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Abstract
Fixing a prestretched dielectric elastomer actuator (DEA) on a flexible frame allows
transformation of the intrinsic in-plane area expansion of DEAs into complex three-dimensional
(3D) structures whose shape is determined by a configuration that minimizes the elastic energy
of the actuator and the bending energy of the frame. These stuctures can then unfold upon the
application of a voltage. This article presents an analytical modelling of the dielectric elastomer
minimal energy structure in the case of a simple rectangular geometry and studies the influence
of the main design parameters on the actuatorʼs behaviour. The initial shape of DEMES, as well
as the actuation range, depends on the elastic strain energy stored in the elastomeric membrane.
This energy depends on two independent parameters: the volume of the membrane and its initial
deformation. There exist therefore different combinations of membrane volume and prestretch,
which lead to the same initial shape, such as a highly prestretched thin membrane, or a slightly
prestretched thick membrane. Although they have the same initial shape, these different
membrane states lead to different behaviour once the actuation voltage is applied. Our model
allows one to predict which choice of parameters leads to the largest actuation range, while
specifying the impact of the different membrane conditions on the spring constant of the device.
We also explore the effects of non-ideal material behaviour, such as stress relaxation, on device
performance.
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1. Introduction

Dielectric elastomer actuators (DEAs) are a class of soft
actuators capable of large strain (more than 100 % area strain
have been reported [1, 2]). They are stretchable capacitors
formed by a soft and thin (typically 20–50 μm) elastomeric
membrane sandwiched between two compliant electrodes.
Upon application of a voltage on the electrodes, the electro-
static attraction causes a squeezing of the membrane, which
decreases in thickness and increases in area. Both actuation
mechanisms can be used directly. Thus, the area expansion
can be used to move or deform an object placed on the
membrane [3, 4], and the thickness compression can be used
to make contractile stacked actuators, whose length contracts
when activated [5, 6]. More complex behaviours can be
obtained with out-of-plane motion caused by membrane
buckling [7], unimorph structures [8], through the use of local

stiffeners [9], or with dielectric elastomer minimum energy
structures (DEMES) [10–12], which were first introduced by
Kofod et al.

DEMES consist of a flexible (but not stretchable) frame
on which a prestretched DEA is attached. When external
constraints are removed, part of the elastic energy stored into
the prestretched membrane is transfered into the frame, which
bends out of plane, taking a 3D equilibrium configuration
characterized by the minimum energy of the system (bending
of frame and stretching the membrane). The device is
designed so the active area (i.e. with electrodes) of the elas-
tomer membrane coincides with the hole(s) in the frame, i.e.
where the membrane is suspended. The application of a
voltage between the electrodes of the actuator changes the
stress state of the membrane, and thus its strain energy, which
causes the whole structure to unfold towards a new minimum
energy configuration. Figure 1 presents the underlying
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principle behind DEMES, starting from a frame and a pre-
stretched membrane (a), which are glued together (b), and
finally removed from the part holding the membrane. This
causes relaxation of the device into a complex configuration
(c). The figure shows a membrane without electrodes, so the
structure presented in figure 1(c) cannot be actuated. To make
a DEMES, it is necessary to apply compliant electrodes on
both sides of the membrane, either at stage (a) or (b), when
the membrane is still flat. There could be a single electrode
pair covering the complete membrane, in which case the
whole structure unfolds upon application of a voltage, or three
electrically independent electrode pairs can be patterned in
each of the three sectors, which allows each of the legs to
unfold independently. Our fabrication process to prestretch
and attach elastomeric membranes on flexible frames and to
pattern compliant electrodes has been detailed in previous
publications [13–15]. In this work, we consider a membrane
prestretched in a pure shear condition (its width is kept con-
stant when stretched along its length). We have built a
stretcher capable of stretching membranes in this particular
state, as described in [15].

This principle of voltage-controlled unfolding of flexible
structures has been proposed for different applications, such
as grippers [13, 16] or arrays of cilia acting as a conveyor
[17]. Recently our lab has been investigating the possibility of
using soft DEMES-based actuators as a gripping system for
CleanSpace One, a project from the EPFL Space Center
consisting in using a small-sized satellite equipped with a
gripper and a propulsion system to bring space debris back
into the atmosphere [14, 18]. For these applications with
precise requirements, such as force and stroke, it is crucial to
understand the impact of the main design parameters (frame
stiffness, membrane material, thickness and prestretch, as well
as the overall shape and size) on the performance of a device
in order to design the most efficient actuator. Because of the
complexity of the shape taken by the frame/membrane
assembly, an analytical model is difficult to derive for an
arbitrary actuator shape, and a finite element approach has
been the preferred method [17, 19]. However, because of the
geometry of a DEMES, which consists of a membrane of a
few square centimetres in surface but only a few tens of
micrometers of thickness, a large number of elements are
necessary, which leads to time-consuming simulations. To
circumvent this issue, OʼBrien et al have used membrane

elements to model the dielectric elastomer membrane, thus
drastically reducing the number of required nodes, and hence
the computing time [19]. However, such elements are
designed to model a state of in-plane stress and can therefore
not directly include the impact of the vertical Maxwell pres-
sure generated by the application of a voltage. OʼBrien et al
have written their own in-plane strain energy function, which
includes the effect of the Maxwell pressure [19]. Even if this
approach is much faster than using solid elements (the com-
putation time and gain are not given), it remains ill-adapted to
explore a wide, multi-dimensional parameter space.

