
Improving the Performance of Scala Collections with Miniboxing

EPFL Technical Report

Aymeric Genêt Vlad Ureche Martin Odersky
EPFL, Switzerland
{first.last}@epfl.ch

Using generics, Scala collections can be used to store dif-
ferent types of data in a type-safe manner. Unfortunately, due
to the erasure transformation, the performance of generics is
degraded when storing primitive types, such as integers and
floating point numbers. Miniboxing [6] is a novel translation
for generics that restores primitive type performance. Natu-
rally, a good choice would be to use miniboxing to translate
Scala collections. In this paper we explore the patterns used
to implement the Scala collections, describe how they are
transformed by miniboxing and finally compare the perfor-
mance of the two transformations on a mockup of the Scala
collection library. The benchmarks show our prototype im-
plementation1 can speed up collection operations by 45%
without any need for programmer intervention.

Keywords Scala, generics, specialization, miniboxing, prim-
itive types

1. Introduction

Scala collections allow storing data in an abstract and type-
safe manner. This is done using generics, which allow treat-
ing types as parameters of classes and methods. Using gener-
ics, it is possible to abstract over the type of the data in a
collection, such as, for example, creating a linked list of in-
tegers. Safety is then guaranteed by the type system, which
can statically prove that all elements of the collection are ac-
tually integers. This increases programmer productivity and
improves the quality of both programs and libraries.

Generics are currently translated to low level bytecode us-
ing the technique of erasure [2]. This entails that all type pa-
rameters are replaced by their lower bound, which is usually
Object. This is a convenient translation, since all generic
values are uniformly represented as a references. However,
this makes it impossible to instantiate the type parameters by
primitve types, such as integers or floating point numbers,
which are not references but values. Instead, an object repre-
sentation of the primitive type must be used. This is done by
wrapping primitive values into objects, in a process is called
boxing. The opposite process, which extracts the primitive
value from an object, is called unboxing. Boxing and unbox-
ing primitive values degrades program performance, inflates
the heap memory requirements and triggers extra garbage
collection cycles.

1 http://scala-miniboxing.org

Miniboxing [6] is an alternative translation for generics,
which avoids boxing and unboxing, thus improving the per-
formance for primitive types. This is done by creating ad-
ditional versions of the generic methods and classes, specifi-
cally adapted to accept primitive values as arguments and re-
turn primitive types. Instead of creating an additional version
for each primitive type, which would be wasteful in terms of
bytecode size, miniboxing creates a single version which can
encode all primitive types. We call these additional versions
of methods and classes specialized variants. Therefore, in the
case of miniboxing, for a single type parameter, there will be
two variants of a method or class: one using the (reference-
based) erasure translation, which is used for objects, and a
specialized variant, for primitive types.

Scala collections expose a simple and high-level inter-
face. This allows programmers to effortlessly transform col-
lections by mapping over their elements, filtering them or
splitting collections based on custom criteria. All these fea-
tures make heavy use of generics and are thus affected by
slowdowns when used with primitive types. This makes
Scala collections unsuitable for numeric processing appli-
cations, such as machine learning or bioinformatics.

This naturally leads to the idea of translating Scala col-
lections using the miniboxing transformation in order to reap
the benefits of the convenient high-level interface while of-
fering good performance for numeric applications. Yet this
is not an easy task: collections are implemented using multi-
ple layers of functionality and use complex patterns in order
to reduce code duplication and gain flexibility.

In this paper, we set out to use the miniboxing transforma-
tion on a mock-up of the Scala collections, which includes
all the relevant patterns used in the real collections. In this
context, we make the following contributions:

• we explain the patterns that implement Scala collections;
• we show how the miniboxing transforms each pattern;
• we benchmark our mock-up of the Scala collections us-

ing both the erasure and miniboxing transformations.

The benchmarks show promising results: the miniboxing
plugin [1] can speed up collection operations by 45% with-
out any need for user intervention.

The paper first describes the miniboxing transformation,
implemented as a plugin for the Scala compiler. Then, it de-
scribes the code patterns used in implementing Scala collec-

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/148005657?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

tions and their transformation with the miniboxing plugin,
especially: (1) the class hierarchy, (2) the closures, (3) the
Builder pattern, and (4) the Numeric pattern. Finally, the last
section presents our mockup collections and the benchmark
results.

