
On Numerical Error Propagation with Sensitivity

Eva Darulova Viktor Kuncak
EPFL

first.last@epfl.ch

Abstract
An emerging area of research is to automatically compute reasonably
accurate upper bounds on numerical errors, including roundoffs due
to the use of a finite-precision representation for real numbers such
as floating point or fixed-point arithmetic. Previous approaches for
this task are limited in their accuracy and scalability, especially in
the presence of nonlinear arithmetic. Our main idea is to decouple
the computation of newly introduced roundoff errors from the
amplification of existing errors. To characterize the amplification of
existing errors, we use the derivatives of functions corresponding to
program fragments. We implemented this technique in an analysis
for programs containing nonlinear computation, conditionals, and
a certain class of loops. We evaluate our system on a number of
benchmarks from embedded systems and scientific computation,
showing substantial improvements in accuracy and scalability over
the state of the art.

1. Introduction
Numerical software, common in scientific computing and embedded
systems, inevitably uses floating points or other approximations of
the real arithmetic in which its algorithms are typically designed.
Many problem domains come with additional sources of impreci-
sion, such as measurement and truncation errors, increasing the
uncertainty on the computed results. We need adequate tools to
help developers understand whether the computed values meet the
accuracy requirements and remain meaningful in the presence of
the errors. This is particularly important for safety-critical systems.

Precise and sound error estimation is hard particularly in the
presence of nonlinear arithmetic. Roundoff errors and error propaga-
tion depend on the ranges of variables in complex and non-obvious
ways; even determining these ranges precisely for nonlinear code
poses a challenge. Furthermore, due to numerical errors, the control
flow in the finite-precision implementation may diverge from the
ideal real-valued one, taking a different branch and producing a
result that is far off the expected one. Quantifying discontinuity
errors is hard due to many correlations and nonlinearity but also
due to lack of smoothness or continuity of the underlying functions
that arise in practice [7]. In loops, roundoff errors grow, in general,
unboundedly. Even if an iteration bound is known, loop unrolling
approaches scale poorly when applied to nonlinear code.

Existing state-of-the-art sound and automated error estima-
tion techniques rely on stepwise application of affine arithmetic
(AA) [11]. Fluctuat [17] uses abstract interpretation whose domain
leverages affine arithmetic both for the range of variables and for
the error computation. Fluctual has successfully applied this tech-
niques to code containing linear arithmetic. On the other hand, AA
inevitably introduces over-approximations when applied to nonlin-
ear functions. Fluctuat deals with this by adding constraints on the
noise terms of AA to improve the ranges computed by AA [16]. Our
previously developed tool Rosa [10] improves ranges with an SMT-
backed procedure, but uses for the error computation essentially the

same technique as Fluctuat. Affine arithmetic tracks a computation
step by step, linearizing each time, and thus fails to capture the
overall effect of a nonlinear function on uncertainties. As a result,
we found the accuracy of the computed error bounds for both tools
unsatisfactory. Both Fluctuat and Rosa also include a procedure to
soundly estimate discontinuity errors, but, again, the approaches
work well only for linear or simple functions, severely limiting the
analysis of numerical code containing branches.

1.1 Examples
We illustrate these challenges and give a high-level overview of
our solutions on several examples. The new techniques we propose
build on Rosa [10] and also use its functional specification language,
written in a subset of Scala. We denote the new tool presented in
this paper by Rosa*.

1.1.1 Propagation of Errors in Nonlinear Codes
Figure 1 shows the code of a jet engine controller benchmark [1].
The initial errors of 1e-11 model possible noise on the sensors.
This example is challenging to analyze because of the complexity
of the function, and in particular because of the large number of
correlations between the two input variables [10]. Fluctuat and
Rosa compute an error bound of 4.67e-4 and 1.40e-4 respectively.
Through simulation, we have determined an approximate lower
bound on the error of 3.64e-8, suggesting a large over-approximation
by current techniques. We propose a new error computation based
on separating the propagation of initial errors from the roundoff
committed during the computation. This separation allows us to
distinguish the implementation aspects from the mathematical
properties of the underlying function and handle them individually
with appropriate techniques. In particular, instead of using affine
arithmetic as previously to propagate existing errors, we use the
(partial) derivative of the underlying real-valued function to compute
how the initial errors are magnified. We apply this new error
propagation to the computation of the temporary variable t and
the final expression, considering the entire arithmetic expression
each time. This allows us to compute an approximation of the global
effect of the function on the input errors. This is in contrast to the
local linear approximations that affine arithmetic performs at each

def jetEngineRefactored(x: Real, y: Real): Real = {
require(-5<=x && x<=5 && -20<=y && y<=5 &&

x +/- 1e-11 && y +/- 1e-11)
val t = (3*x*x + 2*y - x)
x + ((2*x*(t/(x*x + 1))*(t/(x*x + 1) - 3) +
x*x*(4*(t/(x*x + 1))-6))*(x*x + 1) +

3*x*x*(t/(x*x + 1))+x*x*x+x+3*((3*x*x + 2*y -x)/(x*x + 1)))
}

Figure 1: Jet engine benchmark

1 2015/5/7

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/148005551?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

def sine(x: Real): Real = {
require(-5 <= x && x <= 5)
x - x*x*x/6 + x*x*x*x*x/120

}

def pendulum(t:Real, w:Real, n:LoopCounter):(Real,Real)={
require(-2 <= t && t <= 2 && -5 <= w && w <= 5 &&
-2.01 <= ~t && ~t <= 2.01 && -5.01 <= ~w && ~w <= 5.01)

if (n < 100) {
val h:Real=0.01
val L:Real=2.0
val m:Real=1.5
val g:Real=9.80665
val k1t = w
val k1w = -g/L * sine(t)
val k2t = w + h/2*k1w
val k2w = -g/L * sine(t + h/2*k1t)
val tNew = t + h*k2t; val wNew = w + h*k2w
pendulum(tNew, wNew, n + 1)

} else { (t, w) }
}

Figure 2: Simulation of a pendulum

arithmetic operation. Additionally, our procedure is backed by a
nonlinear SMT-solver to compute a guaranteed upper bound on the
derivative for all possible inputs, yielding a fully automated sound
approach, which can still capture nonlinear correlations accurately.
Using this technique, Rosa* computes an upper bound on the error
of 3.36e-7 which is orders of magnitude more accurate. The analysis
takes a similar time as in existing tools.
Application to Loops with Constant Ranges. In general, numerical
errors in loops grow unboundedly and the state-of-the-art to compute
sound error bounds in complex code is by unrolling. It turns out,
however, that our separation of errors allows us to express the error
as a function of the number of loop iterations. We have identified a
class of loops which allows us to derive a closed-form expression on
the loop error bounds. This expression, on one hand, constitutes an
inductive invariant, and, on the other hand, can be used to compute
concrete error bounds. While this approach is limited to loops
where the variable ranges are bounded, our experiments show that
this approach can already analyze interesting loops that are out
of reach for current tools. Figure 2 shows such an example: a
Runge Kutta order 2 simulation of a pendulum. t and w are the
angle the pendulum forms with the vertical and the angular velocity
respectively. We approximate the sine function with its order 5
Taylor series polynomial. We focus on roundoff errors between the
system following the real-valued dynamics and the system following
the same dynamics but implemented in finite precision (we do not
attempt to capture truncation errors due to the numerical integration,
nor due to Taylor approximation of sine). After 100 iterations, Rosa*
determines that the error on the result is at most 8.82e-14. Fluctuat
uses unrolling and, for 100 iterations, computes an error bound of
[−∞,∞], while Rosa times out.

