
Additional Material for “Unifying Data
Representation Transformations”

Vlad Ureche
vlad.ureche@epfl.ch

May 23, 2014

Abstract

This report shows an end-to-end formalization of the data represen-
tation transformation mechanism in the “Unifying Data Representation
Transformations” paper [16]. Since the mechanism described in the pa-
per is targeted at the Scala programming language and the specification
is written against System F<: with local colored type inference [11, 14]
formally reasoning about the calculus is a major undertaking.

Instead, in this report we start from the simply typed lambda calculus
with subtyping λ<:, natural numbers and unit. We add rewriting and
adapt the calculus to propagate expected type information in a mech-
anism inspired from local colored type inference [11]. Finally we show
how the representation transformation mechanism (the convert phase)
rewrites terms. We prove that, given a series of assumptions about the
inject phase, type-checking a term against the updated rules produces a
correct and operationally equivalent term, with a minimum number of
runtime coercions introduced for the annotations given.

We finish the report by giving a series of examples which show how
the code is transformed.

1 Introduction
This report will present the formal aspects of the “Unifying Data Repre-
sentation Transformations” paper [16]. Before diving into details, we will
briefly refresh the main ideas in the paper.

1.1 Motivation
Programs can be seen as transformations between input and output data.
Inside this transformation, processing the data involves passing values
from one function to another, writing the data to variables, reading it
back and performing primitive operations on it, such as addition and
multiplication. In this context, the question of representation naturally
arises: how does the program represent the data it manipulates. The
questions is particularily important when using high-level languages that
isolate the programmer from the low-level processor architecture and the

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/148005658?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

DRAFT. Please do not circulate!

realities of the platform the program is executed on. Inefficiently repre-
senting data has been shown to decrease performance and inflate the heap
requirements [8, 6, 7, 4, 17]. Ideally, data should be represented in the
most efficient format possible for the task. For example, when operating
with integers, values should be stored in the processor registers or on the
stack. Yet, certain high-level language features, such as parametric poly-
morphism (also called generics [3]) restrict the data representations that
can be used in a low level program.

Parametric polymorphism allows programmers to abstract over the
type of the data they are working with. This enables the definition of
generic data structures, which operate in the same manner regardless of
the data they are storing. For example, a linked list will perform the
exact same lookup procedure regardless of whether the elements stored
are integers or strings. This exposes a uniform interface to programmers,
promoting code reuse while maintaining type safety. In the following
example, written in the Scala programming language [10], the identity
function takes any data type T and returns the exact same data type T:

1 def identity[T](arg: T): T = arg
2 val x: Int = identity[Int](0)

Yet, on the low level, different types of data use very different repre-
sentations: integers are stored in general processor registers, floating point
numbers use dedicated registers and references are represented as point-
ers to the heap memory. There is clearly a tension between the high-level
uniformity and the low-level architecture specialization for each primitive
type. In the simplest implementation of generics, the erasure transforma-
tion [3], data is represented uniformly both at the high level and at the
low level: regardless of the type, the low level representation uses pointers
to heap objects. This mandates that integers, which are best stored di-
rectly in processors registers, need to be represented as heap objects and
passed by reference whenever interacting with generics. Under erasure,
the previous example is translated to:

1 def identity(arg: Object): Object = arg
2 val x: int = unbox(indentity(box(0)))

Under erasure, the box and unbox data representation coercions are
introduced as part of the translation. Yet, introducing coercions between
data representations in an optimal fashion is a difficult task, which has
been studied extensively [6, 8, 15]. Still, to this day, the algorithms for
managing different data representations are custom tailored for specific
tasks and do not have the means to express general representation con-
straints and to find the optimal points to introduce coercions such that the
constraints are satisfied. The “Unifying Data Representation Transforma-
tion” paper [16] proposes a general and flexible mechanism for expressing
data representation constraints in the type system and uses local type
inference to automatically and optimally introduce coercions between dif-
ferent representations.

The general mechanism for data representation transformations uses
annotated types [1, 2] to mark the representation constraints. This allows

2

DRAFT. Please do not circulate!

local type inference to propagate the representation information along
with the types. For example, in Scala, Int is considered the boxed repre-
sentation while @unboxed Int is the unboxed integer. Explicitly propa-
gating the representation in types allows the type system to automatically
and optimally infer where coercions need to be introduced. This allows
expressing a wide range of transformations in terms of the data represen-
tation transformation mechanism: (1) autoboxing, which automatically
boxes and unboxes primitive types when necessary, as we have seen with
generics, (2) value classes, which combine the advantages of flat structures
with object-orientation, (3) speciaization, which optimizes the translation
of generics and (4) multi-stage programming, which allows evaluating the
result of a program in multiple cycles containg run, generate optimized
code, compile and launch phases.