Even though finite element analysis is the most con-
venient method to obtain quantified results for a complex
DEMES geometries, simpler geometries can be studied ana-
lytically. For example, a rectangular frame with a rectangular
hole at its center can be used to make a gripper, when two
actuators are mounted facing each other (figure 2). Kofod
et al presented an analytical model to describe the behaviour
of a DEMES shell actuator consisting of an elastomeric
membrane stretched across a flexible frame, which buckles
into a portion of a cylinder when relaxing the the minimum
energy point [16]. However, the model was not used to
optimize the actuators, nor to study the impact of the main
parameters on the behaviour of the devices.

In this contribution, we use a minimum-energy approach
to analytically calculate the equilibrium position of rectan-
gular DEMES under different conditions. The theoretical
model allows us to study the qualitative impact of the dif-
ferent design parameters on the behaviour of the structure. In
particular, given a frame with a defined size and material,
what should be the properties of the elastomeric membrane in
order to maximize the actuation stroke and the blocking force.
For example, the elastic strain energy stored in the membrane
can be increased with a higher prestretch, or a higher thick-
ness, thus meaning that there are several combinations of
prestretch and membrane thickness leading to the same
equilibrium angle. If we take two different DEMES with the
same initial rest angle when no voltage is applied, one with a
thick membrane but slightly prestretched, and one with a
thinner membrane but highly prestretched, how will they
behave when actuated? Which one exhibits the highest stroke
or the highest blocking force? This is what our study aims to
answer. We also investigate the impact of non-ideal behaviour

Figure 1. Complex shapes obtained by minimum energy structures. (a) a flexible (but not stretchable) frame is cut in a plastic sheet, and a
membrane is prestretched and fixed on a holder to retain the tension. (b) the frame is glued to the prestretched membrane. (c) After separating
the membrane from the holder, the frame + membrane assembly takes a complex 3D shape defined by the minimum energy configuration of
the two components.

2

Smart Mater. Struct. 23 (2014) 085021 S Rosset et al



of the materials, such as plastic creep in the frame, and stress
relaxation in the dielectric membrane.

2. Analytical model

The DEMES (figure 3) is modelled by a rectangular frame
with a rectangular hole at its center. The important dimen-
sions and material parameters are defined in table 1 . They are
the width of the hole w (which is also the width of the
membrane), the length of the hole c (which deforms into a
sector of a circle of angle θ), the width of the bending portion
of the frame, two stripes of b 2 each, and the thickness of the
frame d. In addition, the frame is also characterized by the
Youngʼs modulus of the material it is made of (Yf ). The

membrane has the same width w as the hole in the frame, and
a length which depends on the bending angle of the frame θ as

given by (1), with the particular case =( )l c0 .

θ
θ= ·

l
c2

sin
2

(1)

For this simplified model, the membrane is bridging the
two extremities of the bending portion of the frame, whereas
in reality, the membrane, being also fixed along the c
boundary of the frame, takes a more complex saddle shape.
However, this simplification is necessary in order to have a
simple membrane shape whose strain energy can be calcu-
lated. We expect the impact of this approximation to be
negligible for a first approach, especially at smaller angles θ
and for wide membranes ( >w c).

To calculate the bending energy Ub of the frame as a
function of angle, we assume a constant bending moment
along the frame:

θ θ=
· ·

·
= ·U

Y b d

c
k

1

2 12

1

2
, (2)b

f
b

3
2 2

with kb the bending spring constant, by analogy with a linear
spring. The stiffness of the frame can therefore be tuned by
modifying its geometry, or by changing the material it is
made of.

2.1. Membrane strain energy

Elastic energy is stored in the membrane by prestretching it
before fixing it to the frame. In order to bend the frame along
the y axis (see figure 3), pure shear prestretch is used
(figure 4). Thus, the width of the membrane is kept constant
and equal to the hole width w. The initial length of the
membrane l0 is stretched until the membrane reaches the size
of the hole in the frame ×w c( ), at which point it is fixed to
the frame. Under these conditions, and taking the membrane
incompressibility into account (λ λ λ = 1x y z ), the prestretches

in the membrane, when it is applied on the flat frame, are
given by:

λ λ λ λ
λ

= = = =c

l
, 1,

1
, (3)px p py pz

p0

where the indices p and x y z, , refer respectively to prestretch

Figure 2. Example of a two-finger gripper made with DEMES. In
this case the frame geometry simply consists of a rectangle with a
rectangular hole at the center.