1.1.2 Discontinuities
Embedded systems often use piece-wise approximations of more
complex functions. In Figure 3 we show a possible piece-wise
polynomial approximation of the jet engine controller from Figure 1.
We obtained this approximation by fitting a polynomial to a sample
of values of the original function. The resulting function is not
continuous. A precise constraint encoding the difference between the
real-valued and finite-precision computation, if they take different
paths, features variables that are tightly correlated. This makes it
hard for SMT-solvers to cope with and makes linear approaches

def jetApproxGoodFitErr(x: Real, y: Real): Real = {
require(-5<=x && x<=5 && -5<=y && y<=5 &&

x +/- 0.001 && y +/- 0.001)
if (y < x)
-0.317581 + 0.0563331*x + 0.0966019*x*x + 0.0132828*y +
0.0372319*x*y + 0.00204579*y*y

else
-0.330458 + 0.0478931*x + 0.154893*x*x + 0.0185116*y -
0.0153842*x*y - 0.00204579*y*y

}

Figure 3: Piece-wise approximation of the jet engine controller

imprecise. We explore the separation of errors idea in this scenario
as well, to soundly estimate errors due to conditional branches. We
separate the real-valued difference from finite-precision artifacts.
The individual error components are easier to handle individually,
yet preserve enough accuracy. We show in our experimental results
that this trade-off between accuracy and scalability can significantly
outperform current techniques.

In our example, the real-valued difference between the two
branches is bounded by 0.0428 (making it arguably a reasonable
approximation given the large possible range of the result). However,
this is not a sound estimate for the discontinuity error in the presence
of roundoff and initial errors (in our example 0.001). With Rosa*, we
can confirm that the discontinuity error is bounded by 0.0450, with
all errors taken into account, whereas Fluctuat and Rosa compute
two orders of magnitude larger errors of 5.19 and 3.77, respectively.

1.2 Summary of Contributions
The focus of this paper is a sound and automated technique for nu-
merical error estimation in nonlinear finite-precision computations
with control flow.

• We propose an approach for automatic error estimation based
on the idea of separation of errors into propagation errors
and roundoff errors. We show how this general idea applies
to three challenging dimensions of numerical error estimation:
nonlinearity, loops and discontinuities.
• We develop an approach for computing propagation errors

using derivatives to characterize the global sensitivity of a
function to input changes and apply this approach to non-linear
computation.
• We apply the idea of separation of errors to programs with

branches to develop a new way of soundly estimating the
discontinuity errors arising when the real-valued ideal and the
finite-precision computation diverge.
• For loops whose variable ranges are bounded, we derive a

technique for computing error bounds as a function of the
number of iterations.
• We have implemented our techniques and report substantially

improved results compared to existing tools on a number of
benchmarks from the scientific computing and embedded sys-
tems domain. The source code of our tool and the benchmarks
are publicly available at

https://github.com/malyzajko/rosa
Our techniques remain applicable to any floating-point arith-
metic whose basic arithmetic operations are rounded according
to the IEEE754 standard [32] (rounding to nearest). Furthermore,
we also support fixed-point arithmetic with truncation to any
bitlength.

2 2015/5/7

https://github.com/malyzajko/rosa

1.3 Problem Definition and Notation
We consider nonlinear computations in functions given by straight-
line code, conditionals, and simple loops. An input program is given
by the following grammar.

P ::= def mName(args): res = {
require(A1 ∧ . . . ∧ An)
(L | D | B) }

A ::= C | x +/- const | S
S ::= S ∧ S | S ∨ S | ¬ S | C
L ::= if (n < const) mName(B, n + 1) else args
D ::= if (C) D else D | B
B ::= val x = F; B | F

F ::= F + F | F - F | F * F | F / F |
√
F | X

C ::= F ≤ F | F < F | F ≥ F | F > F
X ::= x | const

args denotes possibly multiple arguments and res can be a tuple.
The specification language is functional, so we represent loops as
recursive functions (denoted L), where n denotes the loop iteration
count. For loop-free code D, note that more complex conditions on
branches can be expressed with nesting.

Let us denote by P the real-valued function representing our
program and by x its input. Denote by P̃ the corresponding finite-
precision implementation of the program, which has the same syntax
tree but with operations interpreted in finite-precision arithmetic.
Let x̃ denote the input to this finite-precision program. The goal in
this paper is to estimate the difference:

max
x,x̃

|P (x)− P̃ (x̃)| (1)

The domains of x and x̃, over which this expression is to be
evaluated, are given by the user-provided precondition in the require

clause. It defines range bounds xi ∈ [ai, bi], x̃i ∈ [ci, di] for each
component of the possibly multivariate input, as well as absolute
error bounds on the inputs of the form xi +/- λi that define the
relationship |x− x̃| ≤ λ, understood component-wise. If no errors
are given explicitly, we assume roundoff as the initial error. We give
more details about the semantics of programs and specifications in
the appendix; see also [10].

Corresponding to the syntactic program is a real-valued math-
ematical expression which is the input to our core error compu-
tation procedure. Concretely, the input consists of one or sev-
eral real-valued functions f : Rm → Rn over some inputs
xi ∈ R, representing the arithmetic expressions F. We denote by
f and x the exact ideal real-valued function and variables and by
f̃ : Rm → Rn, x̃i ∈ R their actual finite-precision counter-parts.
Note that for our analysis all variables are real-valued; the finite-
precision variable x̃ is considered as a noisy versions of x. We
perform the error computation with respect to some fixed target pre-
cision in floating-point or fixed-point arithmetic; this choice gives
error bounds for each individual arithmetic operation.

When P consists of a nonlinear arithmetic expression alone
(F), then Equation 1 reduces to bounding the absolute error on the re-
sult of evaluating f(x) in finite precision arithmetic: maxx,x̃|f(x)−
f̃(x̃)|. When the body of P is a loop (L), then the constraint reduces
to computing the overall error after k-fold iteration fk of f , where
f corresponds to the loop body. We define for any function H:
H0(x) = x, Hk+1(x) = H(Hk(x)). We are then interested in
bounding:

max
x,x̃
|fk(x)− f̃k(x̃)|

. For code containing branches (grammar rule D), Equation 1 ac-
counts also for the discontinuity error. For example, if we let f1 and
f2 be the real-valued functions corresponding to the if and the else

branch respectively with the if condition c, then, if c(x) ∧ ¬c(x̃),
the discontinuity error is given by |f1(x)− f̃2(x̃)|, i.e., it accounts

for the case where the real computation takes the if-branch, and the
finite-precision one takes the else branch. The overall error on P
from Equation 1 in this case must account for the maximum of dis-
continuity errors between all pairs of paths, as well as propagation
and roundoff errors for each path.

