frequency of a specific token, e.g.
word, syllable, or even sub-phone, among all tokens, is a sparse
event. Hence, we impose sparsity during recovery of an exem-
plar from the pool of all exemplars.

We evaluate the transformation of phone posteriors into
word and HMM-state space in isolated word recognition and
CSR tasks respectively. For this, we introduce “sparse word
posterior” (Section 3) and “sparse HMM-state posterior” (Sec-
tion 4) feature spaces by sparse recovery from phone poste-
rior features. Moreover, in the case of isolated word recog-
nition, we make use of the exemplar-based approach flexibil-
ity [4, 14] in exploiting long-term and short-term contexts to
have linguistically richer sparse word posterior features. A con-
text adaptive technique is proposed to exploit various acoustic
context spans through fusion of different sparse spaces. Finally,
we investigate “hybridization” of DTW scores, to fully exploit
temporal properties, and the sparse word posteriors, to maxi-
mize discrimination potential. In CSR, the probabilistic form
of sparse HMM-state posterior, motivated us to use Kullback-
Leibler HMM (KL-HMM) [15] as acoustic model.
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2. Sparse representation
2.1. Background
A vector is defined as sparse if very few of its components
have nonzero values. Given an observation z ∈ RK , and an
over-complete dictionary matrix D ∈ RK×L where L � K,
the sparse representation α is obtained through the optimization
problem stated as:

Minimize ‖α‖0 such that z = D × α (1)

where the counting function ‖.‖0 : RL −→ N returns the num-
ber of non-zero components in its argument. The non-convex
objective of (1) is often relaxed to `1 norm optimization which
can be solved in polynomial time; the `1 norm, ‖α‖1 is defined
as sum of the absolute values of the components of α. Further
developments consider alternative data reconstruction metrics
tailored for a specific application such as classification.

In the present paper, z denotes the phone posterior vector or
a short sequence of posterior vectors. The dictionary D is con-
structed from a large set of posterior-based exemplars or atoms.
The large dimensional sparse representation α is then estimated
using sparse recovery algorithm expressed as:

α̂ = argmin
α

{λ ‖α‖1 + KL(z,D × α)} (2)

where λ denotes the regularization parameter to control the
level of sparsity, and KL is the Kullback-Leibler divergence
function.

2.2. Posterior-based sparse representation

A posterior probability p(qk|xt), estimated at the MLP/DNN
output qk (associated with a phone), given an input acoustic
vector xt at time t, can be marginalized over L hidden variables
rl as follows:

p(qk|xt) =
L∑
l=1

p(qk, rl|xt) =
L∑
l=1

p(qk|rl, xt)p(rl|xt) (3)

Considering the observation zt consisting of the phone posterior
features as zt = [p(q1|xt), · · · , p(qK |xt)], an over-complete
dictionary D constructed from the exemplars obtained by con-
ditioning the phone posteriors on a different linguistic unit rl,
and exploiting (2) and (3), the sparse posterior-based represen-
tation αt takes the following probabilistic form:
p(q1|xt)
p(q2|xt)

...
p(qK |xt)


︸ ︷︷ ︸

zt

=


p(q1|xt, r1) · · · p(q1|xt, rL)
p(q2|xt, r1) · · · p(q2|xt, rL)

...
...

p(qK |xt, r1) · · ·p(qK |xt, rL)


︸ ︷︷ ︸

Dictionary matrix:D

×


p(r1|xt)
p(r2|xt)

...
p(rL|xt)


︸ ︷︷ ︸

αt

(4)

The hidden variable rl can be interpreted based on the atoms
which are deputed in the dictionary. For example, if we
put some representative of HMM-state probability vectors in
the dictionary as the atoms, rl can be considered as a hid-
den variable indicating HMM-state, similar to what is done
in standard HMM. Then, p(rl|xt) will be the HMM-state
posterior probability, and the (norm one) normalized αt will
be the sparse HMM-state posterior representation. Accord-
ing to the above formulation, a posterior feature vector zt =
[p(q1|xt), · · · , p(qK |xt)] yields a sparse posterior feature vec-
tor in a different linguistically meaningful posterior space, αt =
[p(r1|xt), · · · , p(rL|xt)], using a dictionary constructed from

appropriate exemplars representative of the associated labels or
hidden variables.