Figure 3. DEMES geometrical configuration: a frame with a
rectangular hole of dimension ×c w and two bending arms, each of
them of size ×b c2 . The membrane is stretched across the hole and
has a size ×l w. The curved length of the frame is linked to the
membrane length l by the bending angle of the frame θ.

Table 1. Definition of the different variables used to describe the
geometry and mechanical properties of the frame and the membrane.

c length of the bending part of the frame

b width of the bending part of the frame (separated in two
arms of width b 2)

d thickness of the frame
Yf Young Modulus of the frame

θ bending angle of the frame
w width of the membrane
l, l0 stretched and initial length of the membrane
t, t0 stretched and initial thickness of the membrane
μ, Jm Gent model mechanical parameters for the membrane
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and the principal directions as defined in figure 3. Conse-
quently, the initial thickness of the membrane t0 is reduced
upon prestretching to λ= =t t t l cp1 0 0 0 . The advantage of

using a pure shear prestretching condition over other parti-
cular cases such as equi-biaxial or uniaxial prestretch comes
from the fact that when the frame is relaxed from its initial flat
state and bends to its equilibrium position, or is electrically
activated, its stretching condition remains in pure shear, thus
making the modelling easier. In addition, unlike equi-biaxial
prestrain, it promotes bending predominantly along the y axis,
and the parasitic bending along x caused by the non-zero
stress about the y direction can easily be suppressed by
strengthening the extremities of the frame. Uniaxial pre-
stretching along x only causes bending about the y axis, but
when the frame bends and the membrane relaxes, this gen-
erates compressive stress in the membrane in the y direction,
which leads to undesired buckling of the membrane.

The prestretching of the membrane described in figure 4
is only a schematic representation of the situation. In reality,
for the fabrication of DEMES, the membrane is not of the
exact size of the hole, but larger than the entire frame, because
the membrane must be attached to the frame and must
therefore cover it in order to provide a common surface for
adhesion. In our fabrication process [15], we use a dedicated
stretching rig that can prestretch a large membrane (larger
than the frame) in pure shear. The frame is then adhered to the
stretched membrane. The latter is then cut around the external
perimeter of the frame to release the device and allow it to
bend out of plate and take its rest position. If the frequently
used acrylic elastomer VHB from 3M is used as dielectric
membrane, then adhesion between the frame and the mem-
brane is provided by the adhesive nature of the membrane
[10, 12]. In the case of silicone membranes, an adhesive must
be applied on the frame before laying it on the prestretched
membrane. However, its impact on the frame stiffness and
bending energy (2) must be taken into account. To avoid this
issue, we have also used oxygen plasma treatment to bond

silicone membranes to both PET and metallic foils. The
adhesion strength is not as good as when using O2 plasma to
bond silicone on itself, glass or silicon, but sufficient to
sustain the prestretch and prevent delamination from the
frames.

The stretch state given by (3) is a particular case obtained
when the frame is flat. When it bends, the general stretch state
in the three directions becomes:

λ λ λ λ
λ

= = = =l

l
, 1,

1
. (4)x y z

0

Combining together equations (1) and (4) leads to:

λ θ
θ

θ=( ) c

l

2
sin

2
. (5)

0

Out of the different hyperelastic material models that can
be used to describe the stretch-stress behaviour of elastomers,
the Gent model [20] is particularly interesting, as it predicts
the divergence of the stress to an infinite value for a finite
stretch value, thus representing the maximal finite elongation
an elastomer can reach before breaking due to the finite length
of its polymer chains. Consequently, it is often used in DEA
modelling [2, 21, 22]. The strain energy density u according
to the Gent model is given by:

μ λ λ λ
=

−
−

+ + −⎛
⎝
⎜⎜

⎞
⎠
⎟⎟u

J

J2
ln 1

3
, (6)m x y z

m

2 2 2

with μ the shear modulus of the material, Jm is a material
constant describing the limiting stretch. For the particular case
of pure shear (4), the strain energy density can be rewritten as:

μ λ λ=
−

− + −−⎛
⎝⎜

⎞
⎠⎟u

J

J2
ln 1

2
. (7)m

m

2 2

The elastic strain energy Uel is obtained by multiplying the
energy density (7) with the volume of the membrane. Because
of their very high bulk modulus, the volume of elastomer