2. Miniboxing

Miniboxing [1, 6] is a compilation scheme that improves
the performance of generics in the Scala programming lan-
guage. The miniboxing transformation is activated by anno-
tating type parameters with @miniboxed, for both classes
and methods:

1 class C[@miniboxed T](val t: T) {

2 def foo(): T = t

3 }

In order to understand the transformation behind this
annotation, let’s look at the following example. Assume we
want to write a generic method that will likely be used with
primitive type arguments:

1 def bar[@miniboxed T](t: T): T =

2 (new C[T](t)).foo()

Since the type parameter T of the bar method is marked
as @miniboxed, the method will have two versions: the
erasure-based, slow version of the method and its specialized
variant for primitive types, which encodes all primitive types
(from booleans to double-precision floating point numbers)
as long integers:

1 def bar(t: Object): Object =

2 new C_L(t).foo(...) // erasure-based

version

3 def bar_J(T_Tag: byte, t: long): long =

4 new C_J(...).foo_J(...)// specialized variant

Every time the programmer calls bar with a primitive
type parameter, the compiler rewrites the code to call the
optimized version bar_J. However, when the method is
called with an object type parameter, such as String, the
erasure-based method will be called:

1 bar[String]("x") // bar is used

2 bar[Int](3) // bar_J is used

Now let us look at the miniboxed class C. The first step
will be to transform the class into an interface and create the
specialized variants for accessors and methods:

1 trait C {

2 def t: Object // erasure-based getter for t

3 def t_J(...): long // specialized getter for t

4 def foo(): Object

5 def foo_J(...): long

6 }

Now, C will have two implementations, C_L and C_J:

1 class C_J(T_Tag: byte, t: long) extends C {

2 def t: Object = minibox2box(T_Tag, t_J(...))

3 def t_J(...): long = t

4 def foo(): Object = minibox2box(...)

5 def foo_J(...): long = t

6 }

For brevity, we omit the implementation of C_L, which is
similar, only that t is a reference and T_Tag disappears.

In the user code, an instantiation of Cwith a primitive type
paramater is rewritten to an instantiation of C_J. An instan-
tiation with a reference paramter leads to an instantiation of
C_L. The method calls are also rewired in order to match the
expected types: If one uses the method foo in the optimized
C_J, it’s actually the foo_J method that must be called:

1 val c_s = new C[String]("x")// class C_L is used

2 val c_i = new C[Int](3) // class C_J is used

3 println(c_s.foo()) // foo() is used

4 println(c_i.foo()) // foo_J() is used

Finally, the last type of specialization occurs when trans-
forming superclasses and mixins:

1 class D extends C[Int](2)

2 // class D extends class C_J

3 class E[@miniboxed T](t: T) extends C[t]

4 // trait E extends trait C

5 // class E_J extends class C_J

6 // class E_L extends class C_L

The process of class specialization brings two impor-
tant advantages: Firstly, since class fields are specialized,
the performance of accessing fields will improve, because
the program now deals with a direct value access instead
of a reference-based access. This is done by representing
fields as long integers, instead of objects. When necessary,
the conversions between the long integer representation and
the object representation are added by the transformation
(minibox2box and box2minibox). Secondly, the memory
footprint of the class will be reduced, since storing data in its
primitive format requires less memory than creating a new
object and storing a reference to it.

3. Scala Collections

In this paper we show how the miniboxing transformation
enables improved collections, which expose the same high-
level interface without sacrificing performance. The next
section presents the common patterns that enable the high-
level interface in the Scala collections [5], and how minibox-
ing can be applied in order to improve performance.

3.1 Inheritance and Mixins

Inheritance and mixins group the common behavior of dif-
ferent collections. This reduces code duplication and gives
rise to a convenient collection hierarchy, where each level
of the inheritance makes more assumptions about the ar-
chitecture than the previous level. For example, the path to
a linked list goes through Traversable, Iterable, Seq,
LinearSeq and finally List.

This nesting and splitting of functionality makes is nec-
essary to have deep miniboxing: Adding the @miniboxed

annotation to a collection type parameter will not be enough
to fully transform it, as most of its functionality will be in-
herited from parent traits. Instead, what needs to be done is
to deeply visit all the parent traits and mark their arguments
as @miniboxed:

1 // trait/class definition needs to be marked:

2 trait Traversable[@miniboxed +A] extends

3 // parents’ definitions also have to be marked:

4 TraversableLike[A, Traversable[A]]

5 with GenTraversable[A]

6 with TraversableOnce[A]

7 with GenericTraversableTemplate[A,

Traversable] { ... }

Since the goal of Scala collections is to avoid code dupli-
cation, collection comprehensions, such as map and filter,
all rely on a common mechanism: visiting each element in
the collection, performing an action for it and (optionally)
adding the result to a new collection. For example, filter
visits all elements and for each element applies a predicate
which decides whether the element should be part of the re-
sulting collection or not.

