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Abstract— Legged robots come in a range of sizes and
capabilities. By combining these robots into heterogeneous
teams, joint locomotion and perception tasks can be achieved by
utilizing the diversified features of each robot. In this work we
present a framework for using a heterogeneous team of legged
robots to detect slippery terrain. StarlETH, a large and highly
capable quadruped uses the VelociRoACH as a novel remote
probe to detect regions of slippery terrain. StarlETH localizes
the team using internal state estimation. To classify slippage of
the VelociRoACH, we develop several Support Vector Machines
(SVM) based on data from both StarlETH and VelociRoACH.
By combining the team’s information about the motion of
VelociRoACH, a classifier was built which could detect slippery
spots with 92% (125/135) accuracy using only four features.

I. INTRODUCTION

Versatile locomotion over all types of terrain is one of
the goals of legged robotics. While a great amount of work
has been presented for legged locomotion on solid grounds,
safe and fast handling of slippery terrain is still an open
research problem. The biggest challenge of slippery terrain
presents its inability to be detected without physical contact.
Estimating the slipperiness through contact on a step-by-step
basis is an extremely slow process. For these reasons, we
have chosen the alternative approach of deploying a group
of robots. A robot team is more capable of successfully
fulfilling a task than a single robot in many aspects. For
example, a task can be distributed amongst the team members
which lowers the constructional and control complexity for
the individual robots. Furthermore, with parallelization, the
problem be solved faster, and a redundancy in the team
allows the task to be executed more robustly.

With these advantages in mind, we present a framework
for a small heterogeneous team of legged robots. Our goal
is to navigate a relatively large and more capable robot, the
main robot, through an area with slippery regions. These
slippery patches are potentially hazardous and the main
robot needs to avoid them in order to protect the sensitive
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Fig. 1: Our proof of principle setup consists of the main robot
StarlETH and one picket robot VelociRoACH. A camera on the
main robot tracks the picket robot and allows to guide it at a
constant distance of 0.5 m ahead. The test surface is a whiteboard
which is either left dry or made slippery with lubricant.

and expensive onboard equipment. We can achieve this by
sending multiple smaller robots, the picket robots, ahead
of the main robot. The picket robots assess of the area
in front of the main robot so that a safe path can be
chosen. These smaller robots are simpler in construction
and cheaper; therefore, a loss of a picket robot is tolerable.
Due to the limited capabilities of the picket robots, they
depend on localization and guidance assistance from the
main robot. This collaborative work of the heterogeneous
team of legged robots enables to safely navigate the main
robot through a field with hazardous slippery regions without
putting restrictions on its locomotion speed.

To apply this approach, many topics need to be addressed.
Each robot needs to be able to traverse the terrain au-
tonomously, the robots need to communicate, localize them-
selves as a group and relatively to the environment, and plan
and execute a route while probing, mapping and avoiding
dangerous regions. In this work, we focus on tackling the task
of detecting slippery areas and localizing the probing robot
from the main robots perspective. We save the diverse tasks
of coverage planning, mapping and navigation for future
work.

A. Prior Work

There have been many approaches to terrain classification
using techniques which can be divided into two categories:
Remote sensing using cameras or radar, and vibration based
classification. For planning purposes, it is desirable to have
information about terrain before the robot encounters it.
To this end, terrain classification techniques using 3D-point
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clouds [27] or visual data [5] have been developed. These
methods require complex sensing apparatus, such as cameras
or laser range finders, and are largely dependent on the
presence of texture (visual or physical) in the dataset. An
alternative, vibration-based terrain classification, uses simple
sensors such as accelerometers or gyroscopes to detect terrain
using characteristic vibratory signatures ([29], [28], [26],
[10], [12]). The disadvantage of the vibration-based approach
is that the robot must be physically present on the terrain,
which might be hazardous. To avoid stepping on the terrain,
several classification methods use an appendage to identify
properties of directly adjacent terrain([15], [25], [13]), which
limits the planning horizon for navigation. The goal of the
present work is to be able to remotely classify terrain which
may be devoid of texture, without risking a valuable robot.
An example of such terrain is a smooth surface which has
lubricated regions. These spots look visually identical, and
have no physical texture which could discriminate them.
More examples include hidden holes and troughs, and haz-
ards obscured by leaf litter.

