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Abstract— In this paper we present a method for fusing
optical flow and inertial measurements. To this end, we derive a
novel visual error term which is better suited than the standard
continuous epipolar constraint for extracting the information
contained in the optical flow measurements. By means of an
unscented Kalman filter (UKF), this information is then tightly
coupled with inertial measurements in order to estimate the
egomotion of the sensor setup. The individual visual landmark
positions are not part of the filter state anymore. Thus, the
dimensionality of the state space is significantly reduced, allow-
ing for a fast online implementation. A nonlinear observability
analysis is provided and supports the proposed method from
a theoretical side. The filter is evaluated on real data together
with ground truth from a motion capture system.

I. INTRODUCTION

The use of cameras as light-weight egomotion sensors
has been studied very broadly in the past few decades. The
main advantage of a camera is that rich information can be
obtained at relatively low power consumption. However, this
information richness also poses the main difficulty, as the
vast amount of information needs to be handled properly
before the egomotion can be inferred.

Within the computer vision community, Davison [3] pre-
sented one of the first algorithms that is able to accurately
track the 3D pose of a monocular camera. His idea was
to design an Extended Kalman Filter (EKF) which simul-
taneously tracks the pose of the camera as well as the 3D
position of points of interest, whereby the reprojection errors
of the perceived features serve as innovation term. In the
following, different authors presented adaptations in order to
tackle different weaknesses of this approach, such as feature
initialization [15] and limited map size [2].

Compared to the above mentioned non-delayed ap-
proaches, delayed methods also take past robot poses and
measurements into account. The delayed approaches have
become popular with the work of Klein and Murray [11]:
Based on a subset of camera frames (keyframes) a bundle
adjustment algorithm [20] optimizes a map, while the actual
pose of the camera is tracked by minimizing the reprojection
error between map and camera. Strasdat et al. [19] argued
that in terms of accuracy and computational costs it would be
more beneficial to increase the number of tracked features
rather than the number of frames they are tracked in. In
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the following, the limits of vision-only state estimation
and mapping where pushed even further by various other
elaborate delayed frameworks [13], [18], [9].

In parallel to the “vision-only” based approaches, other
researchers started including inertial measurements into their
estimation algorithms. Relying on a known visual pattern,
Mirzaei and Roumeliotis [14] showed one of the first online
methods for extrinsic IMU-camera calibration and IMU
bias estimation. Later, Kelly and Sukhatme [10], Jones and
Soatto [7], as well as Weiss et al. [21] presented different
frameworks for visual-inertial navigation including the co-
estimation of calibration parameters. All of these authors
emphasize the importance of analyzing the observability
characteristics of the underlying system and discuss the
related issues. Recently, Leutenegger et al. [12] presented a
delayed framework in which the authors included visual and
inertial error terms into a nonlinear optimization in order to
estimate the motion of a visual-inertial multi-camera system
as well as the landmarks in the map.

Efforts have also been done in order to find other visual
error terms for combining the image information with inertial
measurements. For example, Diel et al. [4] directly used
the epipolar constraint between two matching features in
subsequent frames as innovation term for their Kalman filter
and thereby fused the visual information with the accelerom-
eter measurements (the gyroscopes and attitude are handled
separately). By making the assumption that all features lie
on a single plane, Omari et al. [17] derived a visual error
term for optical flow measurements and combined it with
inertial measurements by means of an UKF. Both approaches
have in common that the 3D position of the features are not
included into the state of the filter which significantly reduces
the computational costs. Similarly, Mourikis and Roumeliotis
[16] also excluded the position of the features from the states
of their filter and introduced a measurement model in order
to account for the information when a feature is measured
in multiple camera frames.