In practice, construction of the dictionary as described
in (4) requires an online adaptation for each acoustic observa-
tion xt. Hence, we use training data of the set of all possible
units rl for construction ofD and zt is approximated by a linear
combination of training exemplars. In the following, starting
from phone posterior features, where qk is a phone variable, we
provide two scenarios for extracting the sparse posterior prob-
abilities, where rl is either (1) a variable for sub-word in Sec-
tion 3, or (2) a variable for HMM-state in Section 4.

3. Sparse word posterior
In this section, we introduce the notion of word posterior space
by designing a dictionary of sub-word exemplars. The word
posterior sparse representation is suitable for the task of isolated
word recognition.

3.1. Dictionary design

The dictionary designed to represent the word posterior space
is consisted of sub-word exemplars as atoms. The sub-word
exemplars are obtained from phone posterior vector along with
c left and right neighborhood frames stack into a vector, where
c denotes the context size. Hence, the sub-word exemplar Wf

corresponding to the f th frame of the acoustic observation of
training data is obtained as:

wf =
[
p(q1|yf , rl), . . . , p(qK |yf , rl)

]
1×K

Wf =
[
wf−c, . . . , wf , . . . , wf+c

]T
K(2c+1)×1

(5)

where .T denotes the transpose operator and rl is the variable
for sub-word. As the words span variable number of frames,
we denote the number of frames representing word ω by τω;
the dictionary thus consists of group exemplars corresponding
to each word. For word w, the sub-words rl are indexed as
l ∈ {

∑w−1
i=1 τi + 1, . . . ,

∑w−1
i=1 τi + τω }.

We define the block of τω exemplars representing the ωth

word asWω , and the dictionary is obtained as:

Wω = [W1, . . . ,Wτω ]K(2c+1)×τω

D = [W1, . . . ,Wω , . . . ,W$]K(2c+1)×L
(6)

where$ denotes the total number of words andL =
∑$
ω=1 τω .

The dictionary constructed as such exhibits a group depen-
dency structure underlying the components of the sparse word
posterior representation. In Section 3.2, the procedure of map-
ping the sub-word posteriors to the word posterior representa-
tion is elaborated. The block structure can be further investi-
gated in the context of model-based sparse recovery [7] which
is out of the scope of this paper.

3.2. Word posterior sparse representation

Given the dictionary of sub-word exemplars expressed
in (6), and the observation vector of a test sample Zt =
[zt−c, . . . , zt, . . . , zt+c], the activations of sub-word exemplars
are estimated using sparse recovery and normalized to yield the
sparse sub-word posteriors. To estimate the sparse word poste-
riors, all the coefficients (in sparse sub-word posterior) corre-
sponding to each word are averaged to form a word level repre-
sentation.

The simplest way of using the resulting word posterior fea-
tures for recognition is by direct decoding based on the maxi-
mum word posterior probability. To this end, the word posterior



sparse representation is obtained for each frame of a test sam-
ple. The word posteriors are then averaged across all frames
to yield a probabilistic score for each word in the dictionary.
The test sample is then recognized based on the maximum word
probability. This simple decoding approach, however has the
disadvantage of overlooking the inter-segment dependency (se-
quencing) between word segments. Hence, as further explain
in Section 5.1.5, the word posterior scores integrated with a se-
quence matching approach such as DTW.

It may be noted that the dictionary used for word posterior
representation is consisted of exemplars corresponding of word
segments. We found this sub-word representation a convenient
mean to tackle the variability in the number of frames repre-
senting different words. In Section 3.3, we discuss the context
adaptivity obtained by this approach and in Section 5.1.4, we
provide empirical insights into the “optimal” sub-word exem-
plars for word recognition.

3.3. Context adaptation

Due to the variability in word length, a constant cmay not be ef-
ficient to obtain the sparse word posterior representation. While
long-span exemplars model intra-segment dependencies more
effectively, they are not in favor of short words; a large c may
render the number of sub-word exemplars insufficient for rep-
resenting the short words. To address the issue of appropriate
context size, we propose to obtain the sparse representation us-
ing dictionaries of different context sizes. The word posterior
vectors resulted from these dictionaries are averaged to yield
a word posterior representation richer in modeling the intra-
segment dependencies.