Figure 4. Prestretching the membrane in pure shear: the membrane with an initial length l0 and an initial width w is stretched to a final length
l1 which corresponds to the length of the frame hole c. The width of the membrane is kept at the initial value w.
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remains constant when deformed, and it is therefore only
necessary to calculate the volume in one particular config-
uration, for example, before the prestretching step, when the
membrane is in its reference state:

λ
μ

λ λ

= · · · = −
· ·

× − + −−⎛
⎝⎜

⎞
⎠⎟

U l w t u
c w t J

J

2

ln 1
2

. (8)

el
p

m

m

0 0
0

2 2

To take the effect of the electric-field induced Maxell
pressure on the membrane strain energy into account, we
assume that the elastomer behaves as an ideal dielectric so
that the total energy in the membrane is the sum of the elastic
energy and the electrostatic energy [2]. The electrostatic
energy Ues is defined as:

ϵ λ
λ

= − · = − · · ·
U

C V c w V

t2 2
, (9)es

p

2 2 2

0

where C is the capacitance of the device, V is the applied
voltage, and ϵ is the permittivity of the dielectric. The minus
signs comes from the fact that in constant voltage operation,
the energy is provided by the external voltage source to the
actuator.

Finally, the total energy of the system Utot is the sum of
the frame-bending energy (2), and the membrane-free energy
(8) and (9):

θ θ
λ

μ

λ λ ϵ λ
λ

=
· ·

·
−

· ·

× − + − − · · ·−⎛
⎝⎜

⎞
⎠⎟

( )U V
Y b d

c

c w t J

J

c w V

t

,
1

2 12 2

ln 1
2

2

, (10)
tot

f

p

m

m p

3
2 0

2 2 2 2

0

using (5) to express the stretch λ as a function of the bending
angle θ. The equilibrium angle is found by minimizing
equation (10), which is equivalent to solving:

θ
∂
∂

=
U

0, (11)tot

and controlling that the obtained solution corresponds to a
local minimum.

3. Application of the model

3.1. Frame and membrane

We used the analytical model presented above by calculating
the behaviour of a realistic DEMES. We chose a frame made
out of μ25 m steel with a Young modulus =Y 200 GPaf .

Steel was chosen for the numerical application because it
behaves elastically and is less subject to creep than plastic
thin foils (see section 3.3). However, it should be noted that
the exact same bending stiffness would be obtained for a

μ110 m-thick PET frame. The width of each beam b 2 was
equal to 3 mm, and the hole cut into the steel shim was

× = ×w c 20 10 mm2.

For the elastomeric membrane, and in order to obtain a
relevant set of parameters, we conducted an experimental
pull-test on a silicone membrane with Dow Corning Sylgard
186. Because the membrane of the considered structure was
in a pure shear condition, a pure shear pull test was performed
in order to obtain the two material parameters of the Gent
model (6). This was done by using a sample much wider than
its length, so as to avoid reduction of the sample width during
the test and to ensure a pure shear condition [23]. Our samples

were ×110 10 mm2, the smallest dimensions being placed in
the pulling direction. The thickness of the samples was

μ38 m. Figure 5 presents the results of the pure shear pull
test together with a fit of the Gent hyperelastic model. The
parameters of the model extracted from the curve fitting were
μ = 0.16 MPa and =J 18.3m . Two pull tests were performed
on different samples and led to the same model parameters.
The fit was performed for stretch values between 1 and 3,
which are of interest for the present study, even though it was
possible to mechanically stretch the sample to higher values.
However, at higher stretch values the Gent model starts to
diverge from the data, and the parameter values that we give
here for Sylgard 186 are therefore valid only for pure shear
stretch <3. It can be seen on figure 5 that the Gent model fits
the data very well in this stretch range.

As there are many parameters that influence the actuator
behaviour, we decided to fix the frame parameters (geometry
and material), as well as the membrane material (using the
Gent model parameters presented above for Dow Corning
Sylgard 186). The remaining degrees of freedom were
therefore related to the geometry of the membrane. When the
membrane is fixed on the frame (i.e. when θ = 0, which is
equivalent to λ λ= p), the elastic strain energy (8) can be

increased by two different means. The first method occurs by
increasing the prestretch, which the strain energy density, but
decreases the volume of the membrane. However, as the
strain density increases faster than the volume decreases, a
larger prestretch does indeed contribute to an increase of the
strain energy. The second method involves increasing the
volume of the membrane for a given prestretch-induced stress
also increases the stored elastic energy. This can be done
either by increasing the width of the membrane or by
increasing its thickness. It effectively increases the membrane
cross-section, and therefore the elastic restoring force in the
membrane. While these last two parameters have the same
effect on the calculation of the elastic energy (8), they have
different implications. For example, increasing the width
increases the overall surface of the device, which can be
undesirable depending on the application. Additionally, if w
becomes large, it then becomes more difficult to prevent the
frame from bending about the x axis. On the other hand,
increasing the thickness has no influence on the volume
occupied by the device. However, the voltage required to
drive the device increases, but this can be addressed by using
a multilayered active membrane [5]. An additional advantage
of varying the membrane thickness as opposed to its width is
the possibility of using the exact same frame to test different
configurations. Consequently, we chose the membrane
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prestretch λp and the membrane thickness t0 (which represents

the thickness of the membrane as fabricated) as the two main
design parameters whose influence on the performance of the
device we want to investigate.

