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Over recent decades, the number offloodplain restoration projects has increasedworldwide. In Switzerland, sev-
eral projects have been implemented tomaintain or recreate ecological functions of floodplains. Despite this, lit-
tle is known about the potential of floodplain soils to release and/or accumulate carbon. In alluvial soils, carbon
storage is strongly influenced by fluvial dynamics, and therefore a better understanding of carbon fluxes and
stocks in such settings is clearly needed.
To evaluate the impact of river restoration on carbon storage in alluvial soils, we aimed to quantify and explain
carbon storage and soil organic matter (SOM) stabilisation in the uppermost soil humic layer. Three floodplains
were investigated showing each of them different levels of human disturbance: a near-natural section along the
Rhine River, and both restored and embanked sections along the Thur River and EmmeRiver. Carbon storagewas
determined by total organic carbon (TOC) stocks. SOM stabilisation was evaluated by considering the TOC con-
tent in different granulometric fractions (1000–2000 μm, 500–1000 μm, and 250–500 μm) and the macro-
aggregate formation, i.e. the abundance of water-stable aggregates (WSA) and the mean weight diameter of
macro-aggregates (MWD).
Our results show that the carbon storage and SOMstabilisation parameterswere all related to soil properties such
as clay, silt and total iron contents of the upper humic layer. Within each floodplain, carbon storage and SOM
stabilisation parameters differed according to soil profile groups, thus reflecting a soil gradient evolution from
bare alluvium soils to more stabilised soils and a hydric functioning (soils with hydromorphic features). In addi-
tion, river restoration showed various impacts on carbon storage and SOM stabilisation parameters depending on
the floodplains, with a significant difference between embanked and restored sections for the Emme floodplain
and no difference for the Thur floodplain.

© 2014 Elsevier B.V. All rights reserved.
1. Introduction

Wetlands play an important role in the global carbon cycle (Mitra
et al., 2005), but their carbon source and sink functions are complex.
While most studies on carbon budget have focused on peatlands, non-
peatwetlands, suchasnear-natural riverinefloodplains and restored riv-
erine floodplains, have scarcely been considered (Cierjacks et al., 2011).
Compared to otherwetland soils, alluvial soils aremuchmore variable in
space and time, resulting from a succession of sedimentation/erosion
processes combined with an in situ soil formation between flood events
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(Gerrard, 1987), thus leading to a gradient of soil evolution from bare
soils to well-developed soils under forests.

Focusing on humic layers, i.e. soil layers containing high proportions
of soil organicmatter (SOM), sedimentation/erosion events lead to i) the
inheritance of organic matter brought by sedimentation (Bechtold and
Naiman, 2009), and/or ii) the erosion of humic layers (Hoffmann et al.,
2009), and/or iii) the burying of humic layers under new sediments
(Blazejewski et al., 2009; Cierjacks et al., 2010). SOM accumulation also
depends on in situ soil pedogenesis between floods, as well as the eleva-
tion from the riverbed, especially along a primary forest succession from
pioneer tree species to old-growth uneven-aged forest (Van Cleve et al.,
1993). Similarly, Zehetner et al. (2009) showed that SOM accumulation
depends on soil age, with the highest rates to be found within 50 to
100 years of soil formation. Focusing more specifically on soil organic
carbon, themajor component of soil organicmatter, its storage in alluvial
soils may vary as a function of several variables. For instance, the fre-
quency offlooding (Bernal andMitsch, 2008) and the concomitant depo-
sition of carbon-rich sediments usually lead to an increase in soil organic
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carbon stocks (Cierjacks et al., 2011; Wohl et al., 2012), either in the
humic layer or in the underlying organic matter layers enriched within
the profile (Blazejewski et al., 2009; Cierjacks et al., 2010) thus preserving
autochthonous organic material (Zehetner et al., 2009). Moreover, vege-
tation directly influences soil carbon accumulation and consequently soil
development by aboveground and belowground inputs (Giese et al.,
2000) leading to high spatial heterogeneity in terms of vertical and hori-
zontal SOMdistribution (Blazejewski et al., 2009; Drouin et al., 2011). Soil
properties, such as profile development, texture, moisture and water
table also greatly affect carbon storage (Mitra et al., 2005; Steiger et al.,
2001). Carbon content is hence significantly and positively correlated
with the clay content in alluvial deposits (Bai et al., 2005; Cabezas and
Comin, 2010). For a given hydrological regime, a causal relationship
may exist between organic carbon concentrations and average soil mois-
ture (Barton et al., 2000). Organic carbon dynamics in alluvial soils may
also bemodified by human disturbancemainly due to changes of natural
flood dynamics (river diversion, dam; Tockner and Stanford, 2002) and/
or changes in vegetation composition (tree cutting, plantation, exotic
plant invasion; Gerber et al., 2007). River restoration also causes soil dis-
turbances such as the removal of organic-rich topsoil or the use of heavy
machinery (Bruland and Richardson, 2005; Unghire et al., 2011).

Another aspect of SOM poorly understood is its stabilisation in soils
which consists of severalmechanisms, namely 1) physical protection, 2)
physicochemical stabilisation, by binding SOM and mineral particles
(i.e. clay and silt) leading to occlusion of organic matter into micro-
and macro-aggregates, and 3) biochemical stabilisation (Six et al.,
2002). Largely studied in agricultural soils, the formation of macro-
aggregates (larger than 250 μm) is usually considered as the aggrega-
tion product of micro-aggregates (N53–250 μm), silt–clay sized aggre-
gates and particular organic matter. Depending on aggregate size, von
Lützow et al. (2007) suggested that the time-scale of SOM stabilisation
varies from 1–10 years for macro-aggregates larger than 250 μm to 10–
100 years for micro-aggregates (20–250 μm). Focusing on alluvial soils,
SOM stabilisation has been usually evaluated by the distribution of or-
ganic carbon content in particle-size fractions, the latter being assumed
to have a different role in SOM turnover and then in assessing the state
of floodplain restoration (Wigginton et al., 2000). These authors en-
sured that it may be sufficient to analyse SOM content in conjunction
with aggregate size distributions to monitor the long-term trajectory
of restoration efforts. In addition, the macro-aggregate characteristics,
i.e. the water stable aggregate abundance (WSA) and the mean weight
diameter of macro-aggregates (MWD) are also widely used to evaluate
SOM stabilisation in alluvial soils (Bullinger-Weber et al., 2007; Guenat
et al., 1999; Onweremadu et al., 2010).

