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ABSTRACT 
 
The paper presents a short review on a modelling method for a circular tunnel excavated in the dry 
rock mass where the in situ state of stress is uniform. The rock mass was assumed to behave elasti-
cally and two cases were examined: whether the rock mass has an isotropic elastic property or not.  
 
A two-dimensional plain strain elastic-plastic Jointed Rock model was used to study the response 
of the rock mass to excavation. The elastic behaviour of the rock mass was assured in the model by 
simply providing adequate cohesion. The study reveals that the distribution of excavation-induced- 
stresses and deformations in the space surrounding rock mass having anisotropic properties differs 
from that obtained under the assumption of isotropic properties. The neglect of the effect of elastic 
anisotropy can result in a significant underestimation of stresses and displacements in rock and 
thus also in the design of support measures and the final pressure tunnel linings.  
 
Additionally, when the tunnel geometry is circular and the rock mass contains one joint set where 
the plane of elastic anisotropy strikes to the tunnel axis, the results obtained for one dip angle will 
be identical to another dip angle by rotating the x- and y-axis accordingly. 
 
Keywords: Tunnel, Rock Mass, Anisotropy, Modelling.  
 
 
1. INTRODUCTION 
 
For deep tunnels, a rock mass is often assumed as an isotropic material. This assumption 
has facilitated to the understanding of the mechanical-hydraulic interaction between the 
lining and the rock mass (Schleiss, 1986) and furthermore has contributed to the develop-
ment of the design of pre-stressed concrete-lined pressure tunnels (Simanjuntak et al., 
2012; Simanjuntak et al., 2013). 
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However, pressure tunnels may be constructed in anisotropic rocks composed of lamina-
tion of intact rocks, such as schistosity in schists, which exhibits anisotropic strength and 
deformability. Determining anisotropic deformation as a result of tunnel excavation is be-
coming complex due to the orientation of discontinuities in the rock mass (Bobet, 2011; 
Hefny and Lo, 1999; Tonon and Amadei, 2002; Vu et al., 2013; Wang et al., 2012). Inevi-
tably, designing pressure tunnel linings will depend on the response of the rock mass to 
excavation as well as on the behaviour of joint planes in the rock mass.    
 
In this study, the numerical modelling of a circular tunnel excavated in an elastic rock mass 
having anisotropic properties is presented. The model is representative for tunnels situated 
above the groundwater level and embedded in the rock mass where the strike of the anisot-
ropy planes is parallel to the tunnel axis. Hence, the plain strain conditions apply along the 
axis of the tunnel and the following assumptions are made: the tunnel is deep and subjected 
to a uniform in situ stress, the cross section of the tunnel is circular, and the development 
of displacements with increasing distance from the tunnel face is not covered so that results 
can be obtained based on two-dimensional models. 
 
 
2. ROCK MASS ANISOTROPY 
 
The anisotropic elastic model is defined with respect to the orientation of the stratification, 
in which a maximum three sliding directions can be distinguished in a rock mass (Fig. 1). 
The orientation of the plane of elastic anisotropy or transverse isotropy is defined by the 
dip angle, , and the dip direction angle . For each plane, plastic sliding will occur if the 
maximum shear stress is reached.  
 

 
Figure 1. Configuration of Joint Sets in a Rock Mass 

 

When the plane of transverse isotropy strikes parallel to the tunnel axis, two-dimensional 
analyses are adequate. However, solutions of any two-dimensional problem have to satisfy 
the following conditions: equilibrium, constitutive model, strain compatibility, and bound-
ary conditions (Bobet, 2011).  
 

Fig. 2a shows the general problem of a tunnel excavated in transversely isotropic rock. If a 
tunnel is excavated along the z-axis, the horizontal plane (x, z) is a plane of isotropy. In 
plain strain conditions, the components εz, εyz, and εxz vanish everywhere. The constitutive 
relationships can therefore be written as (Kolymbas et al., 2012; Vu et al., 2013): 
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 : dip angle
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where x, y, are the total stress along the x- and y-axis respectively, xy are the shear stress 
and C11, C12, C22, C33 are the compliance coefficients related to the material parameters and 
can be defined using the following relations (Kolymbas et al., 2012; Vu et al., 2013): 
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Figure 2. (a) Plane Orientation of Transverse Anisotropy, and (b) Failure Surface 

 
The equilibrium conditions (Bobet, 2011): 
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where x and y are the Cartesian coordinates, Ex and Ey are the elastic modulus in the hori-
zontal and vertical direction respectively, νyx is the Poisson’s ratio for the effect of vertical 
stress on the horizontal strain, νxy is the Poisson’s ratio for the effect of horizontal stress on 
the vertical strain, νx is the Poisson’s ratio for the effect of horizontal stress on the horizon-
tal strain and Gyx is the shear modulus in vertical plane.  
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It has to be noted that because of the symmetry of the strain tensor, the following relation-
ship is valid (Bobet, 2011; Vu et al., 2013) and the properties in the z and x directions are 
the same. 
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A local Coulomb condition (Fig. 2b) can be applied to limit the shear stress, while a tensile 
strength criterion is used to limit the tensile stress. The formulation of plasticity on all 
planes is similar, and the corresponding yield functions for each plane, i, is given as fol-
lows: 
 

iin
c

i cf   tan  (5) 

itn
t

if ,   (where: t,i ≤ ci cot i) (6) 
 
The distribution of stresses and displacements of a circular tunnel excavated in transversely 
isotropic or elastic anisotropy rock mass can be predicted using the Jointed Rock model 
implemented in the finite element software program DIANA. In this model, different val-
ues of stiffness are applied to the corresponding stratification direction so as to describe the 
elastic transversely material behaviour. The elastic compliance matrix is inverted and con-
sequently multiplied with the strain increments resulting in the elastic stress increments.  
 
