
Impact of Ultra High Definition on Visual Attention

Hiromi Nemoto
MMSPG, EPFL

hiromi.nemoto@epfl.ch

Philippe Hanhart
MMSPG, EPFL

philippe.hanhart@epfl.ch
Pavel Korshunov

MMSPG, EPFL
pavel.korshunov@epfl.ch

Touradj Ebrahimi
MMSPG, EPFL

touradj.ebrahimi@epfl.ch

ABSTRACT
Ultra high definition (UHD) TV is rapidly replacing high definition
(HD) TV but little is known of its effects on human visual attention.
However, a clear understanding of this effect is important, since
accurate models, evaluation methodologies, and metrics for visual
attention are essential in many areas, including image and video
compression, camera and displays manufacturing, artistic content
creation, and advertisement. In this paper, we address this problem
by creating a dataset of UHD resolution images with corresponding
eye-tracking data, and we show that there is a statistically signifi-
cant difference between viewing strategies when watching UHD
and HD contents. Furthermore, by evaluating five representative
computational models of visual saliency, we demonstrate the de-
crease in models’ accuracies on UHD contents when compared to
HD contents. Therefore, to improve the accuracy of computational
models for higher resolutions, we propose a segmentation-based
resolution-adaptive weighting scheme. Our approach demonstrates
that taking into account information about resolution of the images
improves the performance of computational models.

Categories and Subject Descriptors
I.2.10 [Artificial Intelligence]: Vision and Scene Understanding—
perceptual reasoning, representations, data structures, and trans-
forms; H.5.1 [Information Interfaces and Presentation]: Multi-
media Information Systems—evaluation/methodology, video

Keywords
Visual attention; ultra high definition; saliency map; subjective
evaluations; eye-tracking

1. INTRODUCTION
Ultra high definition (UHD), a rapidly emerging immersive video

technology, is expected to replace high definition (HD) as the next
standard video format of digital TV. Most of the TV displays and
video cameras manufacturers, as well as broadcasting companies,
strongly promote UHD video content, since this technology en-
hances sensation of presence and provides better viewing expe-
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Figure 1: Recommended viewing conditions for 4K UHD and HD.

rience [15, 24]. The increased resolution of UHD TV typically
leads to larger display sizes and, hence, for the full enjoyment of
UHD content, ITU standardization body recommends certain view-
ing conditions [18], as illustrated in Figure 1. The figure demon-
strates the difference in viewing conditions between HD and UHD,
suggesting that there might be also large differences in viewing
strategies and in visual attention patterns of people watching HD
and UHD TVs.

Visual attention is a widely studied topic and its practical appli-
cations include gaze-adaptive image and video compression [16, 6],
objective image quality metrics [26], image retargeting [30], and
image retrieval [29]. It even reaches beyond computing, proving
useful in areas such as attention-based advertising, art, and cinema.
To take advantage of visual attention information in practical ap-
plications, salient regions in images, i.e., regions that attract most
of the attention, are either detected using an eye-tracking device or
predicted using computational models of visual attention. One of
the first computational model was proposed by Itti and Koch [17] in
1998, which uses image features such as luminance intensity, color,
and orientation to construct a saliency map, i.e., a map predict-
ing visual attention of a corresponding visual scene. The practical
usefulness of computational models fueled the research for many
years, resulting in many visual attention models, creation of dif-
ferent evaluation datasets with ground truth eye-tracking data, and
various evaluation methodologies and metrics.

Although a significant number of public image and video datasets
for visual attention exist [31], no dataset with eye-tracking data is
available for UHD content. However, without this subjective data,
it is hard to understand what is the impact of UHD on visual atten-
tion and whether it is significant for practical applications. In ad-
dition, computational models of visual attention are also evaluated
using existing public databases, featuring images with resolution of
HD or less, which means that little is known about the accuracy of
these models when used for UHD content.



Since UHD has the ability to provide more details and requires
higher data rate when compared to HD, understanding human at-
tention patterns and viewing strategies for UHD content is impor-
tant for developing efficient data compression algorithms and ac-
curate objective quality metrics. The knowledge of visual attention
for UHD can also help electronics manufactures to create better
acquisition and display devices and content creators, such as pho-
tographers, movie and TV makers, to create images and video se-
quences with higher appeal value.

Therefore, this paper investigates the impact of UHD content on
visual attention and on existing computational models of visual at-
tention. To answer this question, a dataset is created first, which
consists of 45 UHD 4K images with high variety of content (see
examples in Figure 3 and refer to [25] for more details). Then,
a subjective experiment involving 20 naïve subjects is conducted
to collect eye-tracking data for these images using a professional
eye-tracking system (Smart Eye Pro 5.8) and a professional refer-
ence monitor (Sony Trimaster SRM-L560). A similar experiment
is also conducted with images resized to HD resolution for com-
parison with UHD. Fixation density maps (FDM) computed from
the eye-tracking data for UHD and HD resolutions are compared
using three metrics: attentional focus [20], similarity score [22],
and Kullback-Leibler divergence (KLD) [10, 2]. Five represen-
tative models of visual attention were selected: ‘Judd’ by Judd
et al. [23], ‘GBVS’ by Harel et al. [14], ‘Itti’ by Itti et al. [17],
‘AIM’ by Bruce [4], and ‘Context-Aware’ by Goferman et al. [12].
Their saliency maps were computed for UHD and HD contents
and compared with corresponding subjective eye-tracking data us-
ing three metrics: similarity score, KLD, and area under the curve
(AUC) [13].