In a context of floodplain restoration, little is still known about the
impact of river restoration on soil properties, and especially on carbon
storage and SOM stabilisation despite a considerable increase in the
number of floodplain restoration projects during the last decade
(Palmer and Bernhardt, 2006; Palmer et al., 2005). Only some research
has highlighted the necessity to include carbon storage in the frame-
work of river restoration (Ballantine and Schneider, 2009; Cabezas
and Comin, 2010; Cierjacks et al., 2010).

As a consequence, the aim of our research was to quantify and ex-
plain carbon storage and soil organic matter stabilisation in the upper-
most humic layer in terms of soil properties, soil profile groups
(related to soil morphology), and three levels of human influence
(near-natural, restored and embanked). Three floodplainswere investi-
gated: the Rhine floodplain is considered as a near-natural one, while
the Thur and the Emme floodplains are both composed of one restored
section and one embanked one.We hypothesized that: 1. Carbon stocks
and SOM stabilisation parameters are related to soil properties, espe-
cially soil texture; 2. Carbon stocks and SOM stabilisation parameters
differ among profile groups (defined by morphological criteria) within
each floodplain; 3. Carbon stocks and SOM stabilisation parameters
vary between embanked and restored sections within the Emme and
Thur floodplains.
2. Material and methods

2.1. Floodplain descriptions

We investigated three Swissfloodplain areas differing in the levels of
human disturbance. Their main characteristics are given in Table 1. The
Rhine floodplain (Canton of Graubünden—GR) located along the Rhine
River is a site of Swiss national importance and is considered as a near-
natural floodplain due to its vegetation composition (Gallandat et al.,
1993) and the absence of embankments in the surroundings.

The floodplain along the Emme River (canton of Bern — BE) is the
first restoration project by river widening conducted in Switzerland.
This floodplain had been embanked until 1991, after which a section
was widened in 1991/92 and 1998/99. The restoration consisted of the
mechanical removal of the embankments along a 530 m long section
and the river was widened by 30 m. Two sections were studied, a re-
stored section and an adjacent embanked section.

The floodplain along the Thur River (canton of Thurgau— TG) is cur-
rently the biggest widening river restoration project in Switzerland.
Restoration of the site was conducted in two steps: first, following a
major flood in 1995, the embankments were partly destroyed thus
allowing river bank erosion. Secondly, in 2002, the river bed was wid-
ened by the mechanical removal of the embankments along a 1.5 km
section from 50 to 110 m in width, and the banks were stabilised by
plantations of willow (Salix viminalis; Pasquale et al., 2011). For both
the Emme and the Thur floodplains, we chose two sections, one re-
stored and one embanked, this latter being located upstream in order
to have the state of the floodplain prior to river widening.

2.2. Preliminary soil survey

A preliminary soil survey was performed using an auger boring in
order to evaluate the variability of soil morphologies in the floodplains
(Fournier et al., 2013). Along transects perpendicular to the river flow,
a total of 104, 260 and 125 borings were performed in the Rhine flood-
plain (3 transects), the Emme floodplain (10 transects) and the Thur
floodplain (6 transects). The following morphological descriptors were
taken into account to describe each boring: total soil depth from top sur-
face to gravel limit, number of layers, number of humic layers, corre-
sponding to soil layers containing high proportions of soil organic
carbon (related to a brown colour), and number of textural layers (i.e.
layers that differ according to their particle-size distribution) found in
the profile. Additionally, the main texture of soil layers as well as pres-
ence of hydromorphic features, coarse elements (particle size N2 mm)
and roots in the uppermost humic layer were noticed. Then, based on
these morphological descriptors, clustering analyses (by Ward's meth-
od) were performed in order to get a hierarchical classification of soil
morphologies for each floodplain. Resulting from these hierarchical
classifications, different soil clusters were then obtained in each flood-
plain, six for the Rhine floodplain (GR 1 to GR 6), eight for the Emme
floodplain (BE 1 to BE 8) and six for the Thur floodplain (TG 1 to
TG 6). Details of these different soil clusters are given in Appendix A.

2.3. Soil profile sampling

A soil profile sampling campaign (final study) was performed in
spring 2010. At each floodplain, we described and sampled three repre-
sentative soil profiles (from 0 to 30 cm) for each soil cluster resulting
from hierarchical classification. These three soil profiles of each cluster
are named “soil profile groups”. In the field, the thickness of the upper-
most humic layer (in cm)wasmeasured. On thewhole soil profile, total
depth from top surface to pebble limit (Total Depth in cm) was mea-
sured and the presence or absence of hydromorphic features was indi-
cated (Hydro, composed by 3 classes: 0 = no hydromorphic features,
1 = redoxic marks, 2 = reductic marks). Moreover, an alluvial index
(Alluvial Index) reflecting alluvial dynamics (Bullinger-Weber and



Table 1
Main characteristics of the three studied floodplains. Source for meteorological data: Meteosuisse database; for hydrological data, the following individual stations of the Federal Office for
the Environment FOENwere considered for indices on water discharges: Hinterrhein Fürstenau station (2387) for the Rhine floodplain, Emme Emmenmatt station (2070) for the Emme
floodplain, and Thur Andelfingen station (2044) for the Thurfloodplain. The number and the names of soilmorphological groups for eachfloodplainwere the results of clustering analyses
(byWard's method) performed on morphological descriptors following a preliminary survey (not shown; Bullinger-Weber et al., unpublished results); details of morphological descrip-
tions of soil groups in Appendix A.

Floodplains

Rhine (GR) Emme (BE) Thur (TG)

Canton (local name) Graubünden (Rhäzuns) Bern (Birnen) Thurgau (Schäffäuli)

Altitude a.s.l. (m) 600 500 365
Annual precipitation (mm) 870 1050 1000
Mean annual temperature (°C) 10.1 9.4 7.9
Mean annual discharge (m3/s) 40 19 47
Minimum annual discharge (m3/s) 23 9 23
Maximum annual discharge (m3/s) 60 28 76
HQ2-HQ50-HQ100 discharges (m3/s) 354-761-830 267-545-593 572-999-1067

Alluvial deposit's composition Calcareous pebbles and sand Calcareous pebbles and sand Calcareous pebbles and sand

Human disturbance Very low Restored Embanked Restored Embanked

Number and names of soil morphological groups 6 / GR 1 to GR 6 7 / BE 1 to BE 7 1 / BE 8 5 / TG 1 to TG 5 1 / TG 6
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Gobat, 2006)was calculated by dividing the total number of horizons by
the total depth of the soil profile. This alluvial index reflects thus the
number of successive alluviumdeposits for the total depth of the profile.