Different forms of heterogeneous mobile robot teams have
been introduced in the last years. They are varied in aspects
such as team architecture, task assignment, communication,
and localization (see [23] for an overview). Our approach is
similar to work in [20] where a bigger and more intelligent
main robot assists smaller and less capable robots (picket
robots) for navigation. In return, the small sensor robots
can deliver information from areas that are unaccessible
or dangerous for the bigger robot. Similarly, in [8] a big
wheeled vehicle was supporting smaller quadruped robots in
a search and rescue scenario. For a successful collaborative
navigation a precise localization strategy is required. The
work of [21] has demonstrated assistive navigation with
vision based marker detection and pose estimation. How-
ever, the chosen fiducial markers restrict to planar pose
estimation. A marker-free, model-based tracking algorithm
for cooperative robots was presented in [19], which requires
a stereo camera setup. So far, little attention has been given
to heterogeneous teams involving legged robots. Besides the
work of [8], an exception to this is the research in [22] where
the six-legged robot Genghis-II was used collaboratively to
push boxes with a wheeled vehicle.

B. Approach

As a proof of concept, we restrict our robot team to one
main robot and one picket robot; many other team config-
urations are possible. For navigation, we use the inverse of
the “Follow the leader” approach, wherein the main robot
drives the picket robot using constant position feedback. The
picket robot assesses the terrain in front of the main robot
by using a vibration-based terrain classifier. In Section II-
A, we describe our experimental setup. The main robot,
and its sensing capabilities are described in Sections II-B
and II-D. The picket robot is described in Section II-C,
and the classification approach is described in Section II-
E. The efficacy of the main robot’s localization approach is
evaluated in Section III-A, and the accuracy of our classifiers

Fig. 2: The picket robot, VelociRoACH. This hexapedal robot is
10 cm long, weighs 35 g and is powered by two DC brushed motors
[14].

is given in Section III-B. The results from this work are
summarized in the accompanying video1.

II. METHODS

A. Overview of the Setup

We evaluated our methods in a laboratory environment as
shown in Fig. 1. The setup consists of the main robot and
one picket robot characterizing the ground slipperiness. The
test surface is a whiteboard (1.2×0.75 m) which is either left
dry (coefficient of friction µ = 0.39) or is sprayed uniformly
with a silicone-oil-based release agent2, making the surface
slippery (µ = 0.14). The main robot runs an on-board state
estimation and carries a downward-facing camera to track
the smaller robot in front of it. The combination of on-board
state estimation and visual tracking allows the main robot to
steer and to localize the picket robot. The estimated pose and
the desired position of the picket robot is shared between the
robots via ROS3 messages over 802.15.4 radio. We quantify
the performance of the pose estimation system by comparing
the data with the ground truth provided by an external optical
tracking system.

B. The Main Robot

The quadruped StarlETH [17] is used as the main robot,
which has the shape and weight of a medium-sized dog.
In addition to its onboard electronics and power supply,
StarlETH is able to carry a payload of ∼15 kg, which is
sufficient for highly accurate perception sensors. All legs
of the system are fully torque controllable and allow the
robot move in a variety of different gaits. In our experi-
ments, StarlETH uses a static walking gait [11], which is
robust against (unperceived) terrain variations and external
disturbances. The desired global travel direction (speed and
heading) is controlled manually with a joystick. For state
estimation, StarlETH fuses kinematic data from the legs with
on-board Inertial Measurement Unit (IMU) measurements
[3]. The algorithm is able to estimate the position of all
footholds and the 6 DoF pose of the main body without
prior knowledge on the geometrical structure of the terrain.

1Also available at http://youtu.be/3LDXy5RVAbU
2Pol-Ease 2300 from Polytek
3Robot Operating System

http://youtu.be/3LDXy5RVAbU
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Fig. 3: A block diagram showing the localization and terrain
classification information flows between the members of the robot
team.

C. The Picket Robot

Our joint terrain detection framework makes most sense if
the picket robot is a cheap and robust robot that is capable
of traversing terrain at least at the speed of the main robot.
Smaller robots can be more robust as an effect of size [18],
and can be cheaper than larger robots by several orders
of magnitude. We chose the VelociRoACH as our picket
robot because it fulfills these criteria. The VelociRoACH
[14] is a hexapedal millirobot (shown in Fig. 2) built with
cardboard Smart Composite Microstructures [16], making
it cost efficient to produce. It is 10 cm long, capable of
traversing rough terrain, and has a top speed of 2.7 m/s.