The aim of this work is not only to evaluate the behavior of visual
attention on UHD content, but also to investigate the impact on
current computational models of visual attention and, if possible,
to improve these models by making them adaptive to the content
resolution. In summary, the main contributions of the paper are:

1. Dataset of UHD and HD images with corresponding subjec-
tive eye-tracking data;

2. Similarity analysis of FDMs for HD and UHD contents to
understand if there is a difference in visual attention between
UHD and HD resolutions;

3. Evaluation of five existing computational models of visual
attention computed for UHD images to see if their perfor-
mance is degraded when compared to HD;

4. Proposed resolution-adaptive weighting scheme to improve
the accuracy of computational models of visual attention for
UHD contents.

The rest of this paper is organized as follows. Section 2 presents
related works including computation of FDM and several metrics
for comparison of FDMs or FDM and saliency map. Section 3
describes eye tracking experiments, while Section 4 presents the
results of subjective experiments. Sections 5 compares the perfor-
mances of computational models of visual attention and Section 6
proposes the improvement of their performance for UHD content.
Section 7 concludes the paper.

2. BACKGROUND AND RELATED WORK
A lot of work have been done over the years on fixation density

map and computational visual attention modeling. In this section,
we first give a brief overview of state of the art in visual attention,
then describe how fixation density map (FDM) is computed and
follow up with different approaches to measure the similarity of
two FDMs or a FDM and a saliency map.

2.1 Related Work
A number of eye tracking experiments have been conducted for

the purpose of investigating human visual attention mechanism.
Previous research has suggested that a variety of factors influence
human fixation patterns. The Delft Image Quality Lab carried out
two eye tracking experiments in free-viewing task and in quality
assessments task conditions [1] and found that there are significant
differences on eye fixation patterns between these two different task
conditions. In [27], the authors also reported that image distortion
affects visual attention, especially for low quality images. The au-
thors of [5] demonstrated that human faces are significant attentive
regions in both free-viewing and searching conditions.

MIT CSAIL Saliency Database [21] provides a saliency database
of low resolution images and tests the effect of resolution on fixa-
tion patterns. The results of the study showed that lower image
resolutions contribute to the consistency of eye fixations and also
noted that humans have a tendency to look at the image center for
all resolutions. Image appeal is another feature that affects human
fixation pattens. According to [11], more appealing images grab
more attention than less appealing images. It also has been reported
that current visual attention models are not able to capture this dif-
ference. The work by Engelke et al. [7] is the first comparative
study to investigate the similarity between FDMs from independent
experimental laboratory. Three eye tracking experiments were con-
ducted independently using the same contents, though, they used
somewhat different experimental conditions, e.g., viewing distance
and image presentation time. It was shown that FDMs are very
similar with each other and the impact of the dissimilarity of FDMs
is not significant on practical applications such as visual attention
modeling and image quality metrics.

Despite the large body of work on eye tracking and visual atten-
tion, to the best of our knowledge, no study have been reported on
the influence of higher resolution images such as UHD resolution
on human fixations or visual attention. Therefore, in this paper, we
conduct subjective experiments with an eye tracking system under
UHD viewing condition and perform rigorous analysis of visual
attention using FDMs obtained in the subjective experiments.

2.2 Computation of fixation density maps
Fixation density maps (FDMs) are computed by convolving the

recorded gaze points with a Gaussian filter, and then normalizing
the result to values between 0 and 1. Only gaze points correspond-
ing to fixation points are used to compute an FDM. Gaze points
associated with saccades are not used in the computation. The eye
tracking system used in our experiments (see Section 3.3) auto-
matically discriminates between saccades and fixations based on
the gaze velocity information. More specifically, during a time
frame, all gaze points associated with gaze velocity below a fix-
ation threshold are classified as fixation points, while saccades are
detected when the gaze velocity lies above the fixation threshold.
Blinks are also detected automatically by the eye tracking system
based on the distance between the two eyelids of each eye. All
detected saccades and blinks are excluded from the experimental
data by the eye tracker and only the gaze points classified as fix-
ation points are used further. These points are then filtered with
a Gaussian kernel to compensate the eye tracker inaccuracies and
to simulate the foveal point spread function of the human eye. As
suggested in the state of the art [8, 22], the standard deviation of
the Gaussian filter used for computing the FDMs is set to 1 de-
gree of visual angle, which corresponds to σ = 60 pixels in our
experiments for both HD and UHD. This standard deviation value
is based on the assumption that the fovea of the human eye covers
approximately 2 degrees of visual angle.