Soil sampling for physicochemical analyses was performed only on
the uppermost humic layer even if it was covered by recent alluvial de-
posits, and thus not found at the surface of the profile. The absence (bare
soils) or presence of a single humic layerwas observed in all soil profiles
(60 soil profiles), aswell as inmost of the auger borings performed dur-
ing the preliminary soil survey (97.8% auger borings).

2.4. Physicochemical analyses

Total carbon (TC) and mineral carbon (IC) concentrations were
measured by a 680 °C combustion catalytic oxidation method using a
TOC-Shimadzu analyser and total organic carbon (TOC) concentration
(g/100 g) was calculated by deducting the IC concentration from the
TC concentration. Bulk density (t m−3) was also measured in order to
calculate TOC stock (in t ha−1) bymultiplying it with TOC concentration
and the thickness of the uppermost humic layer.

Granulometric fractionation by wet-sieving (adapted from Kemper
and Rosenau, 1986) allowed isolation of four granulometric fractions
(2000–5000 μm, 1000–2000 μm, 500–1000 μm and 250–500 μm). An
amount of 30 g of dry soil sieved at 5 mm was weighed and rewetted
to pF = 0. Wet-sieving using a series of stacked sieves (2 mm, 1 mm,
0.5 mm and 0.250 mm) was then performed for 10 min. The four
granulometric fractions obtainedwere dried at 45 °C to preserve organ-
icmatter, and thenweighed. TOC content (g/100 g)was then quantified
as previously described for three granulometric fractions: 1000–
2000 μm (TOC1000), 500–1000 μm (TOC500) and 250–500 μm
(TOC250). As the fraction 2000–5000 μm comprised exclusively
gravels, no data of TOC concentrationwas available. Aggregation forma-
tion was quantified as abundance of water stable aggregates (WSA %)
and mean weight diameter of macro-aggregates (MWD mm) were
measured using also the wet-sieving method (Kemper and Rosenau,
1986). The four fractions were dried at 105 °C and weighed. Finally,
sand content for each aggregate fraction was determined by dispersion
with hexametaphosphate (5 g l−1).WSA andMWDwere calculated ac-
cording to the Eqs. (1) and (2) respectively:

WSA %ð Þ ¼ W2mm þW1mm þW0:5mm þW0:25mmð Þ=Wtot½ � � 100 ð1Þ

MWD mmð Þ ¼ ð 3:5 mm �WSA2mmð Þ þ 1:5mm �WSA1mmð Þ
þ 0:75mm �WSA0:5mmð Þ
þ 0:375mm �WSA0:25mmð ÞÞ=100 ð2Þ
Wtot = initial weight of soil sample with deduction of mineral
particles N 2 mm; and WSA “I”mm = the proportion of the total water-
stable aggregates in the corresponding size fraction after deducting
the weight of sand/gravel particles (upon dispersion and passing
through the same sieve).

After a preliminary destruction of organic matter by H2O2 (10%), the
particle size distribution of the uppermost humic layer (modified
Robinson pipette method according to Carter and Gregorich, 2007)
was determined as the clay content (%), the silt content (%) and the
sand content (%). Calcium carbonates (CaCO3%) of the uppermost
humic layer were measured using the Calcimeter Bernard (Lamas
et al., 2005). Finally, total iron content (in g/100 g) was quantified by
X-ray fluorescence spectrometry on pressed powder pellets (XRF,
Philips PW 2400).

2.5. Statistical analysis

Statistical analyses were performed with R.2.14.0 (R development
Core Team, 2011) and Statistica 11. The carbon storage was described
by the organic carbon stocks (TOC stock) and the SOM stabilisation by
the following parameters: carbon content in the granulometric fractions
(TOC1000, TOC500 and TOC250), abundance of water-stable macro-
aggregates (WSA) and mean weight diameter of macro-aggregates
(MWD). The above-mentioned variables concerning the different river
systems namely, site (floodplain), levels of human disturbance (re-
stored, embanked) and soil clusterswithin eachfloodplainwere consid-
ered. The following soil properties were taken into account to explain
carbon stocks and SOM stabilisation parameters: clay, silt and sand con-
tents as well as CaCO3 and total iron contents. Moreover, soil properties
about the entire soil profile were also taken into consideration: total soil
depth, presence or absence of hydromorphic features and alluvial index.

A Multivariate Analysis of Dependency based on the generalized
linear model (GLM) that takes into account both continuous and cate-
gorical predictor variableswas applied. As a first step, the overall depen-
dency between carbon storage and SOM stabilisation parameters
(response variables) on one side and the soil properties (predictors)
on the other sidewas tested. As a second step, the dependency between
each response variable and predictors was tested.

Within each floodplain, differences in the carbon storage parameters
between soil profile groups were tested by analysis of variance (one-
way ANOVA) followed by Tukey Post-hoc tests to highlight significant
differences between soil profile groups within each floodplain. To
meet the assumptions of normality, TOC stocks were log-transformed
and TOC1000 was square-root transformed. Finally, two-level nested
ANOVAs were performed to test the effect of human-impact
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(restoration and embanking) on carbon storage and SOM stabilisation
parameters. The first level corresponds to two floodplains (Emme/
Thur), and the second level to the state of the floodplain (embanked/re-
stored sections within each floodplain). For all tests performed with
Statistica 11, levels of statistical significance were as follows: ns = not
significant, *P b 0.05, **P b 0.01.

3. Results

3.1. Carbon stocks, SOM stabilisation and soil properties

Data that reflect carbon storage (carbon stocks) and SOM
stabilisation in the soil profile groups that composed the three studied
floodplains are presented in Appendix B and correspond to our response
variables. TOC500 and TOC1000, as well as TOC250 and WSA parame-
ters were highly correlated (Pearson correlation coefficients r2 N 0.81)
thus only TOC1000 and WSA were considered for further analyses in
order to avoid co-linearity.