For each shear failure plane, the stress conditions are checked according to the condition as 
depicted in Fig. 2b. When the stress point is beyond the failure surface, it is projected on 
the failure surface resulting in plastic deformation. When simulating the elastic-plastic be-
haviour of the rock mass, the model assumes associated plastic deformations resulting in 
volumetric expansion.  
 
 
3. NUMERICAL RESULTS AND DISCUSSIONS 
 
In this paper, the response of an anisotropic rock mass to excavation is studied by means of 
a finite element model. Although the Jointed Rock model is an anisotropic elastic-plastic 
model, the elastic behaviour of the rock mass can be simulated provided that the sliding 
plane has adequate cohesion. To that end, there are two cases considered: whether rock 
masses have isotropic elastic properties, or not.   
 
For both cases, the tunnel section was assumed circular with diameter, D, of 4 m and its 
axis is parallel to z-axis. The plane of transverse isotropy is horizontal or  = 0o, and it 
strikes parallel to the tunnel axis (Fig. 2a). The boundary condition corresponds to a uni-
form in situ state of stress, o, equal to 40 MPa. 
 
3.1. Circular Tunnel Excavated in Elastic Isotropic Rock Mass 
 

Let us consider a rock mass, whose elastic properties are: E = 20.5 GPa and  = 0.25. As a 
result of excavation works, the tunnel wall deformed radially as far as 4.85 mm inwards 
(Fig. 3a) and this value corresponds to the scaled radial displacement, 2Gur/oR, of 1.0.  
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For unsupported tunnels, the radial stress along the tunnel wall was zero (Fig. 4a). The 
hoop stress along the tunnel wall was found as 80 MPa (Fig. 5a), which is in a compressive 
state of stress and corresponds to the scaled hoop stress, /o, of 2.0. 
  
When calculated using Lame’s solution (Carranza-Torres and Labuz, 2006), the radial de-
formation, ur, radial stress, r, and hoop stress, , along the tunnel perimeter were found  
as 4.87 mm, 0 MPa and 80 MPa respectively. The good agreement between the analytical 
and numerical results is evident (Figs. 3b, 4b and 5b). 
 

 
Figure 3. Distribution of Radial Displacements for Elastic Isotropic Case 

 

 
Figure 4. Distribution of Radial Stresses for Elastic Isotropic Case 

 

 
Figure 5. Distribution of Hoop Stresses for Elastic Isotropic Case 
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3.2. Circular Tunnel Excavated in Elastic Anisotropic Rock Mass 
 
For cases where the tunnel is excavated in anisotropic rock masses, the following parame-
ters were examined: Ex/Ey = 2, xy/yx = 2, and Ex/Gyx = 6. Fig. 6a suggests that when the 
Young’s modulus parallel to the bedding plane is greater than that perpendicular to the 
bedding plane, the displacements at the tunnel roof and invert will be higher than those at 
the sidewalls. While the displacement at the tunnel roof or invert was found as 11.33 mm, 
the displacement at the tunnel sidewalls was obtained as 7.59 mm.  
 

 
Figure 6. Distribution of Radial Displacements for Elastic Anisotropic Case 

 

 
Figure 7. Distribution of Radial Stresses for Elastic Anisotropic Case 

 

 
Figure 8. Distribution of Radial Stresses for Elastic Anisotropic Case 
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The corresponding scaled radial displacement, 2Gur/oR, at the tunnel roof or invert and at 
the tunnel sidewalls were calculated as 2.32 and 1.56 respectively (Fig.9a), which indicates 
that the shape of the excavated tunnel is oval with its major axis parallel to the direction of 
the bedding planes. The response of the rock mass to excavation is comparable to those 
observed by Kolymbas et al. (2012) and Vu et al. (2013). 
 
Principally, regardless the anisotropic properties of the rock mass, the distribution of radial 
stresses along the tunnel wall will remain zero when the tunnel is not supported. However, 
radial stress contours in the space surrounding the excavated tunnel will have a cross shape 
due to the anisotropic properties of the rock mass (Fig. 7a). The distribution of radial 
stresses along x- and y-axis is shown in Fig. 7b. 
 