The primary goal of the present work is to propose a
simple and reliable framework for the estimation of quan-
tities which are critical for the safe operation of autonomous
robots. We want to emphasize that we do not focus on achiev-
ing high-precision position and attitude accuracy, rather, our
goal is to achieve a robust estimation of the velocity and
inclination angle of the robot. This is especially important
for systems which are controlled through dynamic motion,
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such as legged robots or quadrocopters. For this reason,
we introduce visual error term which can directly extract
information from a single feature match and does not rely
on repeated measurements of the same feature. The above
mentioned work of Diel et al. [4] is the closest to the
present approach. In contrast to it, we propose the use of a
different visual error term and co-estimate the inverse scene
depth. By means of an UKF, we carry out a tight fusion
of the visual and inertial measurements, whereby gyroscope
and accelerometer measurements are included during the
prediction step and the visual error terms serve as innovation
during the update step. Furthermore, avoiding the inclusion
of the feature positions into the filter state allows for a very
fast online implementation of the method. The presented ap-
proach is supported by a full nonlinear observability analysis
and evaluated on data from real experiments.

The remainder of this paper is structured as follows: After
introducing the most important notations and conventions in
section II, we describe the structure of the filter including
the prediction and update steps in section III. In section IV
we show and discuss the result of the nonlinear observability
analysis. The experimental setup is described in section V.
Finally, we discuss the obtained results in section VI and
conclude with section VII.

II. PREREQUISITES

For better readability we give a short overview on the
employed notations and conventions. The coordinates, ex-
pressed in a frame A, of a vector from a point P to a
point Q are denoted by ArPQ. If B is a second coordinate
frame, then CBA maps the coordinates expressed in A to
the corresponding coordinates in B. The rotation between
both frames is generally parametrized by the unit quaternion
qBA, with the corresponding mapping C : qBA 7→ CBA.
Throughout the paper, we add a subscript k to a quantity
v, if we want to talk about its value at a time tk, i.e.,
vk = v(tk). Two coordinate frames are of interest: the world
fixed coordinate frame W and the sensor frame B. For the
sake of simplicity the following derivation assumes that the
camera and the IMU coordinate frames are aligned with B.

We handle rotations as elements of SO(3), where, together
with the exponential and logarithm map, difference and
derivatives are defined on R3. This is of high importance
for the setup of the filter as well as for the corresponding
observability analysis. Please note, that for this reason, also
derivatives containing quaternions will be three dimensional
in the corresponding directions, e.g. q̇ = −ω ∈ R3 [1].

III. FILTER SETUP

A. Optical Flow and Visual Error Term

Based on the assumption of a static scene the following
identity can be directly derived using kinematics relations
only:

0 =BvB + (Bw
×
Bmi + ui)λi + miλ̇i, (1)

where BvB and BwB are the robot-centric velocity and
rotational rate. The quantities mi, ui and λi are related to

the optical flow of a static feature i and represent the unit
length bearing vector, the optical flow vector, and the depth
of the feature. The challenge here is to find a way to properly
extract information out of the equation without having to co-
estimate the depth (and it’s derivative) for each single optical
flow measurement. A very common approach is to employ
the continuous epipolar constraint which results from the
above equation if left-multiplied by mT

i (Bw
×
Bmi + ui)

×:

0 =mT
i (Bw

×
Bmi + ui)

×
BvB . (2)

This corresponds to an analytical elimination of the depth
and its derivative. The problem is that this reduction does not
consider the stochastic nature of the system and draws the
estimation process towards singularities, e.g. zero velocity,
which don’t correspond to the maximum likelihood estimate
(which is in general a desirable goal for estimation). As a
trade-off we propose to eliminate the derivative of the depth
analytically by left-multiplying the equation by a 2×3 matrix
M i which fulfills:

M imi = 0 ∧ M iM
T
i = I2. (3)

Additionally we make use of an inverse-depth parametriza-
tion, αi = 1/λi, and obtain

0 =M i

(
BvBαi + (Bw

×
Bmi + ui)

)
. (4)

In comparison to the continuous epipolar constraint, this term
retains more of the original constraint and is less susceptible
to singularities. However, it also still contains one additional
unknown, αi, per visual feature. In order to cope with this,
we will assume that the inverse depths αi exhibit a Gaussian
distribution around a mean α with standard deviation σα. The
new parameter α corresponds to the inverse scene depth and
will be co-estimated in the estimation process.