The different soil properties for the soil profile groups that com-
posed the three studied floodplains are shown in Appendix C and
these properties are our predictor variables. As the sand and the silt
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3.2. Dependency between carbon storage, SOM parameters and soil
properties in the different floodplains

Multivariate regression analysis showed a significant overall depen-
dency between the response variables and the predictor variables
(P b 0.01). Indeed, all the soil properties except presence of hydromor-
phic features and total soil depth significantly contributed to explain
this dependency. The results ofMultivariate Analysis of Dependency be-
tween each response and predictor variables are as follows: the TOC
stock was positively influenced by the clay content (P b 0.01) and by
the total iron content (P b 0.05), while the CaCO3 content (P b 0.01)
and the silt content (P b 0.01) negatively influenced the TOC stock
(summary statistics for the regression analysis: adjusted R2 = 0.412).
Moreover, the TOC1000was negatively influenced by the total iron con-
tent, alluvial index (P b 0.01) and CaCO3 content (P b 0.05; summary
statistics for the regression analysis: adjusted R2 = 0.216). WSA was
positively influenced by the total iron content (P b 0.01), by the
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CaCO3 content (P b 0.05) and negatively affected by the alluvial index
(P b 0.05; summary statistics for the regression analysis: adjusted
R2 = 0.568). MWD was positively influenced by the clay content
(P b 0.01) and by total soil depth (P b 0.05; summary statistics for the
regression analysis: Adjusted R2 = 0.361).

3.3. Carbon storage and SOM stabilisation parameters in soil profile groups
within each floodplain

Mean TOC stocks ranged from 1.67 (GR 6) to 34.48 t ha−1 (GR 5) in
the near-natural Rhine floodplain (Fig. 1). Mean TOC stocks were signif-
icantly lower in the GR 1, GR 2, GR 6 than in GR 3, GR 4, and GR 5 soil
profiles. TOC stocks ranged from 0.80 (BE 4) to 169.56 t ha−1 (BE 6)
within the restored Emme floodplain. In this floodplain, TOC stocks
were significantly lower in BE 3 than in BE 6, BE 7, and BE 8 (in the
embanked section). TOC stocks recorded for the restored Thur flood-
plain ranged from 3.10 (TG 1) to 56.70 t ha−1 (TG 5) with significant
lower TOC stocks in bare gravels TG 1 than in more developed soils in
the restored section TG 3 (under reed canarygrass), TG 4 (under willow
bushes), TG 5 (under ash forest). Finally, TOC stocks in the embanked
section (TG 6) did not differ from those of the other soil profile groups.

TOC1000 showed a different pattern with significant differences
among soil profile groups for the Rhine floodplain and the Emme flood-
plain (Fig. 2), but not for the Thur floodplain. In the near-natural flood-
plain, WSA ranged from 34 to 79% and showed no difference between
soil profile groups (Fig. 3). MWD values varied from 0.30 to 1.86 mm,
with MWD in GR 1 significantly lower than in GR 4 (Fig. 4). In the re-
stored Emme floodplain, WSA ranged from 2 to 79% and was signifi-
cantly higher in BE 7 than in other soil profile groups, while BE 8 (in
the embanked zone) showed an intermediate value. MWD values var-
ied from 0.51 to 2.17 mm with lowest value in BE 3 and highest value
in BE 7. In this case, MWD was significantly higher in BE 8 (1.91 mm)
than in BE 1 (1.03 mm) and BE 3 (0.51 mm), but was not statistically
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from analysis of variance (one-way ANOVA calculated within each floodplain separately follow
different in the other soil profile groups. In the restored Thur floodplain,
WSA values ranged from 1 to 55% with abundance of water stable ag-
gregates significantly lower in TG 1 than in the other soil profile groups.
MWD ranged from 1.31 to 2.47 mm and were not different among soil
profile groups.

3.4. Carbon storage parameters in restored and embanked sections

Overall, for carbon stocks, a clear difference between the Emme and
the Thur floodplains was observed (P b 0.05) as well as a difference
between restored (20.7 t ha−1; Table 2) and embanked sections
(82.7 t ha−1; Table 2) within the Emme floodplain (P b 0.01). An inter-
action between the level of human-impact and the floodplain was no-
ticed. As seen in Fig. 5, river restoration led to a significant decrease in
carbon stocks for the Emme floodplain, whereas no effect was observed
for the Thur floodplain.

Considering the TOC1000, no effect of restoration was observed be-
tween floodplain or between embanked and restored sections within
each floodplain. Finally, considering WSA and MWD, significant differ-
ences were only observed between floodplains (P b 0.01 for WSA and
P b 0.05 for MWD), but not between embanked and restored sections
within each floodplain (Table 3).

4. Discussion

4.1. Carbon storage and SOM stabilisation in near-natural floodplains

In the near-natural floodplain, values of TOC stocks were lower com-
pared to thosementioned by Cierjacks et al. (2010, 2011). These authors
reported 41 t ha−1 for Ah soils under softwood forests, 48 t ha−1 for
soils under hardwood forests and reached respectively 113 and
138 t ha−1 when these stock calculations took into account all the C-
enriched subsoil horizons up to 1 m in depth. Wigginton et al. (2000)
TG1 TG2 TG3 TG4 TG5 TG6E4 BE5 BE6 BE7 BE8

ofile groups

enear-naturalfloodplain: GR 1 toGR6; restored Emmefloodplain: BE 1 to BE 7, embanked
lain: TG 6 (in grey). Standard deviations are shown and letters above bars represent results
ed by Tukey Post-hoc tests).



Table 2
Carbon storage and SOM stabilisation parameters according to floodplains (Rhine floodplain: GR, Emme floodplain: BE and Thur floodplain: TG) and the level of human disturbance (re-
stored and embanked sections) for the Emme and Thur floodplains. Mean values (± standard error) are indicated.

Carbon storage and SOM
stabilisation parameters

Floodplains

Name Unit GR (N = 18) BE 1 to BE 7 (N = 21) BE 8 (N = 3) TG 1 to TG 5 (N = 15) TG 6 (N = 3)

Mean/std err Restored mean/std err Embanked mean/std err Restored mean/std err Embanked mean/std err

StockTOC t ha-1 13.3/2.3 20.7/8.1 82.7/22.1 17.1/3.5 10.5/6.7
TOC1000 g/100 g 3.3/0.7 5.5/1.2 6.5/0.3 3.9/0.6 2.6/0.1
MWD mm 1.0/0.2 1.4/0.1 1.9/0.02 1.9/0.1 2.2/0.2
WSA % 53.4/5.6 14.8/4.7 33.7/7.6 34.5/5.0 44.8/7.0
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reported TOC stock values even higher (558.7 t ha−1 per 0.7 m) inmin-
imally disturbed forested alluvial soils. These authors also reported an in-
crease in WAS abundance along a soil evolution gradient. We found the
same pattern along the soil evolution gradient.