2. Propagation of Errors in Nonlinear Arithmetic
The first challenge we address is the error estimation for a loop-free
nonlinear function without branches: |f(x)−f̃(x̃)| where |x−x̃| ≤
λ, f : Rm → Rn and where the ranges for x and x̃ are given by the
precondition.

2.1 Separation of Errors
Approaches based on interval or affine arithmetic treat all errors
equally: the initial errors are propagated in the same way as roundoff
errors which are committed during the computation. We propose to
separate these errors as follows:

|f(x)− f̃(x̃)| = |f(x)− f(x̃) + f(x̃)− f̃(x̃)|
≤ |f(x)− f(x̃)|+ |f(x̃)− f̃(x̃)|

(2)

The first term, |f(x) − f(x̃)|, captures the error on the result of
f caused by the initial error between x and x̃. The second term,
|f(x̃)− f̃(x̃)|, covers the roundoff error committed when evaluating
f in finite precision, but note that we can now compute this roundoff
error on the same input x̃. Thus, we separate the overall error into the
propagation of existing errors, and the newly committed roundoff
errors. We denote by σf : Rm → Rn the function which returns the
roundoff error committed when evaluating an expression f in finite-
precision arithmetic: σf (x̃) = |f(x̃)− f̃(x̃)|. We omit the subscript
f , when it is clear from the context. Further, g : Rm → Rn denotes
a function which bounds the difference in f , given a difference in its
inputs: |f(x)− f(y)| ≤ g(|x− y|). When m,n > 1, the absolute
values are component-wise, e.g. g(|x1 − y1|, . . . , |xm − ym|), but
when it is clear from the context, we will write g(|x− y|) for clarity.
Thus, the overall numerical error is given by:

|f(x)− f̃(x̃)| ≤ g(|x− x̃|) + σ(x̃) (3)

One alternative to Equation 2 would be to bound the error by
|f(x)− f̃(x)| +|f̃(x)− f̃(x̃)|. The first term now corresponds to
roundoff errors, but the second requires bounding the difference of
f̃ over a certain input interval. In the separation that we have chosen,
we need to compute the difference over the real-valued f . Note that
f is a simpler function than its finite-precision counterpart, and its
analysis is reusable across different concrete implementations.

2.2 Computing New Roundoff Errors
For computing the newly committed roundoff errors (the function
σ), we use our existing procedure from Rosa [10], which is based on
affine arithmetic (AA). We briefly review it here for completeness.
Rosa represents roundoff errors as an affine form x̂ = x◦ +∑k
i=1 xiεi, εi ∈ [−1, 1], where each xi represents the magnitude

of a deviation from the central value x◦. For each arithmetic
operation, Rosa adds a new linear form xk+1εk+1 with xk+1 the
magnitude of the roundoff error committed at that operation and
εk+1 is a formal variable. Existing errors are propagated with
the standard rules of affine arithmetic [10, 11]. The total error
represented by an affine form is the maximum absolute value of
the interval [x◦ − rad(x̂), x◦ + rad(x̂)], rad(x̂) =

∑
i |xi|.Note

that we use AA only for estimating the newly committed roundoff
errors (σ). Since these errors are local, we found AA suitable for
this purpose. In contrast, the propagation of existing errors (function
g above) depends highly on the steepness of the function, so we
want to capture as much global information, such as correlations,

3 2015/5/7

as possible. This is only feasible when looking at the function as a
whole, and we describe it in the sequel.

2.3 Computing Propagation Coefficients
We instantiate Equation 3 with g(x) = K · x, i.e. |f(x)− f(y)| ≤
K|x−y|which bounds the deviation on the result due to a difference
in the input by a linear function in the input errors. The constant
K (or vector of constants Ki in the case of a multivariate function)
is to be determined for each function f individually, and is usually
called the Lipschitz constant. We will also use the, in this context,
more descriptive name propagation coefficient. Note that we need
to compute the propagation coefficient K for the mathematical
function f and not its finite-precision counterpart f̃ .

Error amplification or diminution depends on the derivative of
the function at the value of the inputs. The steeper the function,
i.e. the larger the derivative, the more the errors are magnified. For
f : Rm → R we have

|f(x)− f(x̃)| ≤
m∑
i=1

Kiλi, where Ki = sup
x,x̃

∣∣∣∣ ∂f∂wi
∣∣∣∣ (4)

where λi are the initial errors andwi denote the formal parameters of
f . This computation naturally extends component-wise to multiple
outputs. Thus, the propagation coefficients are computed as a sound
bound on the Jacobian.
Derivation We formally derive the computation of the propagation
coefficients Ki for a multivariate function f : Rm → R in the
following. Let h : [0, 1]→ R such that h(θ) := f(y + θ(z − y)).
Without loss of generality, assume y < z. Then h(0) = f(y) and
h(1) = f(z) and d

dθ
h(θ) = ∇f(y+θ(z−y))·(z−y). By the mean

value theorem: f(z) − f(y) = h(1) − h(0) = h′(ζ), where ζ ∈
[0, 1].

|f(z)− f(y)| = |h′(ζ)| = |∇f(y + ζ(z − y)) · (z − y)|

=

∣∣∣∣(∂f

∂w1

∣∣∣∣
s

, . . . ,
∂f

∂wn

∣∣∣∣
s

)
· (z − y)

∣∣∣∣ , s = y + ζ(z − y)

=

∣∣∣∣ ∂f∂w1
· (z1 − y1) + · · ·+

∂f

∂wm
· (zm − ym)

∣∣∣∣
≤

m∑
i=1

∣∣∣∣ ∂f∂wi
∣∣∣∣ · |zi − yi| (**)

where the partial derivatives are evaluated at s = y + ζ(z − y)
(which we omit for readability). The value of s in (**) is constraint
to be in s ∈ [y, z], so for a sound analysis we have to determine the
maximum absolute value of the partial derivative over [y, z]. y and
z in our application range over the values of x and x̃ respectively, so
we compute the maximum absolute value of ∂f

∂xi
over all possible

values of x and x̃. With |yi − zi| ≤ λi we obtain

|f(x)− f(x̃)| ≤
m∑
i=1

Kiλi, where Ki = sup
x,x̃

∣∣∣∣ ∂f∂wi
∣∣∣∣

Bounding Partial Derivatives We compute the partial derivatives
symbolically. Recall that the arithmetic operations permitted are
{+,−, ∗, /,√}, which leaves the possibility of discontinuities and
undefined expressions. We detect these automatically during the
bound computation, so we do not need to make or check any
assumptions on the derivatives up-front.