B. Filter States and Prediction Equations

The states of a filter have to be selected such that appro-
priate prediction and measurement equation can be derived.
We define the following filter states:

x :=
(
r,v, q, c,d, α

)
, (5)

:=
(
WrWB ,BvB , qWB ,Bbf ,Bbω, α

)
, (6)

where r is the world position of the sensor, v represents its
robot-centric velocity, q parametrizes the rotation between
the sensor and the world coordinate frame, and c and d are
the biases of the accelerometer and gyroscope. The additional
state α is the inverse scene depth which is used for incorpo-
rating the optical flow measurements. The advantage of the
robot-centric choice of states is that we thereby partition the
state into non-observable states (absolute position and yaw)
and observable states and thus avoid numerical problems
related to non-observable states. A small drawback is that the
noise of the gyroscope propagates onto the velocity state as
well. Since, as will be shown later, the robot-centric velocity
is fully observable, the additional noise can be compensated
by the filter.



Analogous to other fusion algorithms including inertial
measurements, we embed the proper acceleration measure-
ment f̃ and the rotational rate measurement ω̃ of the IMU
directly into the prediction step of the proposed filter. Assum-
ing that both measurements are affected by white Gaussian
noise, wf and wω , and additive bias terms, c and d, we can
write down

f̃ = f + c + wf , (7)
ω̃ = ω + d + wω. (8)

Both quantities are related to the kinematics of the sensor
by

f = C(qBW ) (W v̇B − g) , (9)
ω =− q̇BW , (10)

where g is the gravity vector in W . By evaluating the
total derivative of the filter states and combining it with the
inertial measurements we obtain the following continuous
time differential equations:

ṙ = C(q)v + wr, (11)

v̇ =− (ω̃ − d−wω)×v + f̃ − c−wf + CT (q)g, (12)
q̇ = C(q)(ω̃ − d−wω), (13)
ċ = wc, (14)

ḋ = wd, (15)
α̇ = wα. (16)

The additional continuous white Gaussian noise processes
wc and wd model a certain drift affecting the bias terms.
wα is included in order to handle varying inverse scene
depths and wr is included for being able to excite the full
filter state and for modeling errors caused by the subsequent
discretization of the states. For all white Gaussian noise
processes, the corresponding covariance parameters, Rr, Rf ,
Rω , Rc, Rd, and Rα describe the magnitude of the noise.
Except for Rr and Rα which are tuning parameters, all
covariance parameters can be identified by considering the
Allan plots of the IMU measurements [5].

The discretization is based on a simple Euler forward
integration scheme. Please note that for the rotational states,
the step forward can be taken on the corresponding sigma
algebra and then be mapped back onto SO(3). This corre-
sponds to (with ∆tk = tk − tk−1):

q(tk) = exp (∆tkq̇(tk−1))⊗ q(tk−1). (17)

This leads to:

rk = rk−1 + ∆tk (Ck−1vk−1 + wr,k) , (18)

vk =
(
I −∆tk (ω̃k − dk−1 −wω,k)

×
)
vk−1

+ ∆tk

(
f̃k − ck−1 −wf,k + CT

k−1g
)
, (19)

qk = exp
(

∆tkCk−1(ω̃k − dk−1 −wω,k)
)
⊗ qk−1, (20)

ck = ck−1 + ∆tkwc,k, (21)
dk = dk−1 + ∆tkwd,k, (22)
αk = αk−1 + ∆tkwα,k. (23)

C. Measurement Equations

The measurement equations are directly based on the
findings of section III-A. For each available optical flow
measurement i, we directly define the corresponding 2D
innovation term for the filter:

yi =M i

(
v αi + (ω×mi + ui)

)
. (24)