2.3 Assessment measures
Although several metrics have been proposed to measure the

similarity between two FDMs or between a FDM and a saliency
map computed by visual attention models, there is no standardized
procedure. In [28], 12 similarity metrics have been compared using
Kendall’s W coefficient with a conclusion that a lot of these metrics
are redundant. To avoid redundancies, the authors suggested to use
three metrics, area under the curve (AUC) [3], Kullback-Leibler di-
vergence (KLD) [10, 2], and one other optional metric (we selected
the similarity score [22]) to capture different aspects of saliency
maps. Since AUC is mostly used for comparison between com-
putational saliency maps and the distributions of humans’ fixation
points, we used only KLD and similarity score metrics to analyze
the similarities between two FDMs computed from our HD and
UHD experiments (see Section 3 for more details). Additionally,
the attentional focus measure [20] was used to characterize the vi-
sual focus of the subjects.

2.3.1 Attentional focus
Attentional focus [20] is defined as the number of objects that

are viewed by the subjects during image observation. The rationale
is to distinguish between cases where subjects look at few objects
versus cases where they look more or less uniformly at several ob-
jects. To compute attentional focus, the FDM was first partitioned
into blocks of N ×N pixels. Then, the average intensity was com-
puted for each block. Finally, the attentional focus was computed
as the entropy of the normalized intensity across different blocks.
Low entropy indicates high attentional focus while high entropy
indicates low attentional focus. Figure 2 shows a schematic repre-
sentation of this concept. The size of the blocks was determined so
as to match the size of fovea, corresponding to 2 degrees of visual
angle, which corresponds to 120× 120 pixels in our experiments.

2.3.2 Similarity score
The similarity score is a distribution-based metric of how sim-

ilar two saliency maps are. The similarity score S between two
normalized maps P and Q is

S =
∑

i,j

min(Pi,j , Qi,j), where
∑

i,j

Pi,j =
∑

i,j

Qi,j = 1 (1)

If a similarity score is one, the two saliency maps are the same, if
it is zero, the maps do not overlap at all.

2.3.3 Kullback-Leibler divergence
The Kullback-Leibler divergence (KLD) is usually used to es-

timate the dissimilarity between two probability distributions. In
context of saliency maps or fixation density maps, this is a measure
of dissimilarity between two histograms. If, in the corresponding
histograms, p(x) and h(x) represent the probabilities of a pixel to
have value x, the symmetric KLD is

KLD =
1
2

∑

x

[
p(x)log

p(x)
h(x)

+ h(x)log
h(x)
p(x)

]
(2)

When two probability distributions are strictly equal, KLD value is
zero, and when histograms do not overlap at all, it tends to infinity.

2.3.4 Area under the curve
Area under the curve (AUC) metric is the area under the receiver

operating characteristics (ROC) curve [13]. In this metric, the hu-
man fixation points are treated as the positive set and the same num-
ber of points are randomly extracted from the image to form a neg-
ative set. Then, the saliency map is used as a classifier to separate

Low focus = High entropy High focus = Low entropy

*The values in the windows indicate normalized average intensity of FDM.
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Figure 2: Illustration of attentional focus metric.

the positive points from the negatives points. For a given threshold,
all points in the saliency map having a value above this threshold
are considered as fixation points. The fixation points in the positive
and negative sets are labeled as true positive and false positive, re-
spectively. By varying the threshold, the ROC curve is constructed
from the corresponding false positive and true positive rates. The
area under this curve indicates how well the saliency map estimates
human fixations. An AUC value of 1 corresponds to perfect predic-
tion and a value of 0.5 corresponds to random prediction.

The classical AUC method is often criticized, because its value
can be artificially increased if a computational model considers the
center bias technic, i.e., considering that human eye fixations are
rarely located near the borders of typical test images. To over-
come this drawback, the shuffled AUC has been proposed for better
saliency maps validation [32]. In the shuffled AUC metric, to mod-
erate center-bias effects, human fixations of other images from the
same dataset are used to create the negative set instead of uniformly
random points. To fairly compare computational models, the shuf-
fled AUC was used in this paper.

3. EYE TRACKING EXPERIMENTS
To investigate how different are visual attention and viewing

strategies for HD and UHD resolutions, we conducted extensive
experiments to acquire eye movements while a set of still images
was shown in both HD and UHD resolutions to the subjects.