We need to soundly bound the partial derivatives over all possible
values of x and x̃. Both interval and affine arithmetic suffer from
possibly large over-approximations due to nonlinearity and loss of
correlations. Furthermore, they cannot take additional constraints
into account, for example from branch conditions (e.g. y < x) or user

defined constraints on the inputs. We use the range computation from
Rosa [10] to bound the ranges of the derivatives. This procedure pre-
computes a range by interval arithmetic and then uses the Z3 SMT
solver [12] to narrow down this initial estimate of the range. Using
a nonlinear solver allows us to take into account correlations and
additional constraints, making the ranges computed much tighter.
Note that this computation is over R, and is implemented with
rationals to ensure soundness.
Sensitivity to Input Errors Beyond providing a way to compute the
propagated initial errors, Equation 4 also makes explicit an upper
bound on the sensitivity of the function to input errors. The user can
use this knowledge, for example, to determine which inputs need to
be determined more precisely, e.g. by more precise measurements
or by using a larger number of iterations of a numerical algorithm
to find them. We report the values of K back to the user.

2.4 Relationship with Affine Arithmetic
Both our presented propagation procedure and propagation using
affine arithmetic perform approximations. The question arises then,
when is it preferable to use one over the other? Our experience and
experiments show empirically that for longer nonlinear computa-
tions, error propagation based on Lipschitz continuity gives better
results, whereas for shorter and linear computations this is not the
case. In this section, we present an analysis of this phenomenon
based on an example.

Suppose we want to compute x ∗ y − x2. For this discussion
we consider propagation only and disregard roundoff errors. We
consider the case where x and y have an initial error of δxε1 and
δyε2 respectively, where εi ∈ [−1, 1] are the formal noise symbols
of AA. Without loss of generality, we assume δx, δy ≥ 0. We first
derive the expression for the error with affine arithmetic and take
the definition of multiplication from [10]. We denote by [x] the
evaluation of the real-valued range of the variable x.

The total range of x is then the real-valued range plus the error:
[x] + δxε1, where ε1 ∈ [−1, 1]. Multiplying out, and removing the
[x][y]−[x]2 term (since it is no error term), we obtain the expression
for the error of x ∗ y − x2:

([y]δxε1 + [x]δyε2 + δxδyε3)− (2[x]δxε1 + δxδxε4)

= ([y]− 2[x])δxε1 + [x]δyε2 + δxδyε3 + δxδxε4
(5)

ε3 and ε4 are fresh noise symbols introduced by the nonlinear
approximation. Now we compute the propagation coefficients:

∂f

∂x
= y − 2x

∂f

∂y
= x

so that the error is given by∣∣∣[y + δyε2 − 2(x+ δxε1)]
∣∣∣δx + ∣∣∣[x+ δxε1]

∣∣∣δy (6)

We obtain this expression by instantiating Equation (**) with the
range expressions of x and y. Note that the ranges used in the
evaluation of the partial derivatives include the errors. Multiplying
out Equation 6 we obtain:∣∣∣[y − 2x]

∣∣∣δx + ∣∣∣[x]∣∣∣δx + δxδy + δxδx + δxδx (7)

With affine arithmetic we compute ranges for propagation at each
computation step, i.e. in Equation 5 we compute [x] and [y] sepa-
rately. In contrast, with our new technique, the range is computed
once, taking all correlations into account between the variables
x and y. It is these correlations that improve the computed error
bounds. For instance, if we choose x ∈ [1, 5] and y ∈ [−1, 2] and
we know that x < y, then by a step-wise computation we obtain
[y] − 2[x] = [−1, 2] − 2[1, 5] = [−11, 0] whereas taking the cor-
relations into account, we can narrow down the range of x to [1, 2]

4 2015/5/7

and obtain [y− 2x] = [−1, 2]− 2[1, 2] = [−5, 0]. Hence, since we
compute the maximum absolute value of these ranges for the error
computation, AA will use the factor 11, whereas our approach will
use 5.

On the other hand, comparing Equation 7 with Equation 5, we
see that one term δxδx is included twice with our approach, whereas
in the affine propagation it is only included once. We conclude
that a Lipschitz-based error propagation is most useful for longer
computations where it can leverage correlations. In other cases,
we keep the existing affine arithmetic-based technique. It does not
require a two-step computation, so we want to use it for smaller
expressions. We remark that for linear operations the two approaches
are equivalent.

2.5 Higher Order Taylor Approximation
In subsection 2.3 we presented one possible instantiation of the
error propagation function g. The resulting propagation function is a
function in the input errors. The errors do, however, also depend on
the ranges of the inputs. This fact is only implicitly reflected in the
computed coefficients via the ranges used for bounding the partial
derivatives.

We can in fact make this relationship more explicit. Recall
Taylor’s Theorem in several variables:

Taylor’s Theorem Suppose f : Rn → R is of class Ck+1 on an
open convex set S. If a ∈ S and a+ h ∈ S, then

f(a+ h) =
∑
|α|≤k

∂αf(a)

α!
hα +Rα,k(h)

where the remainder in Lagrange’s form is given by:

Rα,k(h) =
∑

|α|=k+1

∂αf(a+ ch)

α!
hα

for some c ∈ (0, 1). �
Using Taylor’s theorem in several variables, we compute the Taylor
expansion of f(x̃) to first order in our setting:

f(x̃) = f(x) +

n∑
j=1

∂jf(x)hj +
1

2

n∑
j,k=1

∂j∂kf(w)hjhk

|f(x̃)− f(x)| ≤

∣∣∣∣∣
n∑
j=1

∂jf(x)hj

∣∣∣∣∣+ 1

2

∣∣∣∣∣∣
n∑

j,k=1

Hjk(w)hjhk

∣∣∣∣∣∣
where w is in the interval containing x and x̃, and H is the Hessian
matrix of f . If we consider the expansion for k = 1, we obtain an
expression for computing the upper bound on the propagated error
which is also a function of the input values.

We observe that the second order taylor remainder is, in general,
small, due to the fact that we take the square of the initial errors,
which we assume to be small in our applications. We can bound
the remainder with the same technique we use to compute the
propagation coefficients. Then, together with the partial derivatives
of f , we obtain error specifications which can be used for a more
precise modular verification process.

Application to Interprocedural Analysis Having more precise
specifications enables us to re-use methods across different call-sites,
with possibly different constraints on the arguments. We present an
example in section 5 which demonstrates the effectiveness of this
summarization technique. We are not aware of other work that is
capable of computing such summaries for numerical errors. [19]
presents an approach to compute method summaries based on affine
arithmetic evaluation and instantiation. These summaries, however,
capture the real-valued ranges only and not the numerical errors.

3. Loops with Bounded Ranges
We have identified a class of loops for which the propagation of
errors idea allows us to express the numerical errors as a function
of the number of iterations. Concretely, we assume a single non-
nested loop without conditional branches for which the ranges of
variables are bounded and fixed statically. We do not attempt to
prove that ranges are preserved across loop iteration; we leave the
discovery of suitable inductive invariants that implies ranges for
future work. Our approach does not include all loops, but it does
cover a number of interesting patterns, including simulations of
initial value problems in physics. We note that the alternative for
analyzing numerical errors in general nonlinear loops is unrolling,
which, as our experiments show, does not scale well.

Representing the computation of the loop body by f , we
want to compute the overall error after k-fold iteration fk

of f : |fk(x) − f̃k(x̃)|. f, g and σ are now vector-valued:
f, g, σ : Rn → Rn, because we are nesting the potentially
multivariate function f . In essence, we want to compute the effect
of iterating Equation 3.