The data representation transformation mechanism uniformly expresses
all these use cases in as a three-step transformation:

• In the injection phase, trasnformations mark the types to use alter-
native representations. This is done using annotatated types [1, 2];

• In the convert phase, type inference [13, 14, 11] and the annota-
tions are used to guide optimal introduction of coercions between
representations;

• Finally, having marked where and how the coercions take place, the
data representation transformation can use the final semantics of the
alternative data representations.

In the identity example, the autoboxing transformation would use
the inject phase to mark values to be represented in their direct represen-
tation:

1 def identity[T](arg: T): T = arg
2 val x: @unboxed Int = identity[Int](0: @unboxed)

In the type application identity[Int], the integer type is not marked
as @unboxed since erased generics do require using boxed values. The
next phase, convert, automatically introduces coercions between unboxed
and boxed values, using the type system as a guide:

1 def identity[T](arg: T): T = arg
2 val x: @unboxed Int = unbox(identity[Int](box(0: @unboxed))

Finally, in the commit phase, the autiboxing transformation can apply
erasure and transform the code to its final form where int represents an
unboxed integer:

1 def identity(arg: Object): Object = arg
2 val x: int = unbox(identity(box(0))

The same mechanics can be employed by other data representation
transformations as well, therefore making the mechanism an interesting
object of study.

1.2 Formalization
In order to allow studying the data representation mechanism, it should
have a formal specification that allows researchers to reason about it. Yet

3

DRAFT. Please do not circulate!

the original paper does not include a formalization for several reasons:

• The complexity of the Scala type system and of System F with
bounded quantification, System F<:;

• The domain-specific nature of the inject and commit phase, which
are significantly different from a transformation to the next;

• The constraints of the paper, namely the page limit.

In order to provide an intuitive formalization, we restrict ourselves to
the simply typed lambda calculus with subtyping λ<:, natural numbers
and unit. To this end, we start by introducing a very simple local type
inference-like mechanism to the calculus, which is done without interfering
with its properties. Then we add annotated types to the language, prove
progress and preservation. We then change the typing rules to account for
the fact that 0, succ and pred manipulate unboxed natural numbers.
This point corresponds to the inject phase, where annotated types and
their un-annotated counterparts are in a subtype relation in both direc-
tions, corresponding to a compatible state. Then, to formalize the convert
phase, we remove the subtyping rules involving annotated types and in-
troduce rewritings that add coercions. We prove by structural induction
that any term that is typable in the first calculus is also typable in the
second calculus, with the additional introduction of conversions. We then
prove the rewritten term is operationally equivalent to the original term
and prove that it produces programs that, on any given path, peform the
minimum number of runtime coercions possible.

Throughout the formalization, we use the following example:

let identity : Nat→ Nat = λarg: Nat. arg in
let x : Nat = (indentity 0) in
unit

The identity function in the example is not generic, since the simply
typed lambda calculus with subtyping λ<: does not support generics. In-
stead we simulate generics by not marking the type of arg as @unboxed,
therefore requiring the boxing and unboxing of the argument exactly as
seen in the earlier example.

The next section will present the calculus.

2 The Calculus
This section will expain the calculus necessary for the data representation
transformation mechanism, and will explain all the extensions necessary
to express the injection and conversion phases. The calculus does not
formalize the commit phase, which depends significantly on the data rep-
resentations that are converted.

2.1 Simply Typed Lambda Calculus
We start with the simply typed lambda calculus with subtyping λ<: and
augment it with natural numbers in order to have primitive types which
can be transformed. This is a clear step back from System F<: and the
Scala type system, but it makes it possible to easily reason about the

4

DRAFT. Please do not circulate!

t ::= terms :
| x variable
| λ x : T. t abstraction
| t t application
| 0 constant zero
| succ t successor
| pred t predecessor
| unit unit

v ::= values :
| λ x: T. t abstraction value
| nv numeric value
| unit unit

nv ::= numeric values :
| 0 zero value
| succ nv successor value

T ::= types :
| T→ T type of functions
| Top maximum type
| Nat natural numbers
| Unit unit type

Figure 1: Syntax of the λ<: calculus with Nat and Unit

Desugaring:

t1; t2 ⇒ (λx : Unit . t2) t1
where x 6∈ FV (t2)

let x: T = e in t ⇒ ((λx : T . t) e

Figure 2: Desugaring of the λ<: calculus with Nat and Unit

5

DRAFT. Please do not circulate!