The VelociRoACH is driven by the imageproc4 [2] robot
control board. The imageproc also collects telemetry data at
1000 Hz, and uses a 802.15.4 radio interface for communi-
cation and external control5.

The main robot drives the picket robot in front of it at
a distance of 0.5 m to detect slippery patches of terrain.
We used the following control law to prescribe the desired
motion of the VelociRoACH:

˙̃xdes = Kp,x(x̃des − x̃) , (1)
˙̃
ψdes = Kp,y(ỹdes − ỹ) +Kp,ψ(ψ̃des − ψ̃) , (2)

where ˙̃xdes is the desired forward velocity, x̃des and x̃
are the target and actual distances to StarlETH, respectively.
Similarly, ˙̃

ψdes is the desired yaw rate, ỹdes and ỹ are the
target and actual distances from the midline of the StarlETH,
respectively, and ψ̃des and ψ̃ are the target and actual yaw
angles, respectively.

To steer the VelociRoACH, we assume that differential
steering dynamics apply and drive the two sides of the
VelociRoACH at different speed to achieve turning (as was
done in Buchan and Haldane et. al. [4]). The desired leg
speeds for the left and right side, α̇l,des, α̇r,des are given by[

α̇l,des
α̇r,des

]
=

1

r

[
1 d/2
1 −d/2

] [
ẋdes

ψ̇des

]
, (3)

where r is the effective leg radius, and d is the width of
the robot.

4Embedded board: https://github.com/biomimetics/imageproc pcb
5Embedded code: https://github.com/dhaldane/roach

The control loop on position and orientation (from
StarlETH’s camera to VelociRoACH) is closed at 30 Hz.
Internally, the VelociRoACH uses PID feedback control at
1000 Hz to regulate the speed of its legs.

D. Visual Tracking

The localization of the picket robot is performed by
visually tracking a fiducial marker attached to the robot. The
camera is mounted at a fixed position on the front of the
main robot at a height of 0.5 m and the viewpoint is pointed
in the direction of travel and downwards at an angle of 30◦

(see Fig. 1). This created a distance of ∼1 m from camera to
marker, depending on the relative position of the main and
picket robot. The camera is a commercial webcam6 used at
a resolution of 640×480 px. The marker is an ARTag [9]
(side length 6 cm) and we use the ALVAR software library
[24] to track the pose of the marker relative to the camera
(and hereby to the main robot). This setup allows for real-
time tracking of the picket robot’s full 6 DoF relative to the
camera. Together with the state estimation of our main robot
and the known configuration of the camera, the picket robot’s
full pose with respect to the environment can be estimated.

E. Classification

Slippery terrain is remotely detected by the main robot by
using the picket robot as a remote probe to explore the envi-
ronment. The main robot collects 6 DoF information about
the motion of the picket robot, as it tracks its progress across
the test surface. At the same time, the picket robot collects
proprioceptive data about itself as it maneuveres across the
terrain. The dynamics of the VelociRoACH are comprised
of repeatable periodic oscillations [14]. We predict that the
locomotion dynamics of the picket robot (VelociRoACH) are
perturbed by slippery terrain, allowing the dynamic signature
of the picket robot to classify low friction regions.

A set of features which describe the locomotion dynamics
of the picket robot is therefore needed. To allow for the
highest possible rate of terrain classification, these features
should be fast to compute and should require the minimum
possible sampling period. We chose the features to be the
second, third and fourth statistical moments (variance, skew,
kurtosis, respectively) of a subset taken from available data.
The k-th statistical moment, µxk , of a n length time-series of
observations of x is given by

µxk =
1

n

n∑
i=1

xki . (4)

The fourth moment of the observed pitch angle θ for exam-
ple, would be denoted µθ4.

Features calculated in this fashion have been recently
used [10] to successfully classify (94% accuracy) diverse
terrain (tile, carpet, gravel), and were found to be more
descriptive than FFT-based [29] features. Observations of the
6 DoF state of the picket robot are used to calculate the
features. The main robot uses camera measurements (x, y, z

6Logitech HD Pro Webcam C920

http s://github.com/biomimetics/imageproc_pcb
https://github.com/dhaldane/roach
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Fig. 4: Time trajectories of internal and external data, for slippery
and non-slippery terrain. The internal data is sampled at 1000 Hz,
external camera measurements are taken at 30 Hz.

position, ψ, θ, φ Euler angles), whereas the picket robot uses
measurements from its 6-axis IMU (ẍ, ÿ, z̈ accelerations,
ω̇1, ω̇2, ω̇3 rotation rates). An example of the data from which
these features are calculated from is shown in Fig. 4.