Theorem: Let g be such that |f(x) − f(y)| ≤ g(|x − y|), it
satisfies g(x+ y) ≤ g(x) + g(y) and is monotonic. Further, σ and
λ satisfy σ(x̃) = |f(x̃) − f̃(x̃)| and |x − x̃| ≤ λ. The absolute
value is taken component-wise. Then the numerical error after m
iterations is given by

|fk(x)− f̃k(x̃)| ≤ gk(|x− x̃|) +
k−1∑
i=0

gi(σ(f̃k−i−1(x̃))) (8)

Thus, the overall error after k iterations can be decomposed into the
initial error propagated through k iterations, and the roundoff error
from the ith iteration propagated through the remaining iterations.

Proof: We show this by induction. The base case m = 1 has
already been covered in subsection 2.1. By adding and subtracting
f(f̃m−1(x̃))1 we get |f

m(x)1 − f̃m(x̃)1|
...

|fm(x)n − f̃m(x̃)n|



≤

 |f
m(x)1 − f(f̃m−1(x̃))1|

...
|fm(x)n − f(f̃m−1(x̃))n|

+

 |f(f̃
m−1(x̃))1 − f̃m(x̃)1|

...
|f(f̃m−1(x̃))n − f̃m(x̃)n|


Applying the definitions of g and σ

≤ g

 |f
m−1(x)1 − f̃m−1(x̃)1|

...
|fm−1(x)n − f̃m−1(x̃)n|

+ σ(f̃m−1(x̃))

then using the induction hypothesis and monotonicity of g,

≤ g

(
gm−1(~λ) +

m−2∑
i=0

gi(σ(f̃m−i−1(x̃)))

)
+ σ(f̃m−1(x̃))

then using g(x+ y) ≤ g(x) + g(y), we finally have

≤ gm(~λ) +

m−1∑
i=1

gi(σ(f̃m−i−1(x̃))) + σ(f̃m−1(x̃))

= gm(~λ) +

m−1∑
i=0

gi(σ(f̃m−i−1(x̃))) �

5 2015/5/7

3.1 Closed Form Expression
We instantiate the propagation function g as before using propaga-
tion coefficients. Evaluating Equation 8 as given, with a fresh set
of propagation coefficients for each iteration i amounts to loop un-
rolling, but with a loss of correlation between each loop iteration. We
observe that when the ranges are bounded (as by our assumption),
then we can compute K as a matrix of propagation coefficients, and
similarly obtain σ(f̃ i) = σ as a vector of constants, both valid for
all iterations. Then we obtain a closed-form for the expression of
the error:

|fk(x)− f̃k(x̃)| ≤ Kkλ+

k−1∑
i=1

Kiσ + σ = Kkλ+

k−1∑
i=0

Kiσ

where λ is the vector of initial errors. If (I −K)k exists,
|fk(x)− f̃k(x̃)| ≤ Kkλ+ ((I −K)−1(I −Kk))σ

We obtain Kk with power-by-squaring and compute the inverse
with the Gauss-Jordan method with rational coefficients to obtain
sound results (though a closed-form is not strictly necessary for our
purpose because we do know the number of iterations k).

Computing K and σ When the ranges of the variables of the loop
are inductive, that is, both the real-valued and the finite-precision
values remain within the initial ranges, then these are clearly the
ranges for the computation of K and roundoffs σ. For loops, we
require the user to specify both the real-valued ranges of variables
(e.g. a <= x && x <= b) as well as the actual finite-precision ones
(c <= ~x && ~x <= d, as in Example 2). We also require that the
actual ranges always include the real ones ([a, b] ⊆ [c, d]), and
we use the actual ranges ([c, d]) for the computation of K and σ.
We believe that it is reasonable to assume that a user writing these
applications to have the domain knowledge to be able to provide
these specifications.

4. Errors due to Discontinuities
Recall the piece-wise jet engine approximation from Figure 3. Due
to the initial errors on x and y, the real-valued computation may take
a different branch than the finite-precision one, and thus produce a
different result. We call this difference the discontinuity error.

Previous approaches construct a constraint encoding the dif-
ference between the real value computed by one branch and the
finite-precision value computed by the other. The other direction
is handled symmetrically. Existing approaches differ in how they
handle the constraints introduced by the branch condition. Fluctuat
constrains the affine forms of the real and floating- point compu-
tation in its abstract domain based on a logical product with the
interval domain [18]. Rosa essentially constructs one constraint
that encodes the computation along both paths and the correlation
between the variables of these two paths. The resulting difference
is refined with the Z3 SMT solver. Fluctuat’s approach becomes
quickly imprecise when the functions are not linear due to the under-
lying domain. Rosa’s approach produces very precise but complex
constraints which work nicely for simple functions, but are hard
to handle beyond these. In this section, we show how to apply the
separation of errors idea and overcome the limitations of these tech-
niques.

Individual branch conditions are of the form e1◦e2, where
◦ ∈ {<,≤, >,≥} and e1, e2 are arithmetic expressions. More
complex conditions can be obtained by nesting conditionals. We do
not assume the function represented by the conditional to be neither
smooth nor continuous. We perform our analysis pairwise for each
pair of paths in the program. While this gives, in the worst-case,
an exponential number of cases to consider, we found that many

of these paths are infeasible due to inconsistent branch conditions;
such infeasible paths are eliminated early.

4.1 Applying Separation of Errors
Using our previous notation, let us consider a function with a
single branch statement like in the example above and let f1 and
f2 be the real-valued functions corresponding to the if and the
else branch respectively. Then, the discontinuity error is given by
|f1(x)− f̃2(x̃)|, i.e. the real computation takes branch f1, and the
finite-precision one f2. The opposite case is analogous. We again
apply the idea of separation of errors:
|f1(x)−f̃2(x̃)|

≤ |f1(x)− f1(x̃)|+ |f1(x̃)− f2(x̃)|+ |f2(x̃)− f̃2(x̃)|
(9)

The individual components are
1. |f1(x) − f1(x̃)|: the difference in f1 due to initial errors. We

can compute this difference with our propagation coefficients:
|f1(x)− f1(x̃)| ≤ K|x− x̃|.

2. |f1(x̃)− f2(x̃)|: the real-valued difference between f1 and f2.
We can bound this value by the Z3-aided range computation
from [10].

3. |f2(x̃)− f̃2(x̃)|: the roundoff error when evaluating f2 in finite-
precision arithmetic. We use the procedure from [10] as before.

We expect the individual parts to be easier to handle for the
underlying SMT-solver, since we reduce the number of variables
and correlations. Fluctuat and Rosa compute the discontinuity
error as one difference between the computations on the two
paths of a branch. In contrast, in the presented work we split the
error and compute its parts separately, obtaining a more scalable
procedure. On the other hand, we clearly introduce an additional
over-approximation, but we observe in our experiments that this is
in general small, even for benchmarks where the precise approach
of Rosa performs well. For more complex benchmarks our tool
outperforms the more precise approach.