Evaluation rules:

t1 −→ t′1
t1 t2 −→ t′1 t2

(E-App1)

t2 −→ t′2
v1 t2 −→ v1 t

′
2

(E-App2)

(λ x: T1. t1) v2 −→ [x→ v2] t1 (E-AppAbs)

pred 0 −→ 0 (E-PredZero)

pred (succ nv1) −→ nv1 (E-PredSucc)

t1 −→ t′1
succ t1 −→ succ t′1

(E-Succ)

t1 −→ t′1
pred t1 −→ pred t′1

(E-Pred)

Figure 3: Evaluation rules of the λ<: calculus with Nat and Unit

transformation. We also augment the calculus with unit, to allow simple
expression of the program.

One of the main missing features of this translation is parametric poly-
morphism, which arguably is the main motivation behind autoboxing and
specialization. Yet both value classes and staging are use cases that are
not motivated by generics. In fact staging is completely orthogonal to the
low level implementation of generics in the language. In the motivating
example, with the identity function, we instantiate the generic type to
Nat:

let identity : Nat→ Nat = λarg: Nat. arg in
let x : Nat = (indentity 0) in
unit

To simulate generics in this case, the inject phase will not mark the
arugment type and the return type of identity for unboxing, therefore
forcing the boxing and respectively unboxing of the argument and return
type of the function.

On the other hand, we do include subtyping and the maximum type
Top, which allows transforming intersting examples, such as:

1 val x: Object = identity(0)

Which would be represented as (omitting the definition of identity):

6

DRAFT. Please do not circulate!

Typing rules:

x : T ∈ Γ

Γ ` x : T
(T-Var)

Γ, x : T1 ` t2 : T2

Γ ` (λ x: T1. t2) : T1 → T2

(T-Abs)

Γ ` t1 : T1 → T2 Γ ` t2 : T1

Γ ` t1 t2 : T2

(T-App)

Γ ` 0 : Nat (T-Zero)

Γ ` t1 : Nat

Γ ` succ t1 : Nat
(T-Succ)

Γ ` t1 : Nat

Γ ` pred t1 : Nat
(T-Pred)

Γ ` t : S S <: T

Γ ` t : T
(T-Sub)

Γ ` unit : Unit (T-Unit)

Figure 4: Typing rules of the λ<: calculus with Nat and Unit

Subtyping rules:

S <: S (S-Refl)

S <: U U <: T

S <: T
(S-Trans)

S <: Top (S-Top)

T1 <: S1 S2 <: T2

S1 → S2 <: T1 → T2

(S-Arrow)

Figure 5: Subtyping rules of the λ<: calculus with Nat and Unit

7

DRAFT. Please do not circulate!

let x : Top = 0 in
unit

The syntax of the calculus is given in Figure 1 and the desugaring in
Figure 2. The operational semantics are given in Figure 3. Finally, the
typing and subtyping rules are given in Figures 4 and 5.

For the λ<: calculus with Nat and Unit we can rely on the inversion
and substitution lemmas and on the progress and preservation theorems
being proven in textbooks [13]:

2.2 Expected Type Propagation and Rewriting
Having shown the simply typed lambda calculus with subtying, natural
numbers and unit, we can now introduce the type propagation, which is
the part we need from the local colored type inference and rewriting, which
allows transforming the program during type checking. This includes
adding two new elements:

• An expected type propagation mechanism inspired by the col-
ored local type ingerence [11], which will later be used to propagate
data representation constraints in the program. With this addition,
type propagation becomes bi-directional: the syntax tree definitions
have their type propagated inwards though the typing context Γ
while expressions have their expected type propagated outwards by
the expected type mechanism and

• A term rewriting extension, which is used to inject conversions at
the right place, based on the divergence between the expected type
and the actual type of a node. In the initial calculus in Figure 6, no
term rewriting is performed: this is intentional, as we want to prove
the properties of the calculus as we go. The further sections will add
rewriting rules.