3.1 Test images
Since there is no publicly available standard dataset, at least to

our knowledge, of UHD resolution images suitable for visual at-
tention modeling, we constructed such dataset. For the dataset, we
used still images with native resolution higher than UHD acquired
by some of the latest digital cameras, including Sony DSC-RX100
II, Sony NEX-5N, FUJIFILM XF1, Olympus E-PL2, and RED
SCARLET-X. Additionally, some high resolution painting images
were obtained from the Europeana internet portal1. A total of 45
images were selected to cover a wide variety of content, e.g., natu-
ral scenes (both indoor and outdoor), humans, ships, animals, mu-
sic gigs, historical scenes, etc. For the dataset, all images were
cropped to 3840×2160 pixels for UHD resolution and then down-
sampled to 1920 × 1080 pixels for HD resolution using Lanczos
resampling. Figure 3 shows some examples of the images and more
details about the dataset can be found in [25].

3.2 Participants
A total of 20 naïve subjects (7 females and 13 males) took part

in the experiments. Subjects were between 18 and 28 years old
with an average of 23.8 years of age. Before the experiment, a con-
sent form was handed to subjects for signature. All subjects were
screened for correct visual acuity and color vision using Snellen
and Ishiara charts respectively.
1Europeana: think culture, http://www.europeana.eu



Figure 3: Examples of images from our UHD dataset. The dataset
is publicly accessible.2

3.3 Test environment
The experiments were conducted at the MMSPG quality test lab-

oratory, which fulfills the recommendations for the subjective eval-
uation of visual data issued by ITU-R [19]. The test room was
equipped with a controlled lighting system with a 6500 K color
temperature and an ambient luminance at 15% of the maximum
screen luminance, whereas the color of all the background walls
and curtains present in the test area were in mid grey. The test
room was separated in two by a curtain to isolate the subject and
equipment from the test operators, which were present during the
test session to supervise the recording of the eye tracking data. The
laboratory setup was intended to ensure the reproducibility of the
results and to avoid unintended influence of external factors.

Test stimuli were displayed on a professional high-performance
4K/QFHD 56” LCD reference monitor Sony Trimaster SRM-L560.
A Smart Eye Pro 5.8 remote eye tracking system was employed to
determine the gaze position on the screen of the left and right eyes
independently. The system was equipped with three Sony HR-50
cameras at a frame rate of 60 fps and two infrared flashes, which en-
abled us to measure the gaze position with under 0.5 visual degrees
error, while an accurate gaze output was available for at least ±45
degrees of head rotation. All measurements from the eye tracker
were recorded on a separate computer.

The experiment involved one subject per test session. The sub-
ject was seated in line with the center of the monitor at the distance
of 3.2 and 1.6 times the image height for HD and UHD contents, re-
spectively, as suggested in [18] as optimal viewing distance, which
corresponds to roughly 1.1 meters from the monitor in both cases.
The eye tracking system was placed at 0.7 meters from the moni-
tor such that the face was well captured by the cameras. Figure 4
depicts the conditions of the experiments.

At the beginning of the test, the aperture and focus settings of
the eye tracker cameras were adjusted for optimal conditions and a
full camera calibration was performed to maximize the accuracy of
the measurements. For each subject, a personal profile was created
by recording several head poses and gaze calibrations using four
calibration points close to the screen corners and one at the cen-
ter of the screen. To ensure the accuracy of the eye tracking data,
subjects were instructed to hold their head still while watching the
images, and test operators made sure that all features were correctly
detected by at least two out of three cameras during the experiment.

3.4 Experimental protocol
The experiment was separated into two different sessions to avoid

inter-resolution comparison: one sessions was dedicated to UHD
2Ultra-Eye dataset, http://mmspg.epfl.ch/ultra-eye

Figure 4: Experimental setup.

resolution only and another session to HD resolution only. To re-
duce the influence of potential memory effects on visual attention
from viewing the same contents twice, the participants were di-
vided into two groups of ten subjects each: the first group watched
the images in UHD resolution first and then in HD resolution, while
the reverse order was considered for the second group. Table 1 de-
picts the arrangement of the test sessions. To reduce contextual
effects, the stimuli orders of display were randomized by applying
different permutation for each subject. To reduce fatigue effects,
each subject took a 15 minutes break between the two sessions.

Table 1: Arrangement of test sessions for HD and UHD resolutions.

Group #1 Group #2
First session UHD resolution HD resolution
Second session HD resolution UHD resolution

According to [7], the FDM is almost saturated at about four sec-
onds presentation time. However, since the images used in our ex-
periments were about four times larger than the ones used in [7], it
is possible that the subjects are not able to watch all salient regions
in the image if the presentation time is too short. Therefore, each
image was shown for 15 seconds in our experiments. Additionally,
a two seconds mid-grey background was displayed prior to the pre-
sentation of each test stimuli to reset subject’s attention. With this
timing, each session was approximately 15 minutes long.

Since the purpose of these experiments was to investigate the dif-
ference in visual attention and viewing strategies for HD and UHD
resolutions, subjects were instructed to watch the images in a free-
viewing scenario. Additionally, a training session was organized to
allow subjects to familiarize with the procedure. The training ma-
terials were presented to subjects exactly as for the test materials.