A split of the total error into two parts is also possible, e.g. as
|f1(x)− f̃2(x̃)| ≤ |f1(x)− f2(x̃)|+ |f2(x̃)− f̃2(x̃)|, which per-
forms one computation less. This split, combined with a precise
constraint relating x to x̃ is essentially what Rosa does. As men-
tioned before, such a precise and complex relation overwhelms the
SMT solver quickly. Bounding the ranges without the correlation
information yields unsatisfactory results.

4.2 Determining Ranges for x and x̃
As in the previous sections, it is crucial to determine the ranges of
x, x̃ ∈ R over which to evaluate the individual parts of Equation 9. A
sound approach would be to use the same bounds as for the straight-
line case, but this would lead to unnecessary over-approximations.
In general, not all inputs can exhibit a divergence between the real-
valued and the finite-precision computation. They are determined by
the branch conditions and the errors on the variables. Consider the
branch condition if (e1 < e2) and the case where the real-valued
path takes the if-branch, i.e. variable x satisfies e1 < e1 and x̃
satisfies e1 ≥ e2. The constraint for the finite-precision variables x̃
is then e1+δ1 < e2+δ2∧e1 ≥ e2, where δ1, δ2 are error intervals
on evaluating e1 and e2 respectively. This constraint expresses that
we want those values which satisfy the condition e1 ≥ e2, but are
“close enough” to the boundary such that their corresponding ideal
real value could take the other path. We create such a constraint both
for the variables representing finite-precision values (x̃), as well as
the real-valued ones x and use them as additional constraints when
computing the individual parts of Equation 9. The procedure for
other branch conditions is analogous.

6 2015/5/7

5. Experiments
We have chosen a number of benchmarks from the domains of
scientific computing and embedded systems to evaluate our tech-
niques. We show some representative examples in the appendix. 1

We perform our test with double precision, as this is a common
choice for numerical programs. Note however, that Rosa* supports
both floating-point arithmetic with different precisions, as well as
fixed-point arithmetic with different bit lengths. In our experience,
while the absolute errors naturally change with varying precisions
and data types, relative differences when comparing different tools
on the same precision data type remain similar.

We compare our results against those obtained by Fluctuat and
Rosa. These are the only available tools that we are aware of that
can compute sound numerical error bounds automatically and for
general arithmetic expressions. We denote our current extension of
Rosa as Rosa*. Experiments were performed on a desktop computer
running Ubuntu 14.04.1 with a 3.5GHz i7 processor and 16GB of
RAM, and using the unstable branch (as of 10 December 2014) of
Z3. Figure 4 summarizes the worst-case absolute errors computed
by the three tools as well as the running time of the analyses.
Straight-line Computation The first part of Figure 4 evaluates our
new error propagation technique for straight-line nonlinear code
on a number of benchmarks from [10]. The error computations in
Rosa and in Fluctuat are very similar, and essentially differ only in
how the ranges of variables are constrained (logical product with
an abstract domain vs SMT solver). The initial errors in the top
benchmarks are roundoff errors only, in the bottom section we add
an initial absolute error of 1e-11 to all inputs. We observe that our
new technique computes tighter error bounds in most cases, but
especially for benchmarks with larger initial errors, confirming that
our separation of errors is useful.

Furthermore, we investigate the effect of refactoring expressions
and applying our error propagation technique to each subexpression.
For example, in the case of the doppler benchmark, we consider two
formulations.

(-(331.4 + 0.6 * T) *v) /
(((331.4 + 0.6 * T) + u)*((331.4 + 0.6 * T) + u))

which is often the formulation produced by code generation tools,
and

val tmp = 331.4 + 0.6 * T; (-tmp * v) / ((tmp + u)*(tmp + u))

In the second case, we apply the error propagation twice, once for
computing the error on tmp and once for the error on the result.
The hope is to compute intermediate values more precisely with
our technique and thus improve the overall bounds even further.
The experimental results confirm the benefit of this step-wise
error computation. Rosa* currently performs the compositional
error propagation only for expressions defined as vals or final
expressions, as too fine-grained steps would increase the running
time unnecessarily or degrade the computed results. The approach
can also be applied to function calls.
First-order Method Summaries

Section 2.5 introduced a possible extension of the propagation
coefficients to postconditions where the errors are functions of both
the initial errors and the ranges of the corresponding variable. Here
we give a possible scenario how these ‘Taylor summaries’ can be
used. The verification framework in [10] is modular in that each
method is verified separately, and method postconditions are used,
where possible, at call sites. The specifications have to be general
however, to allow a method to be used in many instances, yet precise
enough to facilitate a successful verification.

1 For tool source code and benchmarks, please see https://github.com/
malyzajko/rosa.

For example, consider the following seventh order approximation
to the sine function, as it may be used in an embedded system, where
trigonometric functions are often approximated.

def sine(x: Real): Real = {
require(-3.5 < x && x < 3.5 && x +/- 1e-8)

x - (x*x*x)/6.0 + (x*x*x*x*x)/120.0 -
(x*x*x*x*x*x*x)/5040.0

}ensuring(res⇒ -1.0 < ~res && ~res < 1.0 && res +/- 2e-7)

The postcondition is successfully verified for the given range
and input error. But what if, at a call site, the range or the initial
error is smaller? Consider two calls to sine

require(-0.5 <= y && y <= 0.5 && y +/- 1e-8)
...
sineTaylor(y)

require(-3.0 <= z && z <= 1)
...
sineTaylor(z)

With Rosa, one can either use the postcondition with given
error on the result of 2e-7, or inline the function and essentially
re-do the error computation. In contrast, our approach described
in subsection 2.5 will instead use the computed summaries and
determine the error for the first case to be 1.000e-8 and for the
second case 4.945e-15, improving the error bounds by more than
6 decimal orders of magnitude. This illustrates the benefits of
relational summaries that our approach computes.
Loops The second part of Figure 4 shows our results on benchmarks
with loops. The mean benchmark computes the running average of
values in a range of [−1200, 1200] and the nbody benchmark is a
2-body simulation of Jupiter orbiting around the Sun. Both bench-
marks are given in the appendix. While for the mean benchmark
Fluctuat computes tighter error bounds, our approach scales much
better for large numbers of iterations. This limit in scalability of
Fluctuat (and Rosa), due to unrolling, is also apparent for the pendu-
lum and nbody benchmarks, where it returns the trivial error bound
[−∞,∞].
Discontinuities The bottom part of Figure 4 compares absolute errors
computed for our discontinuity benchmarks by the three tools. We
have made an effort to choose our benchmarks such that they cover
a variety of characteristics. The first three benchmarks are unary
functions taken from [10, 18], while the remaining ones are binary.
For the binary benchmarks, we distinguish those whose branch
condition is relational (x < y, marked with R) as opposed to range-
based (x < 0), and benchmarks where the arguments have an initial
error of 0.001. We have derived these benchmarks by piece-wise
approximating a more complex function, a common pattern seen in
embedded systems.