A natural question to ask is why not use Hindley-Milner [5, 9] full
type reconstruction and use the more restricted expected type propaga-
tion technique. The key reason is that the expected type propagation
mechanism allows rewriting terms as part of type checking, whereas the
H-M type reconstruction only gathers constraints without updating the
program. Later, if the representations do not match, this results in a set of
irreconciliable constraints that prevent the type reconstruction algorithm
from progressing, without clearly indicating where the constraint needs
to be introduced. Another way to state this is that, using expected type
propagation and rewriting, we allow the type system to rewrite program
terms.

Another question that is worth answering is why not use implicit con-
versions which are available in the Scala type system. Indeed, implicit
arguments have been fromalized in [12]. Still, this state-of-the-art cal-
culus does not formalize the introduction of implicit conversions based
on the expected type. Instead, it focuses on implicit argument resolu-
tion, which does not require type propagation. This makes the implicit
calculus in [12] impossible to use directly in both our formalization and
in modelling implicit conversions. We hope that our work can serve as

8

DRAFT. Please do not circulate!

the basis for extending the formalization to implicit conversions, since
the convert phase could be seen as a simplified and restricted mechanism
for implicit conversions. Still, from an implementation point of view, the
convert phase cannot use the implicit resolution mechanism in the Scala
compiler, since after name resolution import statements are removed from
the syntax tree, therefore making it impossible to re-create the full scope
necessary for resolving implicits.

With these two extensions, the typing judgement is the following:

T ; Γ ` t; t′ : T

We also introduce the wildcard type ∗ in the type propagation scheme
by using ∗; Γ ` The wildcard type is not a valid type in the program,
but is used to mark the fact that no expected type has been propagated.
In this case, ∗; Γ ` t ; t′ : T implies T ; Γ ` t ; t′ : T . Contrarily, if
a non-wildcard type is propagated, the rewritten member should conform
to this expected type.

Figure 7 introduces the new typing rules. The syntax, desugaring and
subtyping rules do not change. It is worth pointing out that the only way
to satisfy an expected type in this version of the calculus is through the T-
Sub rule, if the expression type-checks to a subtype of the expected type.
This should explain why ∗; Γ ` t ; t′ : T implies T ; Γ ` t ; t′ : T : by
applying the T-Sub rule with the reflexive S-Refl subtyping rule on the
left-hand side of the implication we immediately obtain the right-hand
side.

Now that we have defined the simply typed lambda calculus with sub-
typing, natural numbers, unit, type propagation and rewriting, we can
prove progress and preservation:

We will now add annotated types to the calculus.

2.3 Annotated Types
Annotated types allow marking the values to use an alternative represen-
tation. A very general solution is to allow annotating any type:

T ::= types :
| T→ T type of functions
| Top maximum type
| Nat natural numbers
| Unit unit type
| @unboxed T annotated type

This general annotation scheme is used in the Scala and Java type
systems [1, 2]. Yet, the inject phase is more restrictive: it can only an-
notate those types that have an alternative representation. Let us as-
sume that in our simple calculus, only natural number representation
can be transfromed. In this case, there is no semantic attached to type
@unboxed (Nat → Nat), since there is no alternative representation
for functions. Instead, we can have @unboxed Nat → @unboxed Nat),
which means a function from unboxed integers to unboxed integers. In
order to build this restriction into the type system we can define types as:

9

DRAFT. Please do not circulate!

Updated typing rules:

x : T ∈ Γ

∗; Γ ` x; x : T
(T-Var)

∗; Γ, x : T1 ` t2 ; t′2 : T2

∗; Γ ` (λ x: T1. t2) ; (λ x: T1. t′2) : T1 → T2

(T-Abs)

∗; Γ ` t1 ; t′1 : T1 → T2 T1; Γ ` t2 ; t′2 : T1

∗; Γ ` t1 t2 ; t′1 t
′
2 : T2

(T-App)

∗; Γ ` 0 ; 0 : Nat (T-Zero)

Nat; Γ ` t1 ; t′1 : Nat

∗; Γ ` succ t1 ; succ t′1 : Nat
(T-Succ)

Nat; Γ ` t1 ; t′1 : Nat

∗; Γ ` pred t1 ; pred t′1 : Nat
(T-Pred)

∗; Γ ` t; t′ : S S <: T

T; Γ ` t; t′ : T
(T-Sub)

∗; Γ ` unit ; unit : Unit (T-Unit)

Figure 6: Typing rules of the λ<: calculus with Nat, Unit, expected type
propagation and rewriting

10

DRAFT. Please do not circulate!