Support Vector Machines (SVMs) are used to identify
slippery terrain using the tabulated features. We use the MAT-
LAB implementation of LIBSVM [6] to do the classification,
withholding 25% of the available data to test the accuracy
of the classifier.

Three different SVMs are built to test how well slippery
terrain could be classified using different approaches. The
first is the “Internal Classifier”, which uses 18 proprioceptive
features collected from the picket robot. The second is
the “External Classifier”, which only uses the 18 features
collected from the main robot’s camera. The third is the
“Joint Classifier” which uses the collaborative set of all of the
above features. All features are normalized before being used
in a soft-margin SVM. The performance of these classifiers
is given in Section III-B.

III. RESULTS

A. Localization

Precise localization between the main and the picket
robot is required to meaningfully map out the slippery and
non-slippery regions of the terrain. Presented first are the
results for an isolated visual tracking experiment, which
are followed by the localization results for the combined
estimation of both robots.

Fig. 5 shows the results for the estimated pose of the
picket robot relative to the main robot. To isolate the tracking
procedure, we kept the main robot (and hence the camera)
stationary to get a fixed transformation between the global
and the main robot’s coordinate system. In this experiment,
the picket robot runs along the main robot’s x̃-axis from
the lower to the upper camera image border. The estimated
position through the visual tracker is satisfactorily accurate
when compared to the ground truth data. The root mean
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Fig. 5: Evaluation data for the visual tracking performance. For
this experiment, the main robot/camera was kept stationary and the
picket robot ran along the local x̃-axis (relative position) from the
lower to the upper image border.

squared error (RMSE) is 5 mm for the relative position and
2◦ for the relative yaw angle.

Results for the combined localization are shown in Fig. 6.
The picket robot is controlled to run in front of the main
robot at a constant distance. The main robot localizes itself
with the on-board state estimation. The position of the picket
robot with respect to the environment is estimated through
the transformation chain of the main robot’s pose estimation
and the visual tracking of the marker. The position error
for the main robot is 6.7 cm after a travel distance of
2 m (in 18 s). The position error for the picket robot for
the same experiment is 10.9 cm, which is caused by the
cumulative error from on-board state estimation and visual
tracking.7 Clearly, with our estimation setup, the global
positioning error increases over travelled distance. However,
our approach does not rely on an absolute global position, but
rather on a localized estimate of relative position around the
main robot and picket robot. This information is sufficient
for the main robot to plan a path avoiding slippery patches
on the terrain. In this respect, the presented precision of our
method is regarded as sufficient.

B. Classification

The minimum necessary sampling period (for a given
accuracy threshold) is one of the major figures of merit for
the application of this classifier. It limits how quickly the
teams of robots can traverse terrain while mapping friction
properties, and also limits the minimum detectable size of
a patch of slippery terrain. Fig. 7 shows the accuracy of
the three classifiers as a function of sampling period. The
features for the internal classifier are calculated using data

7The cumulative error is highly sensitive to the error in yaw rotation of
the main robot, which is 1◦ after the entire travel distance in this experiment.
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collected at more than 30 times the sampling rate of the
external measurements. We therefore expect the internal
classifier to achieve higher accuracy at a lower period than
the external classifier. This result is shown in Fig. 7.

In order to develop classifiers which could be run faster,
we used Principal Component Analysis (PCA) on the feature
data to identify a small set of highly descriptive features.
Previous work in terrain classification has used this approach
to the reduce the dimensionality of the feature space [12].
Table I gives the accuracy of the three classifiers when they
are restricted a small subset of the most descriptive features.
For each classifier in Table I, we give data on classifiers of
rank 1 through 4. The accuracy and dimension of the test set
are given in the third column, and the last column gives the
features for each classifier in order of expected importance.