As discussed in detail in the next section, increasing the
elastic energy (either by a larger prestretch or a thicker/wider
membrane) increases the initial bending angle of the device
because more energy is available in the membranes, which
can be transferred to the frame.

3.2. Initial angle and actuation range

The first important parameter characterizing the DEMES is its
rest angle or initial angle θ0, which represents how much the
frame bends when the prestretched membrane is glued to the
frame and the assembly is subsequently allowed to relax. The
initial angle is obtained by solving equation (10) in the
absence of electrostatic actuation (V = 0). The results
(figure 6) show that a certain amount of strain energy is
necessary for the frame to start bending, and for too low
thickness or prestretch, the structure remains flat. P this
threshold, an increase of strain energy (obtained either by

increasing the prestretch or the thickness) leads to a larger
initial bending angle, as expected. It can be noted that dif-
ferent pairs of prestrain and thickness values can lead to the
same equilibrium angle. Given a targeted initial angle (e.g.

°90 ), one can either select a thin, highly prestretched mem-
brane or a thick, slightly prestretched membrane, to take two
examples at the extremes. However, the behaviour when
activated differs, even though the rest angles are equal.

To evaluate the effect of actuation, we calculate the
actuation range, i.e. the difference in bending angle between
the rest position, and the position reached at the maximal
voltage. The maximal voltage is the highest voltage that can
be applied to the device without breakdown through the
dielectric membrane. We assume that the elastomeric mem-
brane of the actuator can be characterized by exhibiting a
constant dielectric breakdown field Ebd representing the
highest electric field that the material can sustain without
failure. We have measured breakdown fields around

μV100 m for thin Dow Corning Sylgard 186 membranes
with little to no prestretch, similar to the conditions presented
here [24]. In order to avoid destroying the device, we define a
maximal field Emax with a given security margin relative to the
breakdown field (typically 50 %–80 % of Ebd), representing
the maximal field that can be applied to the device at any
time. In our calculations, we choose a maximal field of

μ70 V m in order to leave a safety margin with respect to the
breakdown field. We therefore define the actuation range as
the difference in bending angle between a situation where no
field is applied across the elastomeric membrane (E = 0), and
when the maximal field is applied to the device ( =E Emax).
However, the electric field applied to the device cannot be
directly controlled by the user, and dielectric elastomer
actuators are usually driven in a voltage-controlled mode. The
electric field across the membrane is linked to the applied
voltage and the current thickness of the membrane by:

λ= = ·
E

V

t

V

t
. (12)

0

For a given applied voltage V the electric field in the mem-
brane is therefore at its maximal value when the membrane is
flat, i.e. when λ λ= p. Consequently, we define the maximal

voltage Vmax that can be applied to a device such as not to
exceed Emax in the membrane at any time by:

λ
λ

=
·( )V t

E t
, (13)max p

max

p
0

0

As a consequence, for every point of the studied parameter
space (see figure 6), each representing a different device, we
have a different value of the maximal applied voltage, ranging
from 233 V ( μ10 m, λ = 3p ) to 7000 V ( μ100 m, λ = 1p ).

Because the electrostatic pressure p on the device is propor-
tional to the square of the electric field ( ϵ= ·p E2) [1]), it
means that we consider the same electrostatic force acting at
each point in the parameter space, as they are each submitted
to the same electric field when the maximal voltage is applied.

Figure 5. Pure shear pull test on a Dow Corning Sylgard 186 sample
and fit with the Gent hyperelastic material model.

Figure 6. Initial bending angle in degrees for different membrane
thickness and prestretch values.
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The angle at the maximum voltage is calculated by sol-
ving (11) for =V Vmax and the maximum change of angle a
DEMES can provide is obtained by calculating the difference
between the activated angle and the initial angle θ0 (figure 7).
The results show the presence of a very sharp maximum
ridge: for each thickness value, there is an optimal prestretch
value λp opt, that maximizes the actuation angle. Prestretches

even slightly different from the optimal value lead to a sharp
drop in actuation performance. Furthermore, using thicker
membranes with less prestretch is expected to lead to a larger
change in angle.