Updated subtyping rules:

S <: S (S-Refl)

S <: U U <: T

S <: T
(S-Trans)

T1 <: Top only for types of T1, not annotated types (S-Top)

T1 <: S1 S2 <: T2

S1 → S2 <: T1 → T2

(S-Arrow)

@unboxed Nat <: Nat (S-Nat1)

Nat <: @unboxed Nat (S-Nat2)

Figure 7: Subtyping rules of the λ<: calculus with Nat, Unit, expected type
propagation, rewriting and annotations

T ::= all types :
| @unboxed Nat unboxed natural numbers
| T1 unannotated types

T1 ::= unannotated types :
| T→ T type of functions
| Top maximum type
| Nat natural numbers
| Unit unit type

It is important to notice that, unlike the Scala type system, the sim-
plifed set of types above does not allow annotating a type twice. While
for our use case this is the natural choice, both the type systems of Java
and Scala allow multiple annotations on a type.

In this calculus, it is not yet necessary to separate Top and anno-
tated types. Still, we can already to this, since it is required by the
data representation mechanism anyway. To do so, we give the subtyp-
ing rules in Figure 7, where Top is only a supertype of any T1 but not
of any T. The gap is filled by combining the S-Nat1 rule with S-Top:
@unboxed Nat <: Nat <: Top.

The next section will present the data representation mechanism.

3 The Data Representation Mechanism
Until now, we have built the calculus necessary to express the data repre-
sentation transformation. Now we can finally express the transformations

11

DRAFT. Please do not circulate!

Updated typing rules:

∗; Γ ` 0 ; 0 : @unboxed Nat (T-Zero)

@unboxed Nat; Γ ` t1 ; t′1 : @unboxed Nat

∗; Γ ` succ t1 ; succ t′1 : @unboxed Nat
(T-Succ)

@unboxed Nat; Γ ` t1 ; t′1 : @unboxed Nat

∗; Γ ` pred t1 ; pred t′1 : @unboxed Nat
(T-Pred)

Figure 8: Updated typing rules for the injection phase

themselves.

3.1 The Inject Phase
The inject phase will inject the @unboxed annotation where necessary,
following a custom logic. During the injection phase, the succ, pred and
0 nodes are also converted to @unboxed Nat instead of Nat, to signal
the fact that their results are unboxed. The updated rules for the calculus
are given in Figure 8.

With these changes, we can re-state the theorems:
Looking at our earlier example:

let identity : Nat→ Nat = λarg: Nat. arg in
let x : Nat = (indentity 0) in
let y : Top = 0 in
unit

After the inject transformation it will look like:

let identity : Nat→ Nat = λarg: Nat. arg in
let x : @unboxed Nat = (indentity 0) in
let y : Top = 0 in
unit

So far, the example has not changed much, a single annotation was
added for x. The convert phase does the heavy lifting of adding explicit
representation conversions.

3.2 The Convert Phase
The convert phase is the most complex phase in the transformation. It
is the first phase to make full use of both the expected type propagation
and the term rewriting capacity in the calculus we defined.

The most important element in the convert phase are the conversion
nodes, which are introduced while rewriting the tree. Along with the
conversion nodes, the values in the calculus need to be patched to account
for boxed values, as shown if Figure 9. Now that explicit conversions

12

DRAFT. Please do not circulate!

t ::= terms :
| x variable
| λ x : T. t abstraction
| t t application
| 0 constant zero
| succ t successor
| pred t predecessor
| box t box number
| unbox t unbox number
| unit unit

v ::= values :
| λ x: T. t abstraction value
| nv numeric value
| box nv box numeric value
| unit unit

nv ::= numeric values :
| 0 zero value
| succ nv successor value

T ::= all types :
| @unboxed Nat unboxed natural numbers
| T1 unannotated types

T1 ::= unannotated types :
| T→ T type of functions
| Top maximum type
| Nat natural numbers
| Unit unit type

Figure 9: Full syntax of the convert phase

13

DRAFT. Please do not circulate!