As shown in Table I, the accuracy of the classifiers
increases as more features are used to detect the slipperiness
of the terrain. It should be noted that these classifiers were
trained from the same dataset. This means that the External
Classifier, which requires twice the sampling period of the
Joint and Internal Classifiers, is only able to train and test on
a dataset of approximately half the size. The Joint Classifier
has the best performance when using fewer features, and
is the only one to achieve an accuracy of over 90% when
four or less features are used. The rank-4 Joint Classifier
uses features from both the internal and external sets, which

TABLE I: REDUCED RANK APPROXIMATION

Classifier Rank Accuracy Features (F)
(Sampling Window)

1 58.0 % (76/131) µω2
2

Internal 2 72.5 % (95/131) µÿ2 µ
ω1
2

(0.31 s) 3 73.3 % (96/131) µÿ2 µ
ω1
2 µz̈2

4 81.7 % (107/131) µω3
2 µz̈2 µ

ω3
4 µÿ2

1 67.9 % (53/78) µy2

External 2 64.1 % (50/78) µy2 µ
x
4

(0.60 s) 3 83.3 % (65/78) µθ2 µ
y
2 µ

x
4

4 75.6 % (60/78) µθ2 µ
x
4 µ

x
2 µ

y
2

1 81.1 % (109/134) µω2
2

Joint 2 81.1 % (109/134) µz̈2 µ
z̈
3

(0.31 s) 3 84.0 % (113/134) µθ2 µ
z̈
2 µ

z̈
3

4 92.9 % (125/134) µθ2 µ
z̈
2 µ

z̈
3 µ

ω1
2

allowes it to better classify slippery terrain.
Several features are repeatedly chosen most effective for

slippery terrain detection. The variance of the y accelera-
tion and position (µÿ2, µ

y
2) is much greater for running the

VelociRoACH on the low friction surface, which allows for
more lateral motion than other terrains. The variance of the
pitch rate and angle (µω2

2 , µθ2) is significantly less for the low
friction case. The robot tends to stub its front legs when it
is being driven with aperiodic differential steering, the low
friction terrain reduces these impacts and thereby reduces the
pitch disturbances they cause.

IV. CONCLUSION

This work developed a framework for remote terrain
detection and demonstrated its feasibility with a proof of
concept experiment. This proposed framework has four main
pieces, a main robot (1) which is assisted by one or more
picket robots (2). The main robot has a method to localize
itself and the picket robots (3), and the picket robots have
a method to classify terrain (4). To demonstrate the concept
we used the legged quadruped, StarlETH, as the main robot,
and VelociRoACH, as the picket robot.

We demonstrated that a legged odometer based on on-
board state estimation is sufficiently accurate to localize
the StarlETH in a relevant portion of the global frame
near a patch of slippery terrain. The StarlETH is able to
locate the VelociRoACH using visual tracking, and give it
position feedback to remotely guide it to specific portions of
the terrain for classification. This type of joint perception
is advantageous because the picket robot does not have
the same capability for internal state estimation or remote
sensing as the main robot.

For the fourth part of the framework, we tested three
different types of terrain classifier, all of which could achieve
an accuracy of over 90% when identifying slippage of
the picket robot. Instead of traditional slippage detection
methods, we implemented a SVM based terrain classifier,
which can be readily extended to identify other types of
hazardous terrain. The External Classifier, which used only
features tabulated from camera tracking data of the picket



robot, can achieve an accuracy of 94% with a sampling
period of 0.60 seconds. The Internal Classifier, which only
uses features tabulated from the internal IMU of the picket
robot, achieves an accuracy of 98% with just a 0.31 second
sampling window. Using the full feature space, the Joint
Classifier has a similar performance to the internal classifier.
However, the joint classifier distinguished itself as most
effective for a light-weight classifier. Using PCA, we chose a
subset of features which are expected to be most effective at
separating the data. Of all of these low-rank classifiers, only
the rank-4 joint classifier was able to achieve an accuracy
of over 90% by using features from both the internal and
external sets.

A. Future Work

This proof of concept work used one picket robot driven
directly in front of one main robot. When the team uses this
running configuration, it is possible that hazardous terrain
which threatens the main robot would not be detected. This
problem could be solved using area coverage [7] wherein a
robot or team of robots completely canvas an area of interest.
Complete coverage would be necessary if the main robot
was a traditional wheeled robot, but legged robots such as
StarlETH have the ability to discretize terrain into distinct
footholds. This reduces the problem of area coverage to one
of probabilistic coverage as has been used for robotic de-
mining [1]. Only the terrain properties of the future planned
footholds need to be checked, greatly reducing the time
the picket robots need to spend mapping the terrain. Future
work will explore path planning algorithms and picket robot
formations which will more effectively detect hazardous
terrain.
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