4. Sparse HMM-state posterior
In this section, we introduce the sparse HMM-state (sub-phone)
posterior features applicable for continuous speech recognition.

4.1. Dictionary design

The dictionary designed to represent the HMM-state posterior
space consists of sub-phone exemplars denoted as:

ρl = [p(q1|yf , rl), . . . , p(qK |yf , rl)]1×K (7)

where rl indicates an HMM-state. The sub-phone or HMM-
state exemplars do not need extra contextual information. The
dictionary is thus formed as:

D =
[
ρT1 , . . . , ρ

T
L

]
K×L

(8)

The state labels of exemplars are extracted from a pre-trained
HMM setup. The number of samples per state is very high and it
is impractical to construct a massive dictionary from all of them.
To achieve a set of sample representatives with a reasonable
size, an agglomerative clustering algorithm proposed in [16] is
used. The centers of the clusters, which can be considered as the
representatives of HMM-states, are used as atoms to populate
the dictionary.

4.2. HMM-state posterior sparse representation

Given the dictionary of sub-phone exemplars and a phone poste-
rior feature zt ∈ RK , the sparse HMM-state posterior represen-
tation α ∈ RL is estimated by solving (2). To properly exploit
the new set of features for CSR in a principled way, KL-HMM
modeling [15] provides a suitable recognition back-end consid-
ering sparse state emission probabilities for direct modeling of

the posterior features. The KL-HMM is trained using the set of
new sparse posterior features. The details of the experimental
analysis are elaborated in the following Section 5.

5. Experimental analysis
This section is dedicated to the evaluation of the proposed
posterior-based sparse representations for isolated word recog-
nition and continuous speech recognition.

5.1. Isolated word recognition

5.1.1. Database

The Phonebook corpus [17] is used for isolated word recogni-
tion. The test part of this database is used for evaluations with a
similar setup as described in [18]. The test set contains 8 word
lists. Each word list consists of 75 unique words. The words are
pronounced by approximately 12 different speakers. For each
word, one of the samples is randomly selected to construct the
dictionary and the rest are kept for evaluations. The average
performance over all 8 subsets is evaluated.

5.1.2. Phoneme posterior features

The initial phone posteriors are produced by a 3-layer MLP
with 5,000 hidden units and 45 output units. It is trained on
232 hours of Conversational Telephone Speech data [19]. The
Perceptual Linear Prediction (PLP) features are extracted from
each 10ms frame of speech and concatenated with the first and
second order dynamic features to form a spectral feature vector.
The spectral representation of each frame joined with the four
adjacent frames both sides are used as the MLP input to extract
the phone posterior features [11].

5.1.3. Sparse word posterior features

The dictionary for word posterior features is constructed using
only one sample for each word. In contrast to the spectral-based
approaches [20] where considerably more training samples are
demanded, this emphasizes the merit of our posterior-based ap-
proach. Given the dictionary, the KL sparse recovery algo-
rithm [3] is used to estimate the sparse word posterior features.
The regularization parameter λ is set to 0.8 as it is shown to
yield reasonable results. Alternative Euclidean distance based
solver has also been investigated, but the recognition accuracy
drops by more than 2%. This observation is in line with the
prior evidence on suitability of the Kullback-Leibler divergence
as a distance metric in posterior feature space [21].

5.1.4. Context adaptation

The word recognition results using the maximum word poste-
rior probability decoding (Section 3.2) is depicted in Figure 1-
(a) for various dictionary atom sizes, (2c+ 1). We can see that
exploiting larger context improves the performance as the intra-
segment dependency between frames is better modeled. How-
ever, by increasing the atom size beyond 60, the performance
remains almost constant and after a certain size, it starts to drop.
This effect can be explained as the minimum length of the test
samples is around 60 frames (Figure 1-(b)) which indicates that
even though using larger contexts is better to model the intra-
segment dependency, it is undesirable for shorter words due to
the very few number of representatives in the dictionary. The
optimal atom size can be justified from its linguistic interpreta-
tion. In [17], it is reported that the average syllable per word in
Phonebook is 2.7. In our experiment, the average word length
is 144 frames. Dividing it by 60 frames yields 2.4, an accept-
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Figure 1: (a) Word recognition performance vs. the dictionary atom
size. (b) Distribution of the size of test samples.

able syllable per word ratio. Hence, setting the atom size equal
to the average syllable length seems to yield an appropriate size
for word recognition.

