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Abstract-In this work we present the smart knee prosthesis designed for in-vivo kinematics 
measurement and its validation in two knee simulators, i.e. a robotic knee simulator to provide realistic 
condition, and a manual simulator with more degrees of freedom. The sensor configuration including 
three magnetic sensors was designed, and the machine learning techniques were used to translate the 
magnetic measurements to knee rotations. First the concurrent flexion-extension and internal-external 
rotations were estimated via linear and nonlinear estimators, and technically validated in a manual 
knee simulator against motion capture system. Then the flexion-extension estimation was validated in a 
robotic knee simulator providing the realistic sagittal kinematics of treadmill and over-ground walking. 
The obtained results showed the high accuracy and precision of the estimates. 
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1. INTRODUCTION 

Even though over a million knee prostheses implanted each year only in the EU and USA [1], none provide 
feedback information to allow continuous and objective monitoring of the patient knee function. A few studies 
have been done on instrumented prostheses while their focus was mainly on measurement of in-vivo forces [2], 
[3], [4] and their designs have not been compatible with the commercially-available prostheses. Proposed 
instrumented prostheses were implanted in a few subjects and used for different biomechanical studies such as 
the relation between external knee adduction moment and medial contact force [5], knee contact forces during 
activity of daily living [6]. Recently we introduced a smart knee prosthesis including force sensing and 
kinematic measurement units in which all the electronics were integrated into the polyethylene insert, bringing 
versatility to the design and compatibility with commercially-available prostheses [7]. In our previous studies, 
implanted kinematics measurement systems in the smart prostheses were designed to estimate internal external 
rotation (IE) [8], and flexion extension (FE) and abduction adduction rotations (AA) [7] without soft tissue 
artifact (STA). However the kinematic estimators were not designed to estimate combinations of different 
rotations, e.g. concurrent rotations in different anatomical planes. Those estimators were only tested in a 
manually-operated knee simulator, and far from realistic patterns of activities. The goal of current study is two- 
folded; first to complete the previous design for measuring multiple concurrent knee rotations, then validate the 
system not only in a manual but also in a robotic knee simulator which replicates realistic gait patterns. 

2. MATERIAL AND METHODS 

Sensor Configuration and Estimation Models 

A posterior-stabilized mobile bearing prosthesis (F.I.R.S.T, Symbious, CH) was used in this study, which 
consists of a Femoral part (FP), a Tibial part (TP) and an ultra high molecular polyethylene insert (PE). Using 
the fluoroscopic collected data of 19 subjects, bearers of the same prosthesis, no considerable AA was observed 
in stance phase during treadmill gaits [9]. In this study, we thus focused on design of sensor configuration and 
estimators to of the two other rotations, FE and IE rotations which can occur concurrently. The designed 
system includes three 2D AMR sensors configured inside PE, and two small permanent magnets integrated into 
FP and TP to translate their movements to measureable changes in the distribution of the magnetic field in PE. 
The magnets were encapsulated in the guiding pin of the FP and the central screw of TP (Fig. 1). First AMR 
sensor was placed above the TP magnet (M1) to be dominantly influenced by this magnet; the two other 
sensors were configured based on a sensitivity analysis. Separate estimators for IE and FE angles were 
designed. A set of candidate inputs were considered, i.e. the channels of sensors (Sij channel j of sensor i) and 
all pairs of their one by one multiplication. Two types of estimators were built based on linear regression (LR) 
of the selected inputs (x) and multi-layer Perceptron (MLP). For the LR estimators a correlation-based forward 
selection algorithm [10] was applied to find the inputs linearly correlated to the target angles. However for the 
MLP estimators a mutual information (MI) based input selection was used (xk is the kth selected input) to 
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Figure 1. Configured sensors (S1, S2, S3) in PE and magnets (M1, M2) in FP and TP of the prosthesis 

maximize the relevance to the target angles and minimize the redundancy between the selected inputs (1). 

x*  = arg max( MI( x ,θ ) −  λ × MI( x ,x  ) ). (1) 
k k k j 

k x j ∈ selected inputs 

Here λ was fixed to 0.7 to bring a tradeoff between the two criteria. The weights of LR estimators were 
obtained via ordinary least square, while the weights of MLP were obtained via applying the Levenberg- 
Marquat algorithm [10] to the training dataset. The obtained estimators are as below: 

θ̂ IE   = w  + w S 2  + w S1 + w  (S 2  ⋅ S 3  ) . (2) 

ˆ FE 
LR = w0  + w1 S 21  + w2 S11  + w3 (S 21 ⋅ S 31 ) + w4 (S 22  ⋅ S 32 ) . (3) 

θ̂ IE      = MLP (S1 , S 2  × S 3  , S 2  × S1 ) . (4) 

θ̂ FE     = MLP ( S 2  ,S 2  × S 3 , S 3 × S1 ,S 3 ) . (5) 

Reference Systems and Validation 

The following sections outline two different validation setups for the designed kinematics estimation system. 

Manual Knee Simulator for Concurrent Estimation of FE and IE angles 

The instrumented knee prosthesis was fixed in a manually-operated knee simulator [7] in which we performed 
79 IE rotations in range of [-10.41° 8.2°] concurrent with 60 FE in range of [1.6° 73.61°]. The knee simulator 
was equipped with reflective markers. The measurements of the AMR sensors synchronously performed 
against a stereophotogrammetry motion capture system including four Mx3+ cameras (Vicon, UK). The 
precision of the reference system, estimated in static measurements, were 0.34° and 0.22° for FE and IE 
angles respectively. The training and validation subsets containing 70% and 30% of all data respectively were 
randomly selected. We repeated this random subset selection for eight times (repeated random sub-sampling 
validation). This resulted in eight training and eight validation subsets. Then the training subsets were used to 
design and tune the estimators and the corresponding validation subsets were used only to evaluate the 
estimators. The differences between each estimator’s results and the reference angles were calculated for each 
subset. Finally, we computed the expected value and standard deviation of the mean error (E), the standard 
deviation of error (SD), the RMS error (RMS) and the coefficient of determination (R2) over all eight subsets. 