To understand the influence of the memory effect on the subjec-
tive data, the following categories of FDMs were analyzed sepa-
rately:

1. UHD-First: Group #1, first session (10 subjects).
2. HD-First: Group #2, first session (10 subjects).
3. UHD-Second: Group #2, second session (10 subjects). They

watched UHD contents after watching the same images with
HD resolution, followed by a 15 minutes resting phase.

4. HD-Second: Group #1, second session (10 subjects). They
watched HD contents after watching the same images with
UHD resolution, followed by a 15 minutes resting phase.

5. UHD-All: All 20 subjects.
6. HD-All: All 20 subjects.



(a) Presented image (b) FDM of HD resolution (HD-all) (c) FDM of UHD resolution (UHD-all)

Figure 5: Examples of FDMs for a presentation time of 15 s.

4. IMPACT ON VISUAL ATTENTION
Figure 5 shows examples of FDMs for HD and UHD resolutions

computed from the eye-tracking data (across all subject groups). It
can be noted from the figure that FDM of UHD resolution is more
scattered and more ‘focused’ compared to FDM of HD resolution.
In both cases, subjects look at various objects in the images. How-
ever, subjects watched specific objects in UHD images with higher
intensity but browsed HD images in a more ‘relaxed’ way.

In this section, we compare FDMs for UHD and HD contents
using the similarity metrics discussed in Section 2.3: attentional
focus, similarity score, and KLD.

4.1 Attentional focus
Figure 6 shows the attentional focus computed separately for

categories of FDMs described in Section 3.4 vs. varying presen-
tation time. From the figure, it can be noted that, at each presenta-
tion time, the attentional focus of UHD resolution has lower value,
which means that UHD has lower entropy or higher focus when
compared to HD resolution, regardless of the presentation order. A
possible explanation is that the higher level of details in UHD im-
ages make subjects’ attention more focused and concentrated com-
pared to HD images.

Also, attentional focus saturates faster for HD resolution than
for UHD resolution, since UHD resolution images are four times
bigger. To estimate the presentation time at which the FDMs are
saturated, the attentional focus values were fitted using the response
curve of a first order lag system according to the equation:

f(t) = a

[
1− exp

(
− t
τ

)]
+ b, (3)

where t is the presentation time (how long the image was viewed by
the subjects), a and b are the amplitude and the offset of the resulted
attentional focus curve, and τ is a constant representing the time at
which the attentional focus reaches 63.2% of its maximum value.

Considering that the saturation (95% of the maximum value) is
achieved at 3τ , the FDMs are saturated after about 10.67 s for HD
and after about 13.02 s for UHD. It means that 10 s is not enough to
get a stable FDM for UHD resolution and that a longer presentation
time is required.

Figure 6 shows that there is no influence of presentation order
on the attentional focus and there is a difference between UHD and
HD resolutions, but it does not show if these findings are statisti-

Table 2: p-value computed for attentional focus (t = 15 s).

HD-Second UHD-First UHD-Second
HD-First 0.074 < 0.001 < 0.001
HD-Second < 0.001 < 0.001
UHD-First 0.11
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Figure 6: Attentional focus of FDMs with confidence intervals.

cally significant. To answer this question, we performed an anal-
ysis of variance (ANOVA) on attentional focus results at the pre-
sentation time equal to 15 seconds. ANOVA analysis was done for
different pairs of FDMs with results shown in Table 2. The table
shows that attentional focus is statistically significantly different
for HD and UHD resolutions, while the presentation order of HD
or UHD content, i.e., the order in which a subject viewed content,
does not affect attentional focus in a statistically significant way.
It means that even though each image was presented twice to the
subjects, the influence of potential memory effects does not sig-
nificantly impact attentional focus, indicating that the results from
both groups of subjects can be combined.

4.2 Similarity score
While attentional focus only measures one FDM, similarity score

compares two different FDMs. We computed similarity scores for
all meaningful pairs of FDMs (see Section 3.4 for explanation of
different FDMs): HD-First vs. UHD-First, HD-Second vs. UHD-
Second, HD-First vs. HD-Second, and UHD-First vs. UHD-Second;
and the corresponding scores are shown in Figure 7 for all presen-
tation times varying from 1 to 15 seconds. The figure demonstrates
that HD-First (HD images were viewed before UHD) is more sim-
ilar to HD-Second (UHD images were viewed before HD) than
UHD-First and UHD-Second FDMs. This high similarity between
FDMs for HD can also be noticed visually, for instance by com-
paring FMD of HD-First in Figure 8 (b) of a sample image in Fig-
ure 8 (a) with FDM of HD-Second in Figure 8 (c). In turn, the
FDMs of UHD-First, shown in Figure 8 (d), and UHD-Second,
shown in Figure 8 (e), are quite different visually too.