The two key elements necessary for implementing col-
lection comprehensions are: (1) the mechanism to visit each
element using a custom function, which is implemented in
Traversable and (2) a mechanism to build a collection el-
ement by element, which is the builder pattern. We will also
present the Numeric pattern, which is used in methods like
sum or prod.

3.2 Function Encoding

In Scala, it is common to use functions to manipulate collec-
tions. For example, in order to extract the positive numbers
in a List of integers, we can use the filter method along
with the following function:

1 List(4,-2,1).filter(x => x > 0)

However, since the Java Virtual Machine doesn’t support
functions (at least not until Java 7), Scala needs to provide a
special translation for them:

1 List(4,-2,1).filter({

2 class $anon extends Function1[Int, Boolean] {

3 def apply(x: Int): Boolean = x > 0

4 }

5 new $anon()

6 })

The Function1 trait is provided by the standard library
and can’t be overriden with a miniboxed version. Hence,
in order to specialize functions, we need to provide our
own function traits, which are miniboxed and perform the
desugaring by hand.

This is done by creating a custom MyFunc1 trait that
receives two type parameters, T and R, which signal the
argument and return of our function, i.e (T => R). This
trait exposes an abstract apply function that will contain
the actual code of the function. Miniboxing is triggered by
annotating both of the type parameters with @miniboxed:

1 trait MyFunc1[@miniboxed -T, @miniboxed +S] {

2 def apply(t: T): S

3 }

The plugin will generate five different traits, which will
be used to encode functions. These correspond to the inter-
face plus the 4 possible combinations for the 2 represen-

tations: (erased, erased), (erased, miniboxed), (miniboxed,
erased), (miniboxed, miniboxed). The transformation will
also create 4 versions of the apply method:

1 abstract trait MyFunc1[-T, +R] extends Object {

2 def apply(t: T): R

3 def apply_JL(..., t: long): R

4 def apply_LJ(..., t: R): long

5 def apply_JJ(..., t: long): long

6 }

Then, just like methods, four different abstract traits that
extend the previous interface will be created.

Now, in order to express the previous function, we can
write:

1 new MyFunc1[Int, Boolean] { def apply(x: Int):

Boolean = x > 0 }

And the miniboxing transformation will translate this to:

1 new MyFunc1_JJ[Int, Boolean] { ... }

Now, any invocation of this function will actually in-
voke apply_JJ, thus completely avoiding boxing primitive
types, such as int and boolean.

3.3 Builder Pattern

The Builder pattern is the key component necessary for col-
lection comprehensions: It greatly reduces code duplication,
since all the collection comprehensions reduce to creating a
new collection with either transformed of filtered elements.
It also brings flexibility, as shown by the following example:

1 scala> val map = Map(1 -> 2, 2 -> 3)

2 map: immutable.Map[Int,Int] = ...

3

4 scala> map.map({ case (x, y) => (y, x) })

5 res1: immutable.Map[Int,Int] = ...

6

7 scala> map.map({ case (x, y) => x })

8 res2: immutable.Iterable[Int] = ...

To achieve this, the map function will rely on a Builder
generated from the CanBuildFrom parameter, where Repr
is the current collection and That is the resulting collection:

1 def map[B, That](f: A => B)(implicit bf:

CanBuildFrom[Repr, B, That]): That = {

2 val b = bf(repr) // the builder

3 for (x <- this)

4 b += f(x)

5 b.result

6 }

The Builder pattern also shows how type constructor
polymorphism can play an essential role in factoring out
boilerplate code without losing type safety [4].

3.4 Numeric Pattern

Defining a generic type for a class can sometimes lead to in-
convenient situations if one expects to have generic mathe-
matical operations. Since the common ancestor for numeric
types, Any, does not contain mathematical operations, the
operations on generic types are quite limited.

The Numeric pattern solves this issue by allowing mathe-
matical operations in a generic context. This is done by cre-
ating a generic Numeric trait that provides mathematical op-
erations for a certain type. By example, one could define a
way to add two numerical values, by providing such a defi-
nition to the trait:

1 trait Numeric[T] {

2 def plus(x: T, y: T): T

3 ...