For a μ40 m membrane, the optimal prestretch is
λ = 1.86p opt, . For this particular case, the bending energy of

the frame, the strain energy of the membrane, as well as the
total energy of the system, are plotted on figure 8. As seen on
the figure, the maximal actuation angle is obtained when the
actuator is designed to reach the flat position when the full
voltage is applied. If the prestretch is lower, then the flat
position is reached at a voltage smaller than Vmax and a further
increase of voltage has no effect on the actuation. Alter-
natively, if the prestretch is higher than the optimal value, the
flat position cannot be reached at Vmax and the actuation range
is drastically reduced. This is caused by geometric effects: a
small variation in the membrane length caused by the elec-
trostatic actuation leads an important change of angle when
the frame is flat. From (1), we see that θd dl is large when θ is
close to 0. In summary, for the chosen frame material and
geometry, and for the chosen elastomer with a μ40 m initial
thickness, the optimal pure shear prestretch is 1.86 for max-
imum actuation range. The equilibrium angle is computed to
be °90 at 0 V and completely flat at the maximal field of

μ70 V m, which corresponds to an applied voltage of
1505 V.

In addition to the actuation angle, another important
parameter is the force that the DEMES can generate. For a
gripper application, it is important for the actuator to be strong

enough to hold and manipulate objects. When the actuator is
at an equilibrium position θ, it acts as a spring whose voltage-
dependent spring constant can be calculated by differentiating
the energy twice with respect to the angle. This is valid for
small deformations perpendicular to the frame, around the
equilibrium position. For the particular case of figure 8, the
local spring constant is 0.15 mN/degree when no voltage is
applied and 0 mN/degrees at =V Vmax. This later value is due
to the flat energy landscape around the equilibrium position
when the maximal voltage is applied. This is systematically
observed when the actuator is designed to reach the flat
position when fully activated, making them especially

Figure 7. Maximal actuation range in degrees for different membrane thickness and prestretch values and an electric field of μ70 V m . The
actuation range is defined as the bending angle difference between the rest angle θ0 and the minimal angle θmin obtained at the maximal
voltage Vmax. The black stars represents a device with a μ40 m membrane at the optimal prestretch (for this thickness) of 1.86.

Figure 8. Bending energy of the frame, strain energy of the
membrane and total energy of the system for 0 V and maximum
voltage. The red crosses indicate the energy minima. μ=t 40 m0 ,
λ = 1.86p .
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sensitive to external perturbations, as will be discussed in
more detail later (cf section 4).

The initial bending angle, maximal actuation angle
change and spring constant at the rest position depend on the
membrane thickness and prestrain. On figure 9, the optimal
prestretch is given for a range of initial membrane thickness.
The initial bending angle in these conditions (also equal to the
actuation range, as the actuator can be unfolded up to θ = 0)
and the local spring constant in the inactivated state are also
shown. It can be seen that using a thicker membrane increases
both the tuning range and the spring constant and should
therefore be favoured. There are two factors limiting how
thick the actuator should be. The first one is the actuation
voltage (13) which increases with membrane thickness (this
can be solved by using multilayered actuators as already
mentioned). The second is that the stress within the mem-
brane is smaller in the case of thicker membranes (the strain
energy density is small, but it leads to a high strain energy
because of the large volume of the membrane), and external
perturbations could place the membrane in a compressive
state. This would induce buckling of the membrane and cause
a drastic reduction in spring constant.

3.3. Non-ideal behaviour of the frame and the elastomer
materials

Because of the flat energy landscape around the flat position
when the device is activated at Vmax, it is very sensitive to
outside perturbation or variations in the fabrication. For
example, if the prestretch is slightly off the calculated value,
the actuation range will be much smaller than predicted.
There are two main possible causes of discrepancy between
the theoretical model presented above and real devices: first,
stress relaxation in the dielectric membrane (viscoelastic
creep) and second, permanent plastic deformation of the
frame (creep).

3.3.1. Stress relaxation in the membrane. Because
elastomers are viscoelastic materials, they have a rate-
dependent stress-stretch relationship and are subject to
stress relaxation. For example, when a membrane is
prestretched and fixed on a frame, stress relaxation takes
place, which causes a time-dependent decrease of the elastic
energy stored in the stretched membrane. In a DEMES
configuration this would cause the equilibrium angle of the
structure to decrease over time. A stress relaxation
characterization of the widely used acrylic elastomer VHB
from 3M has been performed by Wissler and Mazza [25].
Because of the viscoelastic nature of VHB, the stress in the
sample still noticeably decreases after 1000 s. Michel et al
performed similar tests on VHB and a silicone elastomer
(Dow Corning 3481) and showed that due to much smaller
viscoelastic losses, the silicone elastomer reaches a stable
stress state much faster than VHB [26]. To confirm the results
for the silicone we are using in this study (Dow Corning
Sylgard 186), we have performed a stress relaxation test in the
exact same pure shear conditions that were used for the
characterization of the hyperelastic material behaviour (cf
section 3.1). The sample was stretched in pure shear up to a
stretch of λ = 2.5 and λ = 3 in 1 second, and held in this
position (figure 11). One can see that the stress within the
sample quickly reached a steady-state value, and that the
value of the peak a t = 0 is only about 6 % higher than the
steady-state value, thanks to the low-loss factor of silicones.
For DEMES applications using silicone as a dielectric
membrane, stress relaxation in the membrane is expected to
have a negligible impact on device performance.