(a) Presented image (b) FDM of HD-First (c) FDM of HD-Second (d) FDM of UHD-First (e) FDM of UHD-Second

Figure 8: Examples of FDMs for different resolutions and viewing orders.
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Figure 7: Similarity score of FDM pairs with confidence intervals.

This observation with the fact that other two pairs, HD-First vs.
UHD-First and HD-Second vs. UHD-Second have almost the same
similarity as UHD-First vs. UHD-Second, indicate that the fixa-
tion patterns for UHD resolution have higher diversity compared to
HD resolution, i.e., different subjects look at UHD images in many
different ways compared to a more unified way of viewing HD im-
ages. It also means that the presentation order does not influence
the similarity score.

To analyze the statistical significance of the similarity score re-
sults, we performed an ANOVA analysis and computed p-values,
comparing similarity scores between different pairs of FDMs as
shown in Table 3. The table demonstrates that all results show sta-
tistically significant difference, except when comparing HD-First
vs. UHD-First with HD-Second vs. UHD-Second. This analysis
confirms the observation that there is a significant difference be-
tween FDMs of HD and UHD resolutions but the presentation or-
der, in other words, memory effect, has no influence on the results,
confirming the conclusions given in Section 4.1.

To better understand the dissimilarity between HD and UHD res-
olutions, scatter-like plot of the conjoint intensity values between
two FDMs can be used [7]. Figure 9 shows such plot for the FDMs
given in Figure 5 (b) and (c). In this plot, highly correlated FDM
values lie closer to the main diagonal (dashed line). As it can be
observed, there are several structural dissimilarities, especially for

Table 3: p-value computed for similarity score (t = 15 s).

UHD-1st vs. HD-1st vs. HD-2nd vs.
UHD-2nd UHD-1st UHD-2nd

HD-1st vs. HD-2nd < 0.001 < 0.001 < 0.001
UHD-1st vs. UHD-2nd < 0.001 < 0.001
HD-1st vs. UHD-1st 0.30
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Figure 9: Scatter-like plot of the conjoint intensity values between
the two FDMs of Figure 5.

highly fixated points, which are due to the difference in the number
of peaks and their respective positions in the actual FDMs.

Also, similarly to attentional focus, estimated τ time constant
of similarity scores for HD (τ = 4.2 s) is lower than for UHD
resolution (τ = 5.1 s).

4.3 Kullback-Leibler divergence
KLD metric was computed in the same way as similarity scores

metric and results are shown in Figure 10. As it can be observed,
KLD values are clearly saturated after 3 s for both HD and UHD.
Since KLD measures the dissimilarity of the two histograms, this
metric does not consider the spacial distribution but only evaluates
the difference in the number of points of attention and their intensi-
ties. Therefore, this metric shows the difference between the view-
ing strategy of the subjects. Results in Figure 10 show very small
KLD values when comparing FDMs of the same resolution, which
suggests that the strategy to browse the images does not change
much across subjects for a specific resolution. The fact that KLD
values for UHD resolution (UHD-First vs. UHD-Second pair) are
the lowest suggests that subjects are focusing on a fewer attentive
regions in UHD compared to HD, probably, due to the higher res-
olution and higher level of details in UHD images. It can also be
noted from the figure that KLD values for HD vs. UHD FDM pairs
are much higher than for the same resolution pairs, which means
that viewing strategies for HD and UHD resolutions are different.



Table 4: p-value computed for KLD (t = 15 s).

UHD-1st vs. HD-1st vs. HD-2nd vs.
UHD-2nd UHD-1st UHD-2nd

HD-1st vs. HD-2nd < 0.001 < 0.001 < 0.001
UHD-1st vs. UHD-2nd < 0.001 < 0.001
HD-1st vs. UHD-1st 0.53
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Figure 10: KLD of FDM pairs with confidence intervals.

To investigate the statistical significance of KLD results, we per-
formed an ANOVA analysis in the same way as for similarity score
metric. Table 4 shows p-values of the ANOVA analysis for KLD
metric computed on different pairs of FDMs. From the table, it is
clear that only HD-First vs. UHD-First is not significantly differ-
ent compared to HD-Second vs. UHD-Second, which, similarly to
the earlier observations, means that influence of memory effects is
insignificant, but HD is significantly different from UHD.

5. IMPACT ON SALIENCY MAPS
In this section, we investigate the impact of UHD viewing on

the performance of computational models of visual attention using
three metrics: similarity score, KLD, and AUC.

5.1 Selection of computational models
In [22], Judd et al. benchmarked 10 computational models of vi-

sual attention using human fixations recorded with an eye tracker
as ground truth. The authors have reported that Judd et al. [23] and
graph-based visual saliency (GBVS) [14] models have the best and
second best performance respectively. Other computational mod-
els of visual attention in the top five of their benchmarking are the
Itti’s [17], AIM [4], and Context-Aware [12] models. Following
this benchmark, we use these five computational models of visual
attention to estimate human fixations and to investigate whether
using UHD content affect their performances. The selected models

cover the whole spectrum of approaches. Context-Aware is top-
down, Judd is hybrid, and the rest are bottom-up models. All mod-
els take image size into account when computing saliency map,
therefore, we used UHD and HD images in their original sizes as
inputs in the models.