Evaluation rules:

t1 −→ t′1
t1 t2 −→ t′1 t2

(E-App1)

t2 −→ t′2
v1 t2 −→ v1 t

′
2

(E-App2)

(λ x: T1. t1) v2 −→ [x→ v2] t1 (E-AppAbs)

pred 0 −→ 0 (E-PredZero)

pred (succ nv1) −→ nv1 (E-PredSucc)

t1 −→ t′1
succ t1 −→ succ t′1

(E-Succ)

t1 −→ t′1
pred t1 −→ pred t′1

(E-Pred)

t1 −→ t′1
box t1 −→ box t′1

(E-Box)

box (unbox t) −→ t (E-BoxUnbox)

t1 −→ t′1
unbox t1 −→ unbox t′1

(E-UnBox)

unbox (box t) −→ t (E-UnBoxBox)

Figure 10: Full evaluation rules of the convert phase

14

DRAFT. Please do not circulate!

Updated subtyping rules for the convert phase:

S <: S (S-Refl)

S <: U U <: T

S <: T
(S-Trans)

T1 <: Top only for types of T1, not annotated types (S-Top)

T1 <: S1 S2 <: T2

S1 → S2 <: T1 → T2

(S-Arrow)

Figure 11: Subtyping rules of the convert phase

have been introduced, they must also be considered into the operational
semantics, as shown in Figure 10.

To trigger the introduction of conversions into the tree, we transform
representation inconsistencies into mismatching types. The first step in
doing so is to eliminate the subtyping relations S-Nat1 and S-Nat2 (in-
troduced for the inject phase in Figure 7), which ensure compatibility
between representations during the inject phase. The second step is to
add two new typing rules T-AdaptBox and T-AdaptUnBox that ex-
plicitly introduce the box and unbox operations, in Figure 12. Finally,
the T-Box and T-UnBox operations are added to allow re-type-checking
the tree after the box and unbox operations were introduced.

Following the rewriting in the convert phase, our example will become:

let identity : Nat→ Nat = λarg: Nat. arg in
let x : @unboxed Nat = unbox (indentity (box 0)) in
let y : Top = box 0 in
unit

In the initial example, we started from a state where Nat was the
only numeric type. In the injection phase, we introduced the notion of
@unboxed Nat and added @unboxed annotation to x. With this, the
conversion phase added the explicit conversions necessary to have consis-
tent data representations in the program. From a technical perspective, a
later commit phase allows the compiler to give the final semantics of the
@unboxed annotation, but since this phase is very different for each data
transformation, we will not attempt to formalize it.

It must be noted that optimality is not about the minimum total num-
ber of conversions in the program. Instead, it refers to the minium number
of conversions taken on any execution path (trace) through the program,
modulo the constraints introduced by the inject phase. Assuming we add
booleans to our calculus with the if expression, we can take the following
example:

15

DRAFT. Please do not circulate!

Updated typing rules for the convert phase:

x : T ∈ Γ

∗; Γ ` x; x : T
(T-Var)

∗; Γ, x : T1 ` t2 ; t′2 : T2

∗; Γ ` (λ x: T1. t2) ; (λ x: T1. t′2) : T1 → T2

(T-Abs)

∗; Γ ` t1 ; t′1 : T1 → T2 T1; Γ ` t2 ; t′2 : T1

∗; Γ ` t1 t2 ; t′1 t
′
2 : T2

(T-App)

∗; Γ ` 0 ; 0 : @unboxed Nat (T-Zero)

@unboxed Nat; Γ ` t1 ; t′1 : @unboxed Nat

∗; Γ ` succ t1 ; succ t′1 : @unboxed Nat
(T-Succ)

@unboxed Nat; Γ ` t1 ; t′1 : @unboxed Nat

∗; Γ ` pred t1 ; pred t′1 : @unboxed Nat
(T-Pred)

∗; Γ ` t; t′ : S S <: T

T; Γ ` t; t′ : T
(T-Sub)

∗; Γ ` t; t′ : @unboxed Nat

Nat; Γ ` t; box t′ : Nat
(T-AdaptBox)

∗; Γ ` t; t′ : Nat

@unboxed Nat; Γ ` t; unbox t′ : @unboxed Nat
(T-AdaptUnBox)

∗; Γ ` t; t′ : @unboxed Nat

∗; Γ ` box t; box t′ : Nat
(T-Box)

∗; Γ ` t; t′ : Nat

∗; Γ ` unbox t; unbox t′ : @unboxed Nat
(T-UnBox)