3.3.2. Creep in the frame. One of the major causes of
discrepancy between the theoretical model presented above
and real devices is the fact that the frame is considered to be a
perfect spring. However, in reality the frame is subjected to
plastic creep when it is kept in a bent position. This is
especially true of plastic frames, which are often used for
DEMES, because they can be easily cut to the desired
geometry (see e.g. figure 1 or [10, 11, 16, 17]). We previously
used polyimide and PET frames to make DEMES [13, 14],
and noticed an increase of the initial angle of our DEMES
over a period of several weeks. As stress relaxation (cf 3.3.1)
causes a decrease of the equilibrium angle, the observed
degradation can be attributed to the frame. To confirm this,
we conducted some accelerating ageing tests on PET frames,
without bonded elastomeric membranes: frames were rolled
around a post and placed in an oven for the night at °80 . Once
detached from the post, the frames exhibited a significant
residual bending angle (figure 10), proving the existence of
creep behaviour in the material.

We include creep in the model by defining a creep angle
θc representing the angle at which the bending energy of the
frame is null. For an ideal frame not subjected to creep,
θ = 0,c which corresponds to the results shown in figures 6–9.
As an illustration, we computed the maximal actuation angle
in the case of a frame with a residual angle of °20 (figure 12).
These results are to be compared with figure 7, which

Figure 9. Optimal prestretch value, local spring constant at 0 V and
rest angle for different membrane thickness.
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corresponds to the same situation, but without creep. It can be
seen that creep drastically reduces the maximum tuning range
for the optimal prestretch at each thickness by roughly a
factor of two. We also found that the optimum ridge is much
broader than for the case without creep, meaning that the
maximum actuation angle becomes less sensitive to fabrica-
tion errors and imprecisions (membrane thickness and
prestretch). The broadening of the peak is a geometric effect;
creep prevents to work around the flat position, a zone in
which a small membrane strain leads to an important change
in the frameʼs bending angle. Furthermore, the optimal
prestretch for each thickness value is slightly reduced.
Additionally, by analogy with the ideal case, for which in
the largest tuning range is obtained when the actuator
becomes completely flat at the maximum voltage, one would
expect to see the actuation angle being maximized when the
final angle reaches θc. However, this is not the case (figure 13).
Taking the same μ40 m membrane as before (cf section 3.2),
the optimal prestretch is now 1.66. The energy landscape
predicts an initial bending angle at 0 V of °93 and a maximal

actuation range of °38 for an activated angle of °55 , thus
larger than θc. However, unlike the perfect frame situation, the
total energy at the maximum voltage is not flat around the
equilibrium point, leading to a non-zero spring constant and
an actuator much less sensitive to external perturbation in its
activated state. A comparison of the parameters obtained for
the ideal and creep cases is given in table 2 .

One of the most important impacts of creep on the
behaviour of a DEMES actuator is that its performance can
change with time. For example, a DEMES can be designed

Figure 10. PET frames rolled around a post and left for one night at
°80 (left) exhibited a significant creep when released from the post

(right).

Figure 11. Stress relaxation test for the silicone Dow Corning
Sylgard 186. The ×110 10 mm2 sample is stretched in pure shear to
two different stretch values: λ = 2.5 and λ = 3 in 1 second, and held
in this position. A relatively small stress relaxation of about 6 % is
observed, but a steady-state value is achieved after a few tens of
seconds.

Figure 12. Actuation angle (difference between bending angle at 0 V
and at Vmax) for a creep angle θ = °20c . The black star represents the
same device than on figure 7 ( μ40 m, prestretch of 1.86), which is an
optimal combination in the absence of creep. When creep is taken
into account, the chosen thickness/prestretch combination does not
correspond to the optimum anymore.

Figure 13. Energy landscape for a creep angle of θ = °20c for a
μ40 m membrane at the optimal prestretch (λ = 1.66p ). The red dots

indicate the energy minima.
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for optimal performance (i.e. on the black star on figure 7),
and therefore display a large actuation range just after
fabrication. However, because of the creep occurring in the
frame over time, the maximal actuation range landscape will
be modified, and the actuator (black star on figure 12) wonʼt
be located on the maximal performance zone anymore, and
consequently, its tuning range will be noticeably reduced.