Robotic Knee Simulator for Sagittal Kinematics Estimation during Realistic Gait Patterns 

A robotic knee simulator was designed and realized to simulate different activity patterns for testing the 
designed smart knee implant prior to a subject implantation. This automated knee simulator includes three axial 
hydraulic actuators to simulate the hip movement or body weight, the quadriceps and hamstring muscles 
activities (Fig. 2). At the current state, the knee simulator is capable of performing controllable movement in 
the sagittal plane, therefore only the sagittal kinematics estimations can be validated with this system. 

Two datasets were used to generate realistic simulations of knee activities. First the X-ray fluoroscopic data 
collected from three subjects, bearing similar F.I.R.S.T prostheses, walking on a treadmill were used as the 
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STA-free reference kinematics for the prosthetic knee [9]. Second, the over-ground gait cycles of one of the 
subjects provided in 4th grand challenge to predict in-vivo knee forces [11] were used. Both datasets were only 
used for kinematics measurement validation of the implantable system. To control the simulator, first the FE 
rotations were extracted from the datasets, and approximated with Fourier series. These Fourier series 
separately, for each subject, were coded into the simulator interface controlling software as the reference angle 
and applied to the hip axial actuator which was controlled using a proportional integral derivative (PID) 
controller (Fig. 3). The robotic knee simulator was also equipped with reflective markers and its kinematics 
measured by a similar reference system, four Mx3+ cameras (Vicon, UK). In addition, a squat movement, 
FE:[15.11º 67.56º], was generated in the knee simulator which used as the training data to tune the weights of 
the FE estimator, i.e. an LR estimator. Then the estimator was validated during gait cycles of the different 
subjects using similar performance indices as the previous section. 

3. RESULTS 

Concurrent Flexion-Extension and Internal-External Angle Estimation 

Table 1 shows the performance of different estimators for concurrent estimation of FE and IE. The nonlinear 
estimator ( ) had better performance for FE estimates than the linear regression estimator; however in the 
case of IE rotations the results were very close. Considering the best estimators, the errors (mean ± SD) were 
0.0°±0.9° and 0.2°±1.1° for IE and FE respectively, i.e. about four times the precision of the reference system. 

FE Estimation in the Robotic Knee Simulator 

A typical FE estimation against the reference measurement is shown in Fig. 4.a. The performance indices’ 
mean and standard deviations over the four simulated patterns of gait (validation dataset) are shown in Fig. 4.b. 
The RMS error of FE estimates was equal or lower than 1.5°. The R2 for FE estimation was 0.99±0.00. 

4. DISCUSSION 

This work showed how a magnetic sensor configuration can be used for estimation of flexion-extension and 
internal-external rotations when they occur concurrently. Comparing to the single angle (FE or IE) estimation 
(in  presence  of  one  magnet),  FE  and  IE  concurrent  estimations  (in  presence  of  two  magnets)  is  very 
challenging. Actually, having magnets on FP and TP, rotation of each part acts as a distortion for the estimators 

 
Figure 2. Robotic knee simulator 

 
Figure 3. Controling the robotic knee simulator with data acquired from X-ray flouroscopy 
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Table 1. Performance of different estimators over the validation subsets (manual knee simulator) 

Estimators E(error)° SD(error)° RMS(error)° R2 

θ̂ IE 
LR 

0.0±0.1 0.9±0.0 0.9±0.0 0.97±0.01 

θ̂ IE 
MLP 

-0.1±0.3 1.0±0.1 1.0±0.2 0.97±0.01 

θ̂ FE 
LR 

0.0±0.8 3.4±0.2 3.4±0.2 0.98±0.00 

θ̂ FE 
MLP 

0.2±0.3 1.1±0.2 1.2±0.2 0.99±0.00 
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Figure 4. (a) estimates in a typical gait FE, (b) performance on four simulated gaits (robotic knee simulator) 

of the other angle. To properly cope with this problem, first the sensor configuration was designed to maximize 
the sensitivity and minimize the mutual effect of rotations. Then different estimators for the concurrent 
estimation of FE and IE were designed to separate the information related to each rotation, and first validated in 
a manual knee simulator. The result showed that the linear regression estimators are sufficiently accurate for IE 
estimations with an RMS error of 0.9°, and using MLP estimator did not improve the performance. However to 
estimate the FE precisely, MLP estimators provided better results (RMS error 1.2°) than LR estimators, 
manifesting the nonlinearity of the relation between the inputs, e.g. the crude magnetic measurements, and FE. 

A robotic knee simulator was designed and fed with four different subjects’ gait patterns. By simulating 
different patterns of treadmill and over-ground gaits the designed sensor configuration and estimator were 
validated in close-to-reality condition. The obtained RMS error for FE angle estimation was lower than 1.5° 
that is very low comparing to the range of FE rotations 48.07±5.31º. This error is lower than the estimated STA 
error for FE angle [9]. In the next step the knee simulator needs to be completed by adding controllable degrees 
of freedom to validate the concurrent estimation of FE and IE in realistic setup prior to a subject implantation. 
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