To evaluate our context adaptation scheme, the word poste-
rior representations obtained from c = {10, 40} dictionaries are
integrated. The recognition performance using context adapted
features is 87.6% which is better than both of the individual
word posterior features; which yields 75.9% and 86.7% accu-
racy respectively (see Figure 1). We conclude that the context
adapted space is able to model intra-segment dependency thus
achieve a higher discrimination while enough representatives
for small and medium length words are preserved.

5.1.5. Hybridization with DTW

To the best of our knowledge, DTW using phone posterior fea-
tures currently achieves the best results reported on Phonebook
for isolated word recognition [18]. To exploit the additional dis-
crimination provided by sparse word posterior representation,
the normalized word scores obtained from word posteriors are
added to the DTW scores and used for recognition. The word
recognition accuracy of the hybrid approach is 93.5% whereas
DTW performs 92.2%. Hence, incorporating the sparse word
posterior improves the relative performance by 17%. Although
DTW is a strong technique for a sequence matching problem,
it uses a local distance measure which may not take into ac-
count the full discriminative properties of the feature space. By
exploiting the sparse word posteriors, complementary evidence
are provided resulting in an improvement in recognition perfor-
mance.

5.2. Continuous speech recognition

The CSR experiments are conducted on HIWIRE corpus [22].
This database contains about 8100 English utterances with non-
native speakers. We use the same set-up as [23].

5.2.1. Phoneme posterior features

A 3-layer MLP is used to obtain the phone posterior features.
The targets are 117 universal phonemes and the input is 9
frames of 39 dimensional PLP features. More details about the
MLP can be found in [23].

5.2.2. Sparse HMM-state posterior

The dictionary matrix is constructed from the means of 800
clusters in phone posterior space as it is explained in Sec-
tion 4. The KL-solver [3] is used for sparse representation in
an 800-dimensional sparse HMM-state posterior space using
117-dimensional phone posterior features. The regularization
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Figure 2: Performance of the KL-HMM based recognition system with
regular posterior and sparse HMM-state posterior features for vary-
ing number of states on HIWIRE corpus. Accuracy of conventional
HMM/GMM system is 97.3% [22].

parameter is set to 0.8. The speech recognition is achieved us-
ing the KL-HMM framework which is appropriate to model a
sparse feature space [15]. The continuous speech recognition
accuracy using sparse HMM-state posterior features using KL-
HMM modeling is compared with the phone posteriors features
in Figure 2. The conventional HMM/GMM [22] system per-
forms 97.3%. The performance using the sparse HMM-state
posteriors is 98.1% which yields 30% relative improvement
compared to the conventional HMM/GMM, and 10% relative
improvement compared to the KL-HMM modeling using regu-
lar phone posteriors, which yields 97.8% accuracy. Moreover,
as Figure 2 illustrates, HMM-state posterior features require
less number of KL-HMM states, reducing the complexity of the
model used for speech recognition.

6. Conclusion
In this paper, a novel posterior-based sparse representation was
proposed, exploiting exemplar-based sparse representation and
the properties of the posterior feature space. The proposed ap-
proach resulted in a new type of statistical formalism where
the hidden variable can accommodate different types of lin-
guistic unit, resulting in a new way to map posterior features
into a different linguistically-inspired feature space. The sparse
word posteriors as well as HMM-state posteriors were obtained
from phone posteriors and investigated in the context of iso-
lated word recognition and continuous speech recognition re-
spectively. The resulting word posterior scores, which may miss
some of the temporal properties of the utterances, can be fur-
ther enhanced by integrating standard (posterior-based) DTW
scores. The numerical evaluations resulted in improved word
recognition rate where efficient methodologies were incorpo-
rated to tackle the length variability of the words. Furthermore,
the sparse HMM-state posterior features outperformed the best
state-of-the-art results using the appropriate framework of KL-
HMM to model sparse features while reducing the model com-
plexity required for continuous speech recognition.
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