∗; Γ ` unit ; unit : Unit (T-Unit)

Figure 12: Typing rules of the convert phase

16

DRAFT. Please do not circulate!

let pick : Bool→ @unboxed Nat→ @unboxed Nat→ Top =
λcond: Bool.
λchoice1: @unboxed Nat.
λchoice2: @unboxed Nat.
if cond then
box choice1

else
box choice2

in
unit

In this example, the transformation pushes the coercions as deep as
possible in the tree, speculating that some of the branches will not need
the coercion. Still, this is suboptimal from a global coercion count, since
the translation could have been place around the if statement to have a
single global coercion instead of tow. Yet, coercing each branch separately
is more optimal in the following example:

let pick : Bool→ Nat→ @unboxed Nat→ Top =
λcond: Bool.
λchoice1: Nat.
λchoice2: @unboxed Nat.
if cond then
choice1 ; no coercion!

else
box choice2

in
unit

In the second example, the if cond = true there are no coercions in
the execution trace and if cond = false there is one. One could even
argue that, in case the if statement is duplicated, so is the coercion.
This is true, but it is captured by the requirement that the annotations
injected are satisfied – if the high-level annotations are suboptimal, as we
have shown in the paper, so will the transformed program.

Intuitively, optimality comes from the fact that the convert phase will
propagate expected types and will not filp the representation without
a constraint. Since constraints are produced by interacting with code
annotated in the inject phase, we can state that conversions are optimal
modulo the constraints introduced by the inject phase.

The reminder of this document has hand-written proofs attached.

17

DRAFT. Please do not circulate!

18

DRAFT. Please do not circulate!

19

DRAFT. Please do not circulate!

20

DRAFT. Please do not circulate!

21

DRAFT. Please do not circulate!

4 Conclusion
This report has shown the formalization of the “Unifying Data Represen-
tation Transformations” paper and aims at providing a base for other for-
malizations as well, especially in the area of implicit conversions (views).

References
[1] JSR 308: Annotations on Java Types.
[2] SIP-5 - Internals of Scala Annotations.
[3] Bracha, G., Odersky, M., Stoutamire, D., and Wadler, P.

Making the future safe for the past: Adding Genericity to the Java
Programming Language. In OOPSLA (1998), ACM.

[4] Dragos, I., and Odersky, M. Compiling Generics Through User-
Directed Type Specialization. In ICOOOLPS (Genova, Italy, 2009).

[5] Hindley, R. The Principal Type-scheme of an Object in Combi-
natory Logic. Transactions of the American Mathematical Society
(1969).

[6] Jones, S. L. P., and Launchbury, J. Unboxed Values as
First Class Citizens in a Non-Strict Functional Language. In Func-
tional Programming Languages and Computer Architecture (1991),
Springer.

[7] Kennedy, A., and Syme, D. Design and Implementation of Gener-
ics for the .NET Common Language Runtime. In PLDI (2001).

[8] Leroy, X. Unboxed Objects and Polymorphic Typing. In PoPL
(1992), ACM.

[9] Milner, R. A Theory of Type Polymorphism in Programming.
Journal of Computer and System Sciences (1978).

[10] Odersky, M., Spoon, L., and Venners, B. Programming in
Scala: A Comprehensive Step-by-step Guide. Artima Inc, 2008.

[11] Odersky, M., Zenger, M., and Zenger, C. Colored Local Type
Inference. In PoPL (2001), ACM.

[12] Oliveira, B. C., Schrijvers, T., Choi, W., Lee, W., and Yi,
K. The Implicit Calculus: A New Foundation for Generic Program-
ming. In PLDI (2012), ACM.

[13] Pierce, B. C. Types and Programming Languages. MIT Press, 2002.
[14] Pierce, B. C., and Turner, D. N. Local Type Inference. ACM

TOPLAS (2000).
[15] Thiemann, P. J. Unboxed Values and Polymorphic Typing Revis-

ited. In Functional Programming Languages and Computer Architec-
ture (1995), ACM.

[16] Ureche, V., Burmako, E., and Odersky, M. Unifying Data
Representation Transformations. Tech. rep., EPFL, 2014.

[17] Ureche, V., Talau, C., and Odersky, M. Miniboxing: Improv-
ing the Speed to Code Size Tradeoff in Parametric Polymorphism
Translations. In OOPSLA (2013).

22