This effect is demonstrated in figure 14 with a DEMES
made with a polyimide frame. The superimposed pictures of
the actuator both after fabrication and forty-six days later
shows the increase of the initial angle without applied
voltage. The graphs show the bending angle as a function of
the applied voltage. Just after fabrication, the actuation angle
range was °59.8 , while forty-six days later, it was reduced to

°33.9 .

4. Discussion

In the absence of creep in the frame, the largest tuning range
in DEMES is obtained if it is designed to reach the flat
position at the maximal admissible voltage, and by an ade-
quate selection of prestrain, given the membrane material,
thickness, and frame size. However, in this particular posi-
tion, the spring constant of the device is null. The importance
of this property depends on the application. For a gripper,
such as the one being developed to grab a small satellite [14],
it is important that the DEMES structures present a high
enough spring constant when the actuators are not activated
(i.e. in the closed configuration), as they must be strong
enough to prevent the captured object from escaping. When
the arms of the gripper are open, their spring constant is of
secondary importance. However, it means that the unfolded
DEMES is very sensitive to external perturbations, which can
unexpectedly modify the equilibrium position, as shown by
the very flat energy landscape around the equilibrium position
in figure 8. If this situation is undesired, then the actuator
should be designed to reach θ > 0 (i.e. not flat) for the
maximal voltage, thus ensuring a positive spring constant at
any equilibrium position, but at the cost of a reduced tuning
range. This situation is likely to occur on real devices for two
different reasons. First, as explained above (cf 3.3), creep
induced in the flexible frame shifts the the minimum of the
bending energy in the frame to θ > 0. But as creep is a
mechanism that depends on many factors (frame material,

temperature, time, etc.), it is hard to control and should be
minimized by a careful selection of the frame material. Sec-
ond, unlike the simplified situation used for this model, in
which the elastomer membranes are only present in the hole
of the frame (cf figure 4), real devices have the membrane
covering the complete frame, on which adhesive is applied to
hold the membrane in place. This creates a uni-
morph structure in the bending arms of the frame, which are
indeed a bilayer formed by the frame material and have the
prestretched membrane bonded to it. This structure has an
equilibrium position for an angle θ > 0, leading to a beha-
viour similar to what was presented in the case of creep.

DEMES can be used as soft grippers, as demonstrated by
Kofod et al [16]. In this case, both a large actuation range and
large initial equilibrium angle are desirable. However, as this
study shows, a high initial equilibrium bending angle leads to
a smaller actuation range. In addition, large initial angles pose
the practical problem of the dielectric membrane occupying
most of the useful volume of the gripper. For the satellite
gripping application mentioned in the introduction and
requiring long and narrow ‘fingers,’ we solved both issues by
segmenting the actuator. Instead of having a single hole in the
frame, several smaller holes were cut along the frame [14].
This is equivalent to mechanically placing several DEMES in
series, the total initial angle being the sum of the initial angle
of each sub-unit. With this approach, a large equilibrium
angle > °180 can be obtained, combined with a large actuation
range, and without having the membrane taking up too much
useful space.

5. Conclusions

We show that a simplified analytical model of a dielectric
elastomer minimum energy structure allows rapid prediction
of the behaviour of such actuators given the different geo-
metrical and mechanical parameters of the device, as well as
applied voltage. For a frame with defined dimensions, we
have investigated the influence of the strain energy stored in
the elastomeric membrane, which can be modulated by the
applied voltage. We show that for each membrane thickness,
there is an optimal prestretch value that allows one to max-
imize the tuning range of the device, and that the use of
thicker membranes with lower prestretch leads to a larger
tuning range, especially in the case of non-perfect frames
whose rest position is not flat.

In order to obtain a set of equations easy to implement
and solve, a number of simplifications have been made in the
modelling. In addition, practical applications of a DEMES-
based actuator will probably take advantage of the complex
3D shapes that can be obtained with this concept, and use a
geometry more complex than a simple rectangle (see, for
instance, the gripper developed by Kofod et al [16]).
Although the present model cannot be directly applied to such
complex geometries, whose modelling requires the use of
FEM, the general qualitative trends reported in the manuscript
also apply, and show that the parameters of the elastomeric

Table 2. Comparison of different parameters for a μm40 membrane
at optimal prestretch for the case of no creep in the frame and °20
creep in the frame

no creep θ = °20c

Optimal λp 1.86 1.66

Initial angle (°) 90 93
Final angle (°) 0 55
Actuation range (°) 90 38
Spring cst. 0 V 0.15 0.2
Spring cst. Vmax 0 0.14
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membrane stretched on a frame (thickness and prestretch)
must be carefully chosen in order to reach the desired
actuation range and spring constant. This study thus provides
a design guide for DEMES allowing the optimization of such
structures for a given task.
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