We observe that Rosa can leverage its more precise constraint
formulation and can compute tighter bounds for some of the exam-
ples. On the more complex examples, however, our new technique
in Rosa* outperforms both Fluctuat and Rosa significantly. For Rosa
we know that this difference is due to the complexity of the con-
straint constructed, on which Z3 times out so that it falls back to
interval arithmetic. For Fluctuat we suspect that the limitation is
due to linearity of the underlying domain. In particular, our new
technique is better capable to distinguish the relative difference be-
tween benchmarks. For example, we can clearly see the effect of
added initial errors on the styblinski or jetApproxGoodFitErr bench-
mark, whereas this difference is barely noticeable for Fluctuat and
Rosa. The ‘good fit’ and ‘bad fit’ versions of the jet engine bench-
mark are two approximations where the two branches are more or
less close at the boundary. Rosa*’s order of magnitude difference
strongly hints at this fact, while Fluctuat’s and Rosa’s results are

7 2015/5/7

https://github.com/malyzajko/rosa
https://github.com/malyzajko/rosa

Accuracy Runtime
benchmark Fluctuat Rosa Rosa* Fluctuat Rosa Rosa*

st
ra

ig
ht

-l
in

e
no

nl
in

ea
r

doppler 3.90e-13 4.36e-13 4.29e-13 < 1 2 20
dopplerRefactored 3.90e-13 4.19e-13 2.68e-13 < 1 2 17
jetengine 4.08e-8 1.16e-8 5.33e-9 < 1 40 287
jetengineRefactored 4.08e-8 1.16e-8 4.91e-9 < 1 39 255
rigidBody 3.65e-11 3.65e-11 3.65e-11 < 1 6 7
rigidBodyRefactored 3.65e-11 3.65e-11 3.65e-11 < 1 6 7
sine 7.97e-16 6.40e-16 5.18e-16 < 1 3 4
sineOrder3 1.15e-15 1.23e-15 9.96e-16 < 1 < 1 1
sqroot 3.21e-13 3.09e-13 2.87e-13 < 1 1 2
turbine1 9.20e-14 8.87e-14 5.99e-14 < 1 1 18
turbine1Refactored 9.26e-14 8.87e-14 5.15e-14 < 1 1 3
with added initial errors

dopplerRefactored 5.45e-11 5.29e-11 2.08e-11 < 1 3 24
jetengineRefactored 4.67e-4 1.40e-4 3.36e-7 < 1 40 251
turbine1Refactored 1.82e-9 1.88e-9 4.60e-10 < 1 1 2
turbine2Refactored 2.82e-9 2.90e-9 5.86e-10 < 1 1 2
turbine3Refactored 1.24e-9 1.27e-9 3.32e-10 < 1 1 5

lo
op

s

mean (100 iter.) 1.52e-11 - 9.74e-10 0.5 - 8
mean (1000 iter.) 1.54e-10 - 1.32e-7 35 - 9
mean (4000 iter.) 6.17e-10 - 2.06e-7 814 - 8
pendulum (50 iter) 2.43e-13 - 2.21e-14 49 - 8
pendulum (100 iter) ∞ - 8.82e-14 - - 8
pendulum (1000 iter) ∞ - 3.89e-05 - - 8
nbody ∞ - 1.35e-08 - - 781

di
sc

on
tin

ui
ty

squareRoot 0.0394 0.0236 0.0238 < 1 3 25
squareRoot3 invalid 0.429 1.32e-9 1.31e-9 < 1 3 7
linear fit 1.72 0.637 0.637 < 1 3 4
quadratic fit 10.6 3.22 0.255 < 1 45 57
quadratic fit (0.001) 11.0 3.22 0.255 < 1 65 71
quadratic fit2 (R) 0.632 9.19e-16 1.26e-15 < 1 14 16
quadratic fit2 (R, 0.001) 0.719 5.55e-4 8.52e-4 < 1 17 21
styblinski 121.0 36.4 2.31e-14 < 1 179 60
styblinski (0.001) 124.0 36.4 0.0132 < 1 225 73
styblinski2 (R) 27.1 20.2 1.09 < 1 29 34
styblinski2 (R, 0.001) 28.8 20.2 1.10 < 1 29 28
jetApprox 18.4 6.83 0.0232 < 1 97 175
jetApprox - good fit (R) 5.19 3.77 0.0428 < 1 27 33
jetApprox - good fit (R, 0.001) 5.19 3.77 0.045 < 1 25 26
jetApprox - bad fit (R) 9.30 4.26 0.882 < 1 85 206

Figure 4: Comparison of worst-case absolute errors computed by Fluctuat, our previous work Rosa and our new method implemented in Rosa*. Approximate
runtimes are given in seconds. All number are rounded. We mark the best result in bold.

somewhat less clear-cut and may, for example, be caused due to
inherent over-approximations.

Running Times Figure 4 also compares the running times of
the different techniques. It is apparent that more accuracy in the
computed errors comes at the expense of longer analysis time. Most
of the difference in running times between the tools is due to the use
of the nonlinear SMT solver, which directly accounts for the better
accuracy. Since our technique is static and thus need not be run
often, we believe that this trade-off between efficiency and accuracy
is reasonable.

6. Related Work
To the best of our knowledge, Fluctuat [17, 18] is the most related
to our work. We are not aware of other tools or techniques that can
soundly and automatically quantify numerical errors in the presence
of nonlinearity, branches and loops.

In the context of abstract interpretation, domains exist that are
sound with respect to floating-points and that can be used to prove
the absence of runtime errors such as division by zero [4, 8, 13, 28].
[14] presents an abstract domain which associates the ranges with
the iteration count, similar to our proposed technique for loops. [27]
considers the stability of loops, by proving whether loops can
asymptotically diverge. The problem that we are solving is different,
however, as we want quantify the difference between the real-valued
and the finite-precision computation.

Floating-points have been formalized in the SMT-LIB for-
mat [30], and approaches exist which deal with the prohibiting
complexity of bit-precise techniques via approximations [6, 21].
Efficient combination of theories needed to express roundoff errors
is non-trivial, and we are not aware of an approach that is able to
quantify the deviation of finite-precision computations with respect
to reals. Floating-point precision assertions can also be proven using
an interactive theorem prover [2, 5, 22, 25]. These tools can reason
about ranges and errors of finite-precision implementations, but

8 2015/5/7

target specialized and precise properties, which, in general, require
an expert user and interactively guiding the proof. Very tight error
bounds have been shown by manual proof for certain special com-
putations, such as powers [20]. Our work is on the other side of the
trade-off between accuracy and automation as well as generality.

Several approaches also exist to test the stability of numerical
programs, e.g. by perturbation of low-order bits and rewriting [33],
or by perturbing the rounding modes [31]. Another common theme
is to run a higher-precision program alongside the original one. [3]
does so by instrumentation, [29] generates constraints which are then
discharged with a floating-point arithmetic solver and [9] developed
a guided search to find inputs which maximize errors. [24] uses
instrumentation to detect cancellation and thus loss of precision. [23]
combines abstract interpretation with model checking to check the
stability of programs, tracking one input at a time. [26] uses concolic
execution to find two sets of inputs which maximize the difference
in the outputs. These approach are based on testing, however, and
cannot prove sound bounds.