5.2 Benchmarking of computational models
The performance of the computational models of visual attention

is evaluated by comparing saliency maps generated by the models
to the ground truth FDMs from our eye tracking experiments (see
Section 3 for details). The similarity score, KLD, and AUC metrics
are used as performance indexes. The FDMs of HD-All and UHD-
All (see Section 3.4 for the explanation of the terms), obtained after
15 seconds presentation time, are used for the performance com-
parison, as our analysis showed that these FDMs are stable enough
(see Section 4).

Table 5 reports the similarity scores, KLD, and AUC computed
between saliency maps and FDMs. In case of UHD resolution, the
performance of the models is very close to random (values are near
0.5) according to the similarity score metric. In particular, the Judd
and GBVS models, which are reported to be the best models ac-
cording to [22], show a drastic drop in performance between HD
and UHD. ANOVA analysis was performed to determine whether
the difference between the results of HD and UHD was statistically
significant. The p-values are reported in Table 5. As it can be ob-
served, the performances of all computational models of visual at-
tention significantly decrease under UHD viewing condition when
compared to HD viewing condition, with p < 0.001 in most cases,
except for the AUC metric. Unlike the other metrics, according to
the AUC metric, there is no significant difference between HD and
UHD resolutions with regards to the performance of computational
models of visual attention. This is most likely because AUC metric
considers only the location of the fixation points, which are similar
for HD and UHD, but it does not capture their intensity [33].

For KLD metric, the performance of computational models of
visual attention was significantly lower in case of UHD resolution
when compared to HD resolution, except for the AIM model. As
the AIM model generates saliency maps having narrower proba-
bility distribution when compared to the other models, its perfor-
mance is barely affected by the difference of the saliency map’s
statistical distribution between HD and UHD when benchmarked
using the KLD metric. According to the KLD metric, the perfor-
mance of Judd’s model drops drastically. Looking at the saliency
maps of this model (see Figure 11 (a) and (b)) show that the visual
attention predicted by this model is quite spread, which is some-
what comparable to the FDM of HD resolution (see Figure 11 (c)),
whereas this property does not match well with the structure of the
FDM of UHD resolution (see Figure 11 (d)).

Overall, the results of the similarity and KLD metrics show that
the current computational models of visual attention are not reliable
to predict visual attention of the UHD content.

Table 5: Performance assessment of computational saliency maps compared to the FDMs of both HD and UHD.

Judd [23] GBVS [14] Itti [17] AIM [4] Context-Aware [12]
HD UHD HD UHD HD UHD HD UHD HD UHD

Similarity score 0.64 0.51 0.69 0.54 0.63 0.52 0.58 0.47 0.62 0.52
p-value < 0.001 < 0.001 < 0.001 < 0.001 < 0.001
KLD 4.48 8.12 0.69 2.40 1.99 5.73 0.93 1.03 0.99 2.59
p-value < 0.001 < 0.001 < 0.001 0.29 < 0.001
AUC 0.61 0.61 0.61 0.61 0.63 0.65 0.62 0.62 0.64 0.65
p-value 0.87 0.97 0.16 0.51 0.58



(a) HD saliency map (b) UHD saliency map

(c) FDM of HD-All (d) FDM of UHD-All

Figure 11: Performance of Judd model’s saliency map vs. FDMs.

(a) HD (b) UHD

(c) HD (d) UHD

Figure 12: FDMs of HD-All and UHD-All overlaid on the images.

6. RESOLUTION-BASED WEIGHTING
The decrease in the performance of computational visual atten-

tion models for UHD resolution demonstrated in Section 5.2 indi-
cates that these models should take viewing condition associated
with image resolution into account. To verify this hypothesis, we
propose a simple resolution-weighting scheme and show that it can
be used to improve the performance of computational models when
the higher resolution content is used.

6.1 Proposed method
By studying FDMs of UHD content, we noticed that subjects

seem to look at smaller objects more when watching UHD images
than when watching HD images. For example, in Figure 12 (b),
subjects looked at the small boat in a focused way in UHD ver-
sion (see the original image in Figure 3), while they browse other
areas equally in HD (see Figure 12 (b)). Also, in Figure 12 (d)
the subjects focused at the small house, the stone architecture, and
humans (refer to Figure 3 for the original image) in a more concen-
trated manner when viewing UHD than when viewing HD (see Fig-
ure 12 (c)). Following this observation, we propose to tune saliency
maps according to the sizes of objects in images. To automatically
estimate these sizes, we use a graph-based image segmentation [9].
This particular segmentation technique was chosen because it ig-
nores details in high-variability regions, which matches our pur-
pose of estimating the sizes of main objects only. An example of

(a) Original picture

(b) Segmented picture (d) Weighted map

Weight value
assignment

SmoothingSegmentation

(c) Assigned weight value

Figure 13: Computation of weighted map.

the segmentation is shown in Figure 13 (b). The authors of the
segmentation use certain parameters to adjust the behaviors of the
algorithm, which we set according to values in Table 6. These
values may not work for other resolutions than UHD but, in this
paper, we only want to demonstrate the possibility of improving
saliency maps for UHD resolutions. The development of compu-
tational model of visual attention that is automatically adaptive to
changing resolution is out of the scope of this paper.