 
Figure 9. Isotropic and Anisotropic Case: (a) Radial Displacements, (b) Hoop Stresses 

 
Regarding hoop stresses, the numerical results for the case of anisotropic rocks are shown 
in Fig. 8. While Fig. 8a shows hoop stress contours around the excavated tunnel, Fig. 8b 
depicts the distribution of hoop stresses along x- and y-axis. While the predicted scaled 
hoop stress, /o, at the tunnel roof or invert was obtained as 2.40, the scaled hoop stress 
at the tunnel sidewalls was found as 2.30 (Fig. 8b). However, the lowest scaled hoop stress 
along the tunnel wall was found as 1.69 and it was located at 50o measured from the side-
walls or at 40o measured from the tunnel roof (Fig. 9b). This also implies that if the 
Young’s modulus parallel to the bedding plane is greater than that perpendicular to the 
bedding plane, the maximum hoop stress will be concentrated at the roof or invert, while 
the its minimum value will be at a location around 50o measured from the bedding plane. 
Similar observation can be found in Tonon and Amadei (2003) and Vu et al. (2013). 
 
 
4. CONCLUDING REMARKS 
 
In this study, the elastic-plastic Jointed Rock model was used to study the response of the 
rock mass to circular excavation and the elastic behaviour of the rock mass was assured by 
providing an adequate cohesion. Two cases are examined: whether the rocks have isotropic 
elastic properties or not. 
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As a result of circular excavation, rock masses will deform radially as long as their elastic 
properties are isotropic and the principal stresses are uniform. However, if the elastic prop-
erties of the rock mass are anisotropic, the displacements along the tunnel wall will be no 
longer radial. In such cases, the study shows that the highest deformation occurs in the 
direction of the lowest Young’s modulus. The shape of the excavated tunnel will be oval 
with its major axis parallel to the bedding plane. Also, because of elastic anisotropy or 
transverse isotropy in the rock mass, the distribution of radial and hoop stresses in the 
space surrounding anisotropic rock mass will be no longer uniform. Therefore, when ana-
lyzing the response of the rock mass to excavation, the effect of elastic anisotropy or trans-
verse isotropy cannot be neglected since it can result in a significant underestimation of 
stresses and displacements in the design of support measures as well as the final lining. 
 
As long as the geometry of the tunnel is circular, the principal stress of rock mass is uni-
form and the plane of transverse isotropy strikes to the tunnel axis, results obtained for the 
case where dip angle  = 0o will be identical to those obtained for the case where  = 90o 
by rotating the x- and y-axis to 90o. Studies on the effect of rock mass anisotropy in non-
uniform in situ stress conditions are encouraged in the future. 
 

 
ACKNOWLEDGEMENTS 
The work described in this paper was supported by Verbund Hydro Power AG in Austria for which 
the authors are very grateful. 
 
 

REFERENCES 
 
Bobet, A. (2011): Lined Circular Tunnels in Elastic Transversely Anisotropic Rock at Depth. Rock 

Mechanics and Rock Engineering, 44(2): 149-167. 
Carranza-Torres, C., Labuz, J. (2006). Class Notes on Underground Excavations in Rock. 

Department of Civil Engineering, University of Minnesota, USA. 
Hefny, A.M., Lo, K.Y. (1999). Analytical Solutions for Stresses and Displacements around 

Tunnels Driven in Cross-Anisotropic Rocks. International Journal for Numerical and 
Analytical Methods in Geomechanics, 23(2): 161-177. 

Kolymbas, D., Lavrikov, S.V., Revuzhenko, A.F. (2012). Deformation of Anisotropic Rock Mass in 
the Vicinity of a Long Tunnel. Journal of Mining Science, 48(6): 962-974. 

Schleiss, A.J. (1986). Design of Pervious Pressure Tunnels. Water Power & Dam Construction, 
38(5): 21-26, 29. 

Simanjuntak, T.D.Y.F., Marence, M., Mynett, A.E. (2012). Towards Improved Safety and 
Economical Design of Pressure Tunnels, ITA-AITES World Tunnel Congress & 38th 
General Assembly (WTC 2012), Bangkok, Thailand. 

Simanjuntak, T.D.Y.F., Marence, M., Mynett, A.E., Schleiss, A.J. (2013). Mechanical-Hydraulic 
Interaction in the Cracking Process of Pressure Tunnel Linings. Hydropower & Dams, 
20(5): 112-119. 

Tonon, F., Amadei, B. (2002). Effect of Elastic Anisotropy on Tunnel Wall Displacements Behind a 
Tunnel Face. Rock Mechanics and Rock Engineering, 35(3): 141-160. 

Tonon, F., Amadei, B., (2003). Stresses in Anisotropic Rock Masses: An Engineering Perspective 
Building on Geological Knowledge. International Journal of Rock Mechanics and Mining 
Sciences, 40(7): 1099-1120. 

Vu, T., Sulem, J., Subrin, D., Monin, N. (2013). Semi-Analytical Solution for Stresses and 
Displacements in a Tunnel Excavated in Transversely Isotropic Formation with Non-
Linear Behavior. Rock Mechanics and Rock Engineering, 46(2): 213-229. 

Wang, S.Y., Sloan, S.W., Tang, C.A., Zhu, W.C. (2012). Numerical Simulation of the Failure 
Mechanism of Circular Tunnels in Transversely Isotropic Rock Masses. Tunnelling and 
Underground Space Technology, 32(0): 231-244. 