As discussed above, we introduced the inverse scene depth as
a filter state and thus model deviations of the single inverse
depths αi as measurement noise:

αi = α+ nα,i, nα,i ∼ N (0, σ2
α). (25)

Furthermore, we also have to model noise on the bearing
vectors mi and optical flow vectors ui. For typical scenarios
the major part of the uncertainties originate through ui,
which lies in the orthogonal subspace of mi. Thus, we can
introduce an additive lumped noise term on ui, whereby it
is sufficient to excite directions orthogonal to mi only. This
can be achieved by means of the previously defined matrix
M i (nu is two dimensional):

ũi = ui −MT
i nu, (26)

nu ∼ (0,Ru). (27)

With this the innovation term becomes:

yi =M i

(
v(α+ nα,i) + (ω×mi + ũi)

)
+ nu. (28)

The parameter Ru describes the accuracy of the visual
measurements and the parameter σ2

α depends on the variance
of the inverse depths in the scene.

An interesting effect is that whenever the velocity is small
or when the inverse scene depth tends towards zero (i.e. the
scene is far away), the innovation term will be equivalent to
a visual gyroscope:

y∗
i =M i

(
(ω×mi + ũi)

)
+ nu. (29)

D. Unscented Kalman Filter and Outliers Detection

An unscented Kalman filter (UKF) is employed as filtering
framework. The main reason for this is that the UKF can
handle correlated noise between prediction and update by
using a single set of augmented sigma points for both
steps. All equations required for its implementation are
the prediction equation (18)-(23) and the update equation
(29), whereby the single innovation terms of the multiple
features are stuck together. The twofold use of the gyroscope
measurement can be directly seen in these equations. Please
note that the implementation has to take into account that,
although the attitude is parametrized by a unit quaternion, the
corresponding noise and perturbations are always on a 3D
subspace. For a detailed discussion on the employed UKF
itself please refer to [8].

In order to handle the high sensitivity of Kalman filters
to outliers, we implement a simple outliers detection method
on the innovation terms. Using an analogous approach as
Mirzaei et al. [14], we reject a visual measurement whenever
the Mahalanobis distance of the corresponding innovation



terms exceeds a certain threshold. The predicted covariance
of the innovation is used as weighting for the Mahalanobis
distance and the threshold is chosen in such a manner that,
in theory, 1% of the inliers are rejected. Considering that the
underlying probability distribution is a χ2-distribution with
two degrees of freedom the threshold is set to p = 9.21. In
summary, the criteria for rejecting a measurement i is given
by (where Si is the predicted covariance matrix):

yTi S
−1
i yi > p. (30)

IV. OBSERVABILITY ANALYSIS

A nonlinear observability analysis is carried out for the
proposed system. A detailed discussion of the theory behind
it was provided by Hermann and Krener [6]. In the scope
of this paper we only outline the rough procedure of the
analysis. Based on the nonlinear representation of the system
an observability matrix is derived in order to assess the
observability characteristics of the system. The system can
be written as follows, whereby the noise quantities can be
ignored since they don’t affect the observability analysis:

ẋ =


Cv

ω̂×v − f̂ + CTg
−Cω̂

0
0
0

 , (31)

hi(x) =M i

(
v α+ (−ŵ×mi + ũi)

)
, (32)

with the shortcuts f̂ = −f̃ + c and ω̂ = −ω̃ + d.
The observability matrix is composed of the gradient of

the Lie derivatives of the above system, whereby f̃ and ω̃
are, in the context of this analysis, the inputs to the system.
We can show, that if there are three optical measurements
with non-coplanar bearing vectors and if the inverse scene
depth is not zero we can simplify the observability matrix
to the following term (if α = 0 only the gyroscope bias and
the inverse scene depth itself (if v 6= 0) are observable):

O =


0 I 0 0 0 1

αv
0 0 0 0 I 0

0 0 CTg× −I 0 CTg − f̂

0 0 ω̂×CTg× 0 0 ω̂×CTg

 . (33)