4.2. Soil properties influencing carbon storage and SOM stabilisation

We demonstrated that, according to our first hypothesis, carbon
storage and SOM stabilisation parameters are related to soil properties.
Apart from total soil depth and hydromorphic features, all soil proper-
ties contribute to explain the carbon storage in terms of TOC stocks.
Overall we found that, in all floodplains, both particle-size distribution
(especially clay content) and chemical composition (total iron) of the
mineral fraction positively affects TOC stock. These results confirm
those already published by Bechtold and Naiman (2006) in a semi-
arid floodplain. These authors concluded that carbon storage in sandy
soils is strongly related to fine particles' concentration. In our study, an
increase of CaCO3 content led to a decrease in all carbon storage and
SOM stabilisation parameters, except for MWD. Thus, CaCO3 content
characterized the floodplain and could then reflect other environmental
factors related to the floodplain (such as floodplain morphology, fre-
quency of calcareous deposits by floods or vegetation cover) and could
have an indirect effect on carbon storage. Other properties such as
total soil depth also influenced carbon storage and SOMstabilisation pa-
rameters and especially the TOC in the 1–2 mm granulometric pool.
This may be due to the soil evolution gradient within each floodplain,
from bare soils to well-developed soils under forests, already described
by Viereck et al. (1993) in different rivers of North America. In our
case, the mechanisms of SOM stabilisation by aggregate formation (as
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Fig. 5. Results of the two-level nested ANOVA's testing the “level of human disturbance”
(restored and embanked sections) on the TOC stock (t ha-1) parameter. The first level cor-
responds to two floodplains (BE-Emme floodplain/TG-Thur floodplain, and the second
level to the state of the floodplain embanked (dash line)/restored (solid line) sections
within each floodplain). Significance of the model P = 0.005**.
shown by MWD) was influenced by clay content, whereas WSA was
surprisingly not. Total iron content also contributed to a better SOM
stabilisation by playing an important role as stabilising component
and binding organic and minerals particles, and thus increasing WSA
and MWD values, as already confirmed by Bullinger-Weber et al.
(2007) in calcareous-rich alluvial soils.

4.3. Variability of carbon storage and SOM stabilisation within
each floodplain

According to our second hypothesis, we showed that soil profile
groups defined by morphological criteria discriminate carbon storage
and SOM stabilisation within each floodplain. In the Rhine near-natural
floodplain, the high variability of TOC stock and SOM stabilisation dem-
onstrates the inherent heterogeneity of alluvial soil systems. Indeed, we
showed that an increase of TOC stocks follows a soil gradient evolution
frommineral bare alluvial soils tomore stabilised soils and a hydric func-
tioning (soils with hydromorphic features). Our results confirmed that
SOM in the uppermost humic layers increased during the alluvial soil
formation as previously demonstrated by Van Cleve et al. (1993).
These authors revealed that, in a natural floodplain, the increasing
amounts of soil organic carbon were closely tied to the influence of veg-
etation and reflected SOM accumulation in soil profiles with advancing
plant succession across a 200-year vegetation development sequence.

In alluvial soils without hydromorphic features, we demonstrated a
significant increase of TOC stock and MWD from bare soils and to the
well-developed and drained stabilised soils. This increase has already
been observed in another near-natural Swiss floodplain under two dif-
ferent types of softwood forest (willow shrubs and alders; Bullinger-
Weber et al., 2007). Onweremadu et al. (2010) also showed that
MWD values increase from soils proximal to the river to the floodplain
in South Nigeria (from 0.76 to 2.88 mm). However, in hydromorphic
soils, our data provide contradictory evidence on the effect of excess
water on carbon quantities. As assessed in the literature, saturation by
water should lead to a slow mineralization of fresh organic matter and
thus contribute to an increase of TOC content (Schwartz and Namri,
2002). Our results did not support this hypothesis since low TOC stocks
were observed in hydromorphic soils. This could be explained by differ-
ences in vegetation types as fewer trees and more herbaceous plants
were found in the hydromorphic lateral branches where seasonal fluc-
tuations of the water table lead to organic matter mineralisation (field
observation).

In both restored sections, the variability of carbon storage and SOM
stabilisation has increased compared to embanked sections used as ref-
erences, and can be explained by the higher diversity of soil profile
groups within restored sections compared to embanked sections
where a single soil profile group is present. Previous researches per-
formed on the Thur River have demonstrated that the river widening
has increased soil diversity (Fournier et al., 2012) and the most striking
changes occurred where post-restoration fluvial dynamics created
diverse and dynamic pattern of soils (Fournier et al., 2013). In addition,
Samaritani et al. (2011) showed that the Thur restored section exhibited



Table 3
Soil properties according to floodplains (Rhinefloodplain: GR, Emmefloodplain: BE and Thurfloodplain: TG) and the level of human disturbance (restored and embanked sections) for the
Emme and Thur floodplains. Mean values (± standard error) are indicated.

Soil properties Floodplains

Name Unit GR (N = 18) BE 1 to BE 7 (N = 21) BE 8 (N = 3) TG 1 to TG 5 (N = 15) TG 6 (N = 3)

Mean/std err Restored mean/std err Embanked mean/std err Restored mean/std err Embanked mean/std err

Clay % 4.2/1.0 6.0/1.1 9.6/0.9 11.8/1.2 12.1/1.6
Silt % 45.0/4.4 15.7/2.7 23.2/2.2 33.5/4.0 32.3/3.8
CaCO3 % 23.4/0.7 16.7/0.4 11.2/1.5 36.7/1.2 39.1/0.2
Total iron g/100 g 3.1/0.1 1.5/0.1 2.5/0.03 1.5/0.1 1.5/0.04
Hydro Binary 0.3/0.1 0.14/0.08 0/0 0.47/0.13 1/0
Alluvial index Number/cm 0.1/0.02 0.31/0.09 0.09/0 0.26/0.1 0.05/0
Total depth cm 52.9/8.4 45/10 15/3 53/10 108/4
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both a larger range and a higher heterogeneity of organic C pools
(microbial C and water extractable organic C) than the embanked
section. Cierjacks et al. (2010) also highlighted that a restoration project
could affect organic carbon storage by the creation of pioneer stages,
such as bare alluvial soils. By contrast, Bruland and Richardson (2005)
andUnghire et al. (2011) reported a homogenisation of SOMdistribution
(with a lack of patches of high or low concentration) in restored flood-
plains and concluded that the way the restoration projects have been
conducted (rerouting the prior river to a more sinuous channel, vegeta-
tion and soil scraping, soil mixing and redistribution) can explain the
lower SOM variability within restored floodplains compared to the un-
restored floodplains.