Table 6: Parameters for the segmentation.

Parameter Value Explanation
sigma 1 Smoothing coefficient
k 100 Value for the threshold function
min 20 Minimum component size

Computation of the proposed resolution-adaptive weighting map
is illustrated by Figure 13. For each segmentation component in the
segmented image, a weight value is assigned depending on its size
in the range between 0 and 1. Since subjects tend to look at smaller
objects in UHD images, the weight value should be high when the
area of the segmentation component is small. However, with such
approach many small segmentation fragments, which mainly come
from trivial textures in larger objects, will receive a high weight
value, leading to an incorrect weighting. To avoid this, for each
segmentation component Cn, we compute its weight value Wn us-
ing the following equation:

Wn =

{
n(1−A)/B +A if n ≤ B
(B − n)/(N − 1−B) + 1 if n > B

(4)

where A and B are tuning parameters that depend on resolution
of the images and n ∈ {0, ..., N − 1} is the index of the list of
N segmentation components sorted by size. For a fixed resolution
(in our case UHD), one can fine-tune these parameters, so that the
small fragments and large components receive small weights, while
medium-sized components of interest receive large weights.

An example of the map with assigned weight values using this
approach is shown in Figure 13 (c). This map is smoothed with a
Gaussian filter (see Figure 13 (d)) to avoid sharp transitions. The
standard deviation of the filter kernel is the same σ = 60 as it was
used for computation of FDMs (see Section 2.2 for details). The
saliency map of a given computational model of visual attention is
then multiplied by this weighted map resulting in a new saliency
map weighted according to the object sizes in the image.



Table 7: Comparison of saliency maps of original computational models (Original) with weighted models (Proposed) for UHD.

Judd [23] GBVS [14] Itti [17] AIM [4] Context-Aware [12]
Original Proposed Original Proposed Original Proposed Original Proposed Original Proposed

Similarity score 0.51 0.55 0.54 0.56 0.52 0.52 0.47 0.51 0.52 0.51
p-value < 0.001 0.36 0.82 0.02 0.58
KLD 8.12 1.66 2.40 0.53 5.73 0.96 1.03 2.0 2.59 0.76
p-value < 0.001 < 0.001 < 0.001 < 0.001 < 0.001
AUC 0.61 0.68 0.61 0.66 0.65 0.68 0.62 0.68 0.65 0.67
p-value < 0.001 < 0.001 0.1 < 0.001 0.2

This simple approach allows to indirectly embed a resolution in-
formation into the saliency map computation. The examples of
the new saliency maps are shown in Figure 14 side-by-side with
saliency maps obtained using the original computational models as
presented in Section 5.1.

6.2 Assessment of the proposed method
To test the effectiveness of these new weighted maps, we com-

pared them with the original saliency maps by computing similar-
ity score, KLD, and AUC metrics, similar to how we evaluated the
performance of the original saliency maps for HD and UHD reso-
lutions in Section 5.2. The results shown in Table 7 demonstrate
that the new weighted saliency maps improve the performance of
the most of the computational models. Only in case of AIM model
and KLD metric, the new weighted saliency map shows decrease in
the performance. It means that by using a rather simple approach,
taking into account resolution of the images and their content struc-
ture, we could improve the performance of the existing models on
higher resolution images.

7. CONCLUSION
In this paper, we studied the influence of UHD resolution on hu-

man visual attention and attention models. We conducted subjec-
tive eye tracking experiments with both HD and UHD resolution
images covering wide variety of scenes. We then created the fix-
ation density maps for HD and UHD images and evaluated them
using three different objective metrics: attentional focus, similarity
score, and KLD, effectively creating a visual attention dataset for
HD and UHD contents.

The assessment results demonstrated that (i) UHD resolution im-
ages can grab the focus of attention more than HD images; (ii) hu-
mans tend to look at a few attentive regions in the images with more
intent when viewing UHD; and (iii) viewing strategy is different for
HD and UHD.

We also compared five different computational models of vi-
sual attention when applying to HD and UHD images, showing
that models’ performance degrade with the increase in resolution.
The evaluation suggests that an image resolution and the structural
content information of an image should be taken into account when
developing a resolution-independent computational model. Adding
such information into several existing computational models via a
simple segmentation-based weighting scheme increased the perfor-
mance of these models.
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