Throughout the analysis only rank-preserving row operations
are carried out which keeps the relation between each column
and a specific state of the filter. We also have to keep in
mind, that f̃ and ω̃ represent system inputs in this analysis,
and thus a single line in the matrix can be duplicated by
inserting different values for f̃ and ω̃ (see [6]). By inserting
two non-colinear values for ω̃ (through ω̂) in the last row of
the matrix we can further simplify the matrix to:

O =


0 I 0 0 0 1

αv
0 0 0 0 I 0

0 0 0 −I 0 −f̂
0 0 CTg× 0 0 CTg

 . (34)

Fig. 1. ASL visual-inertial SLAM sensor employed for evaluating the
presented optical flow and inertial measurement fusion approach.

The rank of this matrix is 12 (independent of the choice of
C, v, or f̂ ) and the dimension of the right null-space is
consequently 4, which is spanned by the following matrix:

N =

[
I 0 0 0 0 0
0 0 gT 0 0 0

]T
. (35)

In an informal way, the perturbations along the directions
spanned by N cannot be perceived at the filter output. While
the first column corresponds to the absolute position of the
system, the second column represents a rotation around the
gravity axis, i.e., global position and yaw angle are not
observable. Mathematically this can be written as:

r∗ =r + δr, (36)
q∗ = exp (gδψ)⊗ q, (37)

where δr and δψ are perturbations. r and q cannot be
distinguished from r∗ and q∗, respectively.

All in all, the above nonlinear observability analysis allows
us to state that for all points in the state-space (except if
α = 0) there exists some inputs f̃ and ω̃ (corresponding to
a certain motion of the sensor) such that all states are locally
weakly observable, except for the global position and yaw
angle.

V. EXPERIMENTAL SETUP

To validate the proposed scheme, the Unscented Kalman
filter was implemented in C++. The filter was tested on
data that were recorded using the ASL visual-inertial SLAM
sensor (see fig. 1), with synchronized global-shutter camera
(Aptina MT9V034 at 20 Hz) and IMU (Analog Devices
ADIS16488 at 200 Hz). The pose of the sensor was ad-
ditionally tracked using a Vicon motion tracking system at
100 Hz.

The image features are tracked using a Lukas-Kanade-
based tracker. Salient image features that are used for track-
ing are extracted by first applying a FAST corner detector,
computing the Shi-Tomasi score for each extracted corner
and then selecting those corners which have the highest
score while ensuring a uniform distribution of the features
in the image. A uniform feature distribution is ensured by
masking parts of the images that are already populated with



Attitude (rad) Velocity (m/s)
Roll Pitch Yaw X Y Z

Prop. 0.012 0.005 0.464 0.057 0.070 0.087
Epi. 0.020 0.008 0.437 0.162 0.121 0.200

TABLE I
RMS VALUES OF PROPOSED FILTER VS. FILTER WITH STANDARD

CONTINUOUS EPIPOLAR CONSTRAINT.

strong features and by only adding new, weaker features in
unpopulated image regions.

Feature extraction and LK-tracking for 150 features is
taking less than 2.5 ms in total on a single core of an
Intel i7-3740QM processor for one frame. Equivalently, a
measurement update step using 50 optical flow features is
performed in 10 ms. During the experiments an average
feature count of 50 features was used. The rather bad
scalability of the filter update can be easily overcome by
changing to the information form of the filter, which will be
part of future work.

VI. RESULTS AND DISCUSSION

The presented approach was evaluated on different
datasets from an indoor environment where the feature depths
range between 0.5 m and 5 m. The motion of the sensor
included rotational rate of up to 3 rad/s. Our main goal was
to develop a filter for delivering high-rate and reliable state
estimates rather than being mainly focused on estimation
accuracy. Furthermore, the main states of interest are the
velocities and the inclination angles since they are of major
importance if it comes to control of dynamic robot motions.
Using a 2 minute long dataset where the sensor was excited
along its different degrees of freedom, the RMS values
depicted in table I were computed. In order to evaluate the
proposed visual error term, we implemented the same filter
setup with the standard epipolar constraint (equation (2)) and
observed an increase of the RMS values by a factor 2.