4.4. Impact of river restoration on carbon storage and SOM stabilisation

We demonstrated that the overall effect of river restoration was dif-
ferent on the carbon storage and SOM stabilisation depending on the
floodplain in question: i.e. a decrease for the Emmefloodplain andnoef-
fect for the Thur floodplain. This different behaviour could be partly due
to differences in vegetation composition in the embanked sections used
as references. In the Emme floodplain, the mature forest was removed
and replaced by pioneer vegetation that could decrease the amount of
litter input and then the amount of organic matter incorporated in allu-
vial soils. Unghire et al. (2011) also highlighted that the replacement of
tree canopy around the river by early floodplain grass and forb commu-
nities with juvenile trees contributes to the decrease of SOM in restored
floodplains. On the contrary, in the Thurfloodplain,where a pasturewas
replaced by various pioneer communities (mainly herbaceous and bush
communities), no impact of restoration on carbon storage and SOM
stabilisation was noticed.

Due to the slow development of post-restoration soils, the time
elapsed since restoration was started has been taken into account to in-
terpret the impact of river restoration on carbon storage and SOM
stabilisation. For example, Unghire et al. (2011) concluded that 4–
5 years since the beginning of restoration have not been sufficient for
the ecosystem to recover from the disturbance and to develop patterns
of spatial variability comparable with natural riparian wetlands. In pro-
ductive and regularly inundated systems such as salt marshes, Craft
et al. (2002, 2003) estimated that between 30 and 150 years are needed
to accumulate pools of SOM equivalent to those of natural systems. In
both restored floodplains, despite the short time elapsed since restora-
tion was started (5 years in the case of the Thur River and 20 years in
the case of the Emme River) some trends were clearly identifiable. In
both floodplains, river restoration has increased the variability of soil
morphology, carbon storage and SOM stabilisation within the restored
section (compared to embanked section).

It is problematic to generalize our findings because research
documenting the impacts of river restoration on carbon storage and
SOM stabilisation is sparse and provides contradictory conclusions. Ac-
cording to Cierjacks et al. (2010) a restoration project could result in
gains or in decreases of organic carbon in terms of stocks. Other
researches demonstrated that soil properties and spatial patterns
could be negatively affected by restoration activities, potentially hinder-
ing the development and function of ecosystems (Bruland and
Richardson, 2005; Unghire et al., 2011). These authors noticed a de-
crease in the mean of SOM and a loss of SOM spatial heterogeneity in a
restored floodplain. Unghire et al. (2011) suggested that these changes
are the strongest evidences of disturbance associated with restoration
activities.

The contradictory findings about the impact of restoration on carbon
storage and SOM stabilisation and on their spatial variability reinforce
the conclusion of Bruland and Richardson (2005). These authors
highlighted that patterns of soil property variability, including the
SOM pattern, are complex in natural and restored wetlands and could
reflect a site-specific nature of spatial variability, in which unique geo-
logic, hydrologic, vegetative, and land-use histories may interact to cre-
ate unique patterns of spatial variability.

In addition, the way the restoration project was conducted has to be
taken into account to explain the diametrically opposite impacts of river
restoration on carbon storage and SOM stabilisation. Restoration pro-
jects which require a high degree of earthmoving and homogenization
of soils as well as vegetation scraping lead to a decrease of SOM and a
loss of SOM spatial variability (Unghire et al., 2011). By contrast, other
restoration activities (river widening by embankment removal imply-
ing less soilmanipulations) lead to a larger range and a higher heteroge-
neity of organic C pools (Samaritani et al., 2011) and seem to re-create
SOM pattern characteristics in natural floodplains.

5. Conclusion

Recent research projects conducted in floodplains have used differ-
ent indicators to predict carbon storage. For example, Cierjacks et al.
(2010) proposed the inclusion of spatial and geomorphological vari-
ables rather than potentially man-made vegetation types for modelling
the amounts and distribution of carbon stocks in floodplains. Indeed,
these authors concluded that, in the Danube floodplain, vegetation dis-
tribution does not indicate the conditions of sedimentation and soil
carbon sequestration over the time in question of soil carbon stock de-
velopment. Moreover, Cierjacks et al. (2011) showed that the soil or-
ganic stocks increased significantly with distance to the next channel
along a longitudinal gradient. By contrast, Drouin et al. (2011) did not
detect a significant pattern of the spatial distribution of total organic
carbon in alluvial soils of active floodplains even using a high precision
digital elevation model to define floodplain micro-topography.

Our results confirm that soil morphology inherently contains struc-
tural and functional information on floodplain ecosystems as demon-
strated previously by Fournier et al. (2013) on the Thur floodplain. We
showed that soil morphology and some related soil properties ( parti-
cle-size distribution, total iron and CaCO3 contents of the uppermost
humic layer) are also adequate indicators explaining the variability of
carbon storage and SOM stabilisation in floodplains differing in the
level of human disturbance (i.e. near-natural, embanked and restored
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floodplains). As soil morphology reacts fast and clearly to river restora-
tion, this indicator could also be easily used to assess the impact of res-
toration on carbon storage. This is in accordance with Cole and Kentula
(2011), who pointed out that soil descriptions are of great important as
an indicator of wetland assessment.
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Appendix A. Descriptions of soil clusters resulting from hierarchical clas
floodplains (Rhinefloodplain: GR 1 to GR 6; Emmefloodplain: BE 1 to BE 8
depth of the soil profile (cm), total number of the layers in the soil profile
(S = sandy texture; lS = loamy-sand texture), absence or presence of hy
roots in the uppermost humic layer (0 = no root, 1 = some roots, 2 = ro