4 }

We can extend the trait into different concrete implemen-
tations, that provide operations for each primitive type indi-
vidually. This pattern also works for non-primitive number
representations such as BigInteger. For instance, the code
for Numeric[Int] would be:

1 implicit object NumInt extends Numeric[Int] {

2 def plus(x: Int, y: Int): Int = x + y

3 ...

4 }

Now, every time we want to use a type parameter as a
numeric type, we enforce that the Numeric version of the
type exists, so we can call the mathematical operations on
them. Here is a complete example of a two-dimensional
vector class:

1 class Vec2D[T : Numeric](val x: T, val y: T) {

2 def +(that: Vec2D[T]): Vec2D[T] = {

3 val n = implicitly[Numeric[T]]

4 new Vec2D[T](

5 n.plus(this.x, that.x),

6 n.plus(this.y, that.y))

7 }

8 ...

9 }

Since the Numeric implementations are likely to use
primitive type parameters, boxing and unboxing would fre-
quently occur. This is where the miniboxing specializa-
tion steps in. With a simple @miniboxed annotation on
the type parameter of the Numeric class, a concrete ex-
tension would override an optimized version for primitive
types. The classes that use the Numeric objects should also
have a @miniboxed annotation. This would avoid every oc-
currence of boxing and unboxing, and greatly enhance the
performance.

4. Benchmarks

To benchmark performance, we implemented a mockup
of the Scala collections library including Traversable,
Iterable, Iterator and a linked list class with its builders.
We also implemented other necessary parts of the Scala li-
brary, including Function1, Tuple2 and the Numeric pat-
tern. To asses the speedup of the miniboxing plugin used
on the collections mockup, we implemented a common nu-
merical application: the least squares method. This method
computes the parameters of a linear equation that best de-
scribes a given set of points. Since the benchmark deals with
numbers, type erasure introduces boxing and unboxing op-

erations. The method should therefore run faster with the
miniboxing plugin. The benchmark used is the following:

1 // list of (x,y) coordinates

2 val xy = xs.zip(ys)

3

4 // function (x, y) => x * y

5 val fxy =

6 new Function1[Tuple2[Double,Double], Double] {

7 def apply(t: Tuple2[Double, Double]): Double

= t._1 * t._2 }

8

9 // function x => x * x

10 val fxx =

11 new Function1[Double, Double] {

12 def apply(x: Double): Double = x * x }

13

14 // intermediary sums:

15 val sumx = xs.sum

16 val sumy = ys.sum

17 val sumxy = listxy.map(fxy).sum

18 val squarex = listx.map(fxx).sum

19

20 // slope and intercept approximation:

21 val m = (size*sumxy - sumx*sumy) /

(size*squarex - sumx*sumx)

22 val b = (sumy*squarex - sumx*sumxy) /

(size*squarex - sumx*sumx)

If we run one version of the above benchmark with our
mock-up collection, one with the plugin activated (Miniboxed)
and one without (Generic), for different amount of points,
we get the following results:

Amount of points Miniboxed [ms] Generic [ms]
1000000 160 279
2000000 328 557
3000000 487 831

The results show 40-50% speedups when miniboxed col-
lections are used, without any intervention on the program-
mer’s side2. It is also worth noting that scala specialization
[3], the current solution used in the Scala compiler, was not
able to successfully compile the example.

References

[1] The Miniboxing website. URL http://scala-miniboxing.org.

[2] G. Bracha, M. Odersky, D. Stoutamire, and P. Wadler. Making the future safe
for the past: Adding Genericity to the Java Programming Language. In OOPSLA.
ACM, 1998.

[3] I. Dragos. Compiling Scala for Performance. PhD thesis, École Polytechnique
Fédérale de Lausanne, 2010.

[4] A. Moors. Type Constructor Polymorphism for Scala: Theory and Practice. PhD
thesis, PhD thesis, Katholieke Universiteit Leuven, 2009.

[5] M. Odersky and L. Spoon. The Architecture of Scala Collections. URL
http://docs.scala-lang.org/overviews/core/
architecture-of-scala-collections.html.

[6] V. Ureche, C. Talau, and M. Odersky. Miniboxing: Improving the Speed to Code
Size Tradeoff in Parametric Polymorphism Translations. In OOPSLA, 2013.

2 The benchmarking code is identical for the two transformations, only the
library contains miniboxed annotations.