The estimated IMU biases converge relatively fast depend-
ing on the motion of the system. While we have no ground
truth values for the bias terms, figure 2 shows the typical
convergence of the biases when the system is being excited
along its different directions. Figuring out which direction
needs to be excited for improving the estimation of a certain
state can be a very difficult problem and is not within the
scope of this paper. The 3σ-bounds of the covariance matrix
are plotted as dashed lines.

Figure 3, 4, and 5 present the results from a dataset
where after some initial motion the sensor holds still for
awhile before being moved again. This can be clearly seen
between 33−43 seconds. In contrast to the standard epipolar
constraint, the employed visual error term still extracts
information from the optical flow measurements analogous
to a visual gyroscope. Still, during this phase additional
uncertainty accumulates in the different states. However, as
soon as the sensor is moved again, the observable states
very quickly converge back to the reference. This can be
nicely observed for the velocity estimates. Note as well,
that although the position of the sensor is unobservable,
it can be corrected and loose uncertainty to some extent
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Fig. 2. Estimated IMU biases. Red: x-, blue: y-, green: z-coordinate.
Dashed lines: 3σ-bounds. The initial converges is supported by motion of
the sensor. The estimate of the accelerometer bias is more accurate along the
x-axis because it is more often aligned with the gravity axis. The gyroscope
biases converge faster since the optical flow measurement have a direct
impact on the angular rates.
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Fig. 3. Estimated sensor position. Red: estimated values. Red dashed line:
3σ-bound. Dashed blue line: motion capture ground truth. The position state
is affected by increasing uncertainty since it is not observable and represents
the integration of the velocity estimate.

through the cross-correlation it maintains with the other
states. Furthermore, the initial inclination error (roll and
pitch) of about 20◦ can be corrected within 1-2 seconds.

All in all, the filter exhibits a rather average performance
in terms of accuracy when compared with the state of the
art visual-inertial algorithms. However, when considering
that only frame to frame (20 Hz) information is included
into the filter, the obtained results are relatively surprising,
especially since other quantities like the IMU biases have to
be co-estimated simultaneously. A major advantage of this
approach is that the filter is free of any complex initialization
procedure and only relies on single feature matches between
subsequent frames. With this, it does not require long term
tracking of features and is thus much less affected by fast
motions.

VII. CONCLUSION AND FUTURE WORK

In this paper we presented a relatively simple approach for
fusing optical flow and inertial measurements. By deriving a
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Fig. 4. Estimated sensor velocity expressed in the sensor coordinate frame
itself. Red: estimated values. Red dashed line: 3σ-bound. Dashed blue line:
motion capture ground truth. The robot-centric velocity is fully observable
and consequently has a bounded uncertainty. Even after a phase of increased
uncertainty it is able to recover if sufficient excitation is available.
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Fig. 5. Roll, pitch, and yaw angle of the sensor. Red: estimated values. Red
dashed line: 3σ-bound. Dashed blue line: motion capture ground truth. Pitch
and roll are observable and consequently exhibit a nice tracking behavior.
Yaw is not observable and slowly drifts away.

special optical flow error term and embedding it into an UKF
framework, we were able to derive a filter for estimating
the egomotion of the sensor, the IMU biases as well as the
inverse scene depth. By carrying out a nonlinear observability
analysis we showed that all states except for the global
position and yaw angle are locally weakly observable. The
results obtained on a real dataset confirmed that the filter
was able to estimate the different observable states.

One important aspect of future work will be the combina-
tion of the presented approach with other visual localization
methods. While the strength of the presented approach lies in
its robustness and speed, it could be combined together with
some static feature tracking in order to improve its accuracy
and long term stability. Other possible extensions include the

implementation on multiple cameras or the combination with
further sensor modalities.
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