Soil clusters Frequency (%) Total depth (cm) Number of layers Number of textural

GR 1 5 12 (±3) 1 (±0) 1 (±0)
GR 2 42 5 (±3) 1 (±0) 1 (±0)
GR 3 31 32 (±15) 3 (±0.6) 1 (±0)
GR 4 5 56 (±8) 4 (±0) 2 (±0)
GR 5 8 82 (±0) 4 (±0.6) 2 (±0)
GR 6 9 92 (±13) 4 (±0.7) 2 (±0)
BE 1 24 1 (±0) 1 (±0) 1 (±0)
BE 2 10 1 (±0) 1 (±0) 1 (±0)
BE 3 14 10 (±6) 2 (±0.6) 1 (±0)
BE 4 11 101 (±17) 4 (±1.3) 4 (±1)
BE 5 15 75 (±36) 5(±3.1) 5 (±3)
BE 6 15 21 (±11) 2 (±0.6) 1 (±0)
BE 7 10 49 (±28) 3 (±1.2) 3 (±1)
BE 8 1 15 (±6) 1 (±0.6) 1 (±0)
TG 1 10 1 (±0) 1 (±0) 1 (±0)
TG 2 13 3 (±7) 1 (±0) 1 (±0)
TG 3 25 24 (±19) 2 (±0.5) 2 (±0.5)
TG 4 19 100 (±27) 3 (±1) 2 (±0.5)
TG 5 17 104 (±13) 2 (±0.5) 2 (±0.5)
TG 6 17 113 (±26) 3 (±1) 3 (±0.5)

Appendix B. Carbon storage and SOM stabilisation parameters for each so
bon content of the bulk soil (TOC, in g/100 g), uppermost humic thickne
total organic carbon content in the 1–2 cm fraction (TOC1000, in g/100 g
dance of water stable aggregates (WSA, in %). Mean values (±standard

Soil profile
group

Bulk density
(t m−3)

TOC
(g/100 g)

TOC stock
(t ha−1)

Thickness of upper-mo
humic layer (cm)

GR 1 1.51 (±0.4) 0.48 (±0.1) 5.23 (±1.6) 8 (±3)
GR 2 1.23 (±0.1) 0.79 (±0.3) 5.24 (±1.6) 6 (±1)
GR 3 0.95 (±0) 5.48 (±1.5) 16.32 (±3.5) 3 (±1)
GR 4 0.85 (±0) 5.41 (±1.6) 20.79 (±4.8) 5(±1)
GR 5 0.99 (±0.1) 2.83 (±0.8) 27.69 (±6) 10(±0)
GR 6 0.98 (±0) 0.46 (±0.3) 4.51 (±3) 10 (±0)
BE 1 1.95 (±0) 0.26 (±0) 4.96 (±1) 10 (±2)
BE 2 1.95 (±0) 0.44 (±0) 8.40 (±3.2) 10 (±4)
BE 3 1.49 (±0.1) 0.11 (±0) 1.38 (±0.2) 9 (±1)
BE 4 1.35 (±0.1) 0.37 (±0.2) 16.44 (±15) 28 (±24)
BE 5 1.42 (±0.1) 0.73 (±0.9) 6.21 (±4.2) 11 (±11)
BE 6 1.49 (±0.3) 2.08 (±1.8) 72.05 (±86) 21 (±13)
BE 7 1.26 (±0.1) 4.05 (±1.5) 35.03 (±23) 8 (±5)
BE 8 1.38 (±0) 5.62(±1.9) 82.70 (±38) 10 (±2)
TG 1 1.95 (±0) 1.83 (±0.4) 3.57 (±0.7) 1 (±0)
TG 2 1.03 (±0.1) 1.50 (±0.5) 9.66 (±1.9) 7 (±4)
TG 3 1.17 (±0.1) 2.44 (±0.2) 20.34 (±11) 7 (±4)
TG 4 1.20 (±0.1) 1.96 (±0.3) 17.86 (±2.6) 8 (±1)
TG 5 1.22 (±0.1) 2.37 (±1) 34.02 (±20) 15 (±13)
TG 6 1.26 (±0.1) 1.18 (±1) 10.5 (±11.7) 6 (±2)
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; Thur floodplain: TG 1 to TG 6): frequency of each soil group (%), total
, number of layers of different texture, dominant texture of the layers
dromorphic features (0/1), coarse elements (N2 mm; %), presence of
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layers Texture of layers Hydromorphic features Coarse elements (%) Roots

S 0 0 (±0) 1 (±0)
S 0 47 (±31) 0 (±0)
S 0 1 (±0) 1 (±1)
S–lS 0 0 (±0) 2 (±0)
S–lS 1 0 (±0) 2 (±0)
S–lS 2 0 (±0) 2 (±0)
S 0 83 (±9) 0 (±0)
S 0 82 (±9) 0 (±0)
S 0 64 (±19) 0 (±0)
lS 0 3 (±0.4) 1 (±1)
S–lS 1 5 (±4) 1 (±1)
S–lS 0 6 (±14) 1 (±0.5)
S–lS 0 2 (±4) 1 (±0.5)
S 0 3 (±3) 1 (±0)
S 0 90 (±9) 0 (±0.5)
S 0 83 (±29) 1 (±0.5)
S–lS 0 41 (±22) 2 (±0.5)
lS 0 1 (±2) 2 (±0.5)
lS 1 0 (±0) 1 (±0.5)
lS 1 1 (±3) 2 (±0.5)

il profile group (final study): bulk density (t m−3), total organic car-
ss (cm), total organic carbon stock in bulk soil (TOC stock, in t ha−1),
), meanweight diameter ofmacro-aggregates (MWD, inmm), abun-
deviation) are indicated.

st TOC1000
(g/100 g)

TOC500
(g/100 g)

TOC250
(g/100 g)

MWD
(mm)

WSA
(%)