It is natural to use the Jacobian for sensitivity analysis. Related to
our work is a proof framework using this idea for showing programs
robust in the sense of k-Lipschitz continuity [7]. Note, however,
that our approach does not require programs to be continuous. [15]
relaxes the strict definition of robustness to programs with specified
uncertainties and presents a framework for proving while-loops
with a particular structure robust. Our work follows the philosophy
of these approaches in leveraging Jacobians of program paths, yet
we explicitly incorporate the handling of roundoff errors in a fully
automated system.

7. Conclusion
Using the idea of separation of errors proved to be an effective
method. Whereas the questions can in principle be formulated as
a non-linear constraint solving even without error separation, this
technique proves to overcome the scalability and precision limita-
tions of past approaches. By taking the idea of linear approximation
to entire code fragments (instead of applying it stepwise as in affine
arithmetic), we have obtained a precise yet reasonably scalable ap-
proach to estimate errors in complex numerical code. In a range of
benchmarks, our implementation handled nonlinear computation,
conditionals and certain types of loops. We thus believe we have
developed an interesting approach, as well as a tool for sound and
automated computation of worst-cases bounds on roundoff errors
that obtains more precise results within reasonable time bounds than
the existing approaches.

References
[1] Adolfo Anta and P. Tabuada. To Sample or not to Sample: Self-

Triggered Control for Nonlinear Systems. Automatic Control, IEEE
Transactions on, 55(9), 2010.

[2] Ali Ayad and Claude Marché. Multi-prover verification of floating-
point programs. In IJCAR, 2010.

[3] Florian Benz, Andreas Hildebrandt, and Sebastian Hack. A dynamic
program analysis to find floating-point accuracy problems. In PLDI,
2012.

[4] Bruno Blanchet, Patrick Cousot, Radhia Cousot, Jérome Feret, Laurent
Mauborgne, Antoine Miné, David Monniaux, and Xavier Rival. A static
analyzer for large safety-critical software. In PLDI, pages 196–207,
2003.

[5] Sylvie Boldo and Claude Marché. Formal verification of numerical pro-
grams: from C annotated programs to mechanical proofs. Mathematics
in Computer Science, 2011.

[6] A. Brillout, D. Kroening, and T. Wahl. Mixed abstractions for floating-
point arithmetic. In FMCAD, pages 69–76, 2009.

[7] Swarat Chaudhuri, Sumit Gulwani, Roberto Lublinerman, and Sara
Navidpour. Proving Programs Robust. In ESEC/FSE, 2011.

[8] Liqian Chen, Antoine Miné, and Patrick Cousot. A Sound Floating-
Point Polyhedra Abstract Domain. In APLAS, 2008.

[9] Wei-Fan Chiang, Ganesh Gopalakrishnan, Zvonimir Rakamaric, and
Alexey Solovyev. Efficient Search for Inputs Causing High Floating-
point Errors. In PPoPP, 2014.

[10] Eva Darulova and Viktor Kuncak. Sound Compilation of Reals. In
POPL, 2014.

[11] L. H. de Figueiredo and J. Stolfi. Self-Validated Numerical Methods
and Applications. IMPA/CNPq, Brazil, 1997.

[12] Leonardo De Moura and Nikolaj Bjørner. Z3: an efficient SMT solver.
In TACAS, 2008.

[13] Jérôme Feret. Static Analysis of Digital Filters. In ESOP, 2004.
[14] Jérôme Feret. The Arithmetic-Geometric Progression Abstract Domain.

In VMCAI, 2005.
[15] Ivan Gazeau, Dale Miller, and Catuscia Palamidessi. A non-local

method for robustness analysis of floating point programs. In QAPL,
2012.

[16] Khalil Ghorbal, Eric Goubault, and Sylvie Putot. A Logical Product
Approach to Zonotope Intersection. In CAV, 2010.

[17] Eric Goubault and Sylvie Putot. Static Analysis of Finite Precision
Computations. In VMCAI, 2011.

[18] Eric Goubault and Sylvie Putot. Robustness Analysis of Finite Precision
Implementations. In APLAS, 2013.

[19] Eric Goubault, Sylvie Putot, and Franck Védrine. Modular Static
Analysis with Zonotopes. In SAS, 2012.

[20] Stef Graillat, Vincent Lefèvre, and Jean-Michel Muller. On the max-
imum relative error when computing xn in floating-point arithmetic.
Technical Report <ensl-00945033v2>, Laboratoire d’Informatique de
Paris 6, Inria Grenoble Rhône-Alpes, 2014.

[21] L. Haller, A. Griggio, M. Brain, and D. Kroening. Deciding floating-
point logic with systematic abstraction. In FMCAD, 2012.

[22] John Harrison. Floating-Point Verification using Theorem Proving. In
Formal Methods for Hardware Verification, 2006.

[23] F. Ivancic, M.K. Ganai, S. Sankaranarayanan, and A. Gupta. Numerical
stability analysis of floating-point computations using software model
checking. In MEMOCODE, 2010.

[24] Michael O. Lam, Jeffrey K. Hollingsworth, and G.W. Stewart. Dynamic
floating-point cancellation detection. Parallel Computing, 39(3), 2013.

[25] Michael D. Linderman, Matthew Ho, David L. Dill, Teresa H. Meng,
and Garry P. Nolan. Towards program optimization through automated
analysis of numerical precision. In CGO, 2010.

[26] R. Majumdar, I. Saha, and Zilong Wang. Systematic Testing for Control
Applications. In MEMOCODE, 2010.

[27] Matthieu Martel. Static Analysis of the Numerical Stability of Loops.
In SAS, 2002.

[28] Antoine Miné. Relational Abstract Domains for the Detection of
Floating-Point Run-Time Errors. In ESOP, 2004.

[29] Gabriele Paganelli and Wolfgang Ahrendt. Verifying (In-)Stability in
Floating-point Programs by Increasing Precision, using SMT Solving.
In SYNASC, 2013.

[30] Philipp Rümmer and Thomas Wahl. An SMT-LIB Theory of Binary
Floating-Point Arithmetic. In Informal proceedings of 8th International
Workshop on Satisfiability Modulo Theories (SMT) at FLoC, 2010.

[31] N.S. Scott, F. Jézéquel, C. Denis, and J.-M. Chesneaux. Numerical
‘health check’ for scientific codes: the CADNA approach. Computer
Physics Communications, 2007.

[32] IEEE Computer Society. IEEE Standard for Floating-Point Arithmetic.
IEEE Std 754-2008, 2008.

[33] Enyi Tang, Earl Barr, Xuandong Li, and Zhendong Su. Perturbing
numerical calculations for statistical analysis of floating-point program
(in)stability. In ISSTA, 2010.

9 2015/5/7

	Introduction
	Examples
	Propagation of Errors in Nonlinear Codes
	Discontinuities

	Summary of Contributions
	Problem Definition and Notation

	Propagation of Errors in Nonlinear Arithmetic
	Separation of Errors
	Computing New Roundoff Errors
	Computing Propagation Coefficients
	Relationship with Affine Arithmetic
	Higher Order Taylor Approximation

	Loops with Bounded Ranges
	Closed Form Expression

	Errors due to Discontinuities
	Applying Separation of Errors
	Determining Ranges for x and

	Experiments
	Related Work
	Conclusion