0.01 (±0) 0.33 (±0) 0.23 (±0) 0.30 (±0.1) 34 (±25)
0.59 (±.4) 0.60 (±0.1) 0.48 (±0.1) 0.57 (±0.2) 37 (±21)
7.48 (±2.8) 6.01 (±2.5) 4.97 (±2.6) 0.94 (±0.4) 54 (±18)
5.08 (±1.4) 5.39 (±2.2) 4.86 (±1.6) 1.86 (±0.9) 79 (±12)
2.74 (±0.2) 2.63 (±0.4) 2.74 (±0.9) 1.59 (±0.1) 68 (±3)
3.78 (±1.3) 3.27 (±0.3) 2.85 (±0.5) 0.96 (±0.9) 48 (±31)
1.86 (±1) 0.89 (±0.3) 0.21 (±0.1) 1.03 (±0.1) 2 (±1.4)
0.57 (±0.7) 0.5 (±0.5) 0.25 (±0) 1.60 (±0.3) 3 (±1.2)
3.77 (±2.9) 1.15 (±1.5) 0.12 (±0.1) 0.51 (±0.1) 1 (±0.4)

13.12 (±9) 11.5 (±10) 1.12 (±1.5) 1.51 (±0.2) 3 (±3)
9.63 (±5.6) 6.03 (±3.1) 0.87 (±1) 1.21 (±0.6) 12 (±19)
3.71 (±0.6) 3.77 (±1.1) 2.19 (±2) 1.64 (±0.2) 27 (±23)
5.73 (±1.5) 6.70 (±1.7) 5.30 (±0.9) 2.17 (±0.2) 55 (±13)
6.48 (±0.5) 5.79 (±0.5) 4.44 (±0.2) 1.91 (±0) 34 (±13)
2.23 (±0.7) 1.09 (±0.5) 0.57 (±0.4) 2.47 (±0.1) 6 (±0.3)
6.94 (±2.9) 4.36 (±0.9) 2.11 (±0.9) 1.66 (±0.5) 31 (±10)
4.18 (±1.3) 3.84 (±2.4) 2.27 (±1.7) 1.96 (±0.4) 35 (±3)
2.74 (±3) 1.83 (±1.3) 2.44 (±1.3) 1.31 (±0.4) 42 (±3)
3.44 (±0.7) 3.15 (±0.7) 3.39 (±1.6) 2.21 (±0.7) 58 (±18)
2.63 (±0.2) 3.49 (±3) 2.40 (±1) 2.18 (±0.4) 45 (±12)
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Appendix C. Soil properties for each soil profile group (final study): clay, silt and sand content (%), total carbonate content (CaCO3, in %), total
iron content (g/100 g), absence or presence of hydromorphy features (0/1), alluvial index corresponding to the total number of layers divided
by the total depth of the soil profile, total depth of the soil profile (total depth in cm). Mean values (± standard deviation) are indicated.

Soil profile group Clay (%) Silt (%) Sand (%) CaCO3 (%) Total iron (g/100 g) Hydro (0/1) Alluvial index Total number of layers Total depth (cm)

GR 1 1 (±0.3) 35 (±8) 52 (±10) 28 (±1) 2.9 (±0.2) 0 (±0) 0.2 (±0.05) 1 (±0) 5 (±2)
GR 2 2 (±1.5) 39 (±20) 48 (±26) 37 (±2) 2.8 (±0.3) 0 (±0) 0.06 (±0) 3 (±0) 52 (±0)
GR 3 6 (±0.8) 29 (±18) 62 (±22) 39 (±4) 2.7 (±0.1) 1 (±0) 0.16 (±0.08) 2 (±0) 17 (±12)
GR 4 5 (±1.9) 40 (±23) 45 (±30) 40 (±1) 3.1 (±0.1) 1 (±0) 0.07 (±0.01) 4 (±0) 56 (±4)
GR 5 6 (±03.7) 24 (±9) 66 (±11) 40 (±1) 3.7 (±0.1) 0 (±0.6) 0.04 (±0.01) 4 (±1) 93 (±10)
GR 6 5 (±1.2) 35 (±7) 53 (±9) 39 (±0) 3.7 (±0.1) 1 (±0) 0.03 (±0) 3 (±0) 95 (±8)
BE 1 3 (±0.3) 11 (±4) 86 (±5) 17 (±1) 1.4 (±0.2) 0 (±0) 1.0 (±0) 1 (±0) 1 (±0)
BE 2 3 (±0.6) 9 (±1) 88 (±1) 17 (±0) 1.3 (±0.1) 0 (±0.6) 0.69 (±0.43) 2 (±1.7) 17 (±28)
BE 3 2 (±0.3) 5 (±2) 94 (±2) 16 (±2) 1.2 (±0.1) 0 (±0) 0.24 (±0.01) 2.3 (±0.6) 10 (±3)
BE 4 3 (±1) 11 (±4) 86 (±4) 18 (±2) 1.3 (±0.2) 0 (±0) 0.04 (±0.01) 4.3 (±0.6) 110 (±0)
BE 5 4 (±1.4) 12 (±8) 84 (±11) 18 (±1) 1.4 (±0.2) 1 (±0.6) 0.05 (±0.02) 5 (±1) 96 (±25)
BE 6 10 (±6.5) 27 (±16) 64 (±22) 16 (±2) 1.9 (±0.4) 0 (±0) 0.06 (±0.03) 1 (±0) 21 (±13)
BE 7 14 (±1) 36 (±6) 50 (±6) 15 (±2) 2.0 (±0.2) 0 (±0) 0.06 (±0.01) 3.3 (±0.6) 61 (±13)
BE 8 10 (±1.6) 23 (±4) 67 (±4) 11 (±3) 2.5 (±0.1) 0 (±0) 0.09 (±0.01) 1.3 (±0.6) 15 (±6)
TG 1 13 (±2.5) 8 (±5) 90 (±5) 26 (±3) 1.4 (±0.4) 0 (±0) 1.0 (±0) 1 (±0) 1 (±0)
TG 2 13 (±6.3) 12 (±15) 86 (±16) 27 (±3) 1.4 (±0.1) 0 (±0) 0.14 (±0.12) 3.3 (±1.5) 28 (±10)
TG 3 9 (±4.2) 42 (±8) 51 (±8) 22 (±1) 1.4 (±0.1) 0 (±0) 0.07 (±0.01) 4 (±0) 57 (±18)
TG 4 15 (±7.1) 62 (±6) 33 (±8) 20 (±1) 1.7 (±0.2) 0 (±0) 0.05 (±0.02) 3.6 (±0.6) 86 (±30)
TG 5 9 (±2.3) 69 (±3) 25 (±6) 23 (±0) 1.6 (±0.2) 1 (±0) 0.04 (±0.02) 3.3 (±0.6) 94 (±24)
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