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Abstract—Dispersed storage systems (DSSs) can represent an
important near-term solution for supporting the operation and
control of active distribution networks (ADNs). Indeed, they have
the capability to support ADNs by providing ancillary services
in addition to energy balance capabilities. Within this context,
this paper focuses on the optimal allocation of DSSs in ADNs by
defining a multi-objective optimization problem aiming at finding
the optimal trade-off between technical and economical goals.
In particular, the proposed procedure accounts for: 1) network
voltage deviations; 2) feeders/lines congestions; 3) network losses;
4) cost of supplying loads (from external grid or local producers)
together with the cost of DSS investment/maintenance; 5) load
curtailment; and 6) stochasticity of loads and renewables produc-
tions. The DSSs are suitably modeled to consider their ability to
support the network by both active and reactive powers. A convex
formulation of ac optimal power flow problem is used to define a
mixed integer second-order cone programming problem to opti-
mally site and size the DSSs in the network. A test case referring
to IEEE 34 bus distribution test feeder is used to demonstrate and
discuss the effectiveness of the proposed methodology.

Index Terms—Ancillary services, energy storage, mixed integer
second order cone programming, power distribution, power
system planning.

NOMENCLATURE:

DSS Dispersed storage system.

DG Distributed generation.

Variables:1

Binary variable associated with
the presence of energy storage
at bus .
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1All of the parameters and variables are in p.u..

Binary variable associated with
the on/off states of a given DG
unit.

Power rating of a given DSS at
bus .

Energy reservoir of a given
DSS at bus .

RMS value of bus voltage at
time , scenario , and year .

Current flow of the generic line
between buses and at

time , scenario , and year .

Square of voltage at bus at
time , scenario , and year .

Square of current flow of the
generic line between buses
and at time , scenario ,
and year .

Active/reactive line power
flows between buses and at
time , scenario , and year .

Active/reactive power
production /consumption
of a given DSS unit connected
to bus at time , scenario
, and year

Active/reactive power
production of a given DG
unit connected to bus at
time , scenario , and year

Active load curtailed on the
bus at time , scenario , and
year

Reactive power associated with
shunt susceptance of the line
between buses and at time ,
scenario , and year .

Resistive losses of DSS at
time , scenario , and year .
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Auxiliary variables associated
with the linearization of voltage
deviation minimization in the
objective function.

Auxiliary variables associated
with the linearization of current
flow minimization in the
objective function.

Energy cost from upper grid at
time , scenario , and year .

Cost function of a given DG
unit at bus .

Parameters:

Capital installation cost of a given
DSS at bus ($).

Investment cost related to the
power rating of a given DSS at
bus ($/kW).

Investment cost related to the
reservoir capacity of a given DSS
at bus ($/kWh).

Annual interest rate.

Maintenance cost of a given DSS
at bus in year ($/kWh/year).

Maximum number of buses
where DSS units can be installed.

Maximum/minimum power
rating of a given DSS unit that
can be connected to bus .2

Maximum/minimum energy
reservoir capacity of a given DSS
unit that can be connected to bus
.

Ramp-up and ramp-down rates of
the DSS at bus .

Total maximum power rating of
the DSSs that can be installed in
the whole network.

Total maximum energy reservoir
of the DSSs that can be installed
in the whole network.

Loss factor (resistive) of a given
DSS at bus .

Longitudinal resistance of the
line between buses and (line )

Longitudinal reactance of the line
between buses and (line ).

2In the proposed approach, it has inherently been assumed that the DG and
DSS units connected to a given bus are aggregated. Therefore, power and energy
quantities refer to the aggregated values.

Active/reactive power demand on
bus at time , scenario , and
year .

Maximum/minimum limits of
the square of the voltage on the
network buses.

Total susceptance of the lines
connected to bus .

Maximum/minimum
active/reactive power production
limits of a given DG unit
connected to bus .

Maximum current flow rating of
line between the busses and

Initial energy stored in DSS .

Minimum amount of energy that
the DSS energy level can’t be less
than it.

Weighting coefficient of the terms
composing the objective function.

Maximum and minimum voltage
thresholds beyond which voltage
deviation will be minimized.

Maximum feeder current
threshold beyond which current
feeder flow will be minimized.

Probability of scenario .

Indices:

Index of buses.

Index of scenarios.

Index of time interval in each
day.

Index of the years.

Index of lines.

I. INTRODUCTION

A S is known, recent research and development associated
with the electricity infrastructure are driven by the fast

evolution of electrical distribution systems from passive to ac-
tive ones. Active distribution networks (ADNs) are defined as
distribution systems in which embedded generation is actively
controlled by suitably defined energy management system
(EMS) in order to achieve specific operational objectives (e.g.,
[1] and [2]). However, the lack of direct controllability of
the distributed generation (DG) supplying ADNs represents a
major obstacle to the increase of the penetration of DG and,
more specifically, of renewable energy resources characterized
by a non-negligible volatility.
A typical approach allowing EMSs to optimally control

ADNs relies on the direct control of the DG (e.g., [3]).
However, it requires large investments in reliable and secure
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telecommunication infrastructures. In this respect, a different
approach that potentially allows postponing the investment
associated to the deployment of the above-mentioned telecom-
munication infrastructures is the use of Dispersed Storage
Systems (DSSs) (e.g., [4], [5]). Indeed, DSSs can provide
several services to distribution network operators (DNOs)
ranging from local energy balance to ancillary services [6]. In
particular, they can be used for: peak shaving and renewable
energy compensation [7], [8], network services like voltage
and frequency control supports [9], [10]. DSSs are also capable
of indirectly control line congestions and, as a consequence,
can be used for loss minimization and postpone major network
upgrades. It is also worth mentioning that, even if the control
of DSSs from the DNO will involve the deployment of a
dedicated telecommunication infrastructure, it will be limited
to few number of DSS units.
In this context, the first problem associated with the use of

DSSs is to optimally allocate them in terms of location and en-
ergy/power ratings.
The subject of DG siting and sizing have been largely ad-

dressed in the literature (e.g., [11]–[14]). In particular, optimal
siting and sizing of DGs with the goal of minimizing network
losses has been addressed in [11]. In [12], the problem of op-
timal DG placement is investigated within the specific context
of deregulated electricity markets with the aim of maximizing
the social welfare and profits of DG owners. A multi-objective
approach taking into account investment and maintenance of
DG together with network operation, losses, and capacity ad-
equacy costs is used in [13] and [14] for the optimal siting and
sizing of DGs.
The literature related to DSSs optimal siting and sizing has

treated the following aspects: in [15] a methodology for sizing
energy storage devices within the context of microgrids is pre-
sented. The authors used a genetic algorithm (GA) to find the
optimal capacities of energy storage with an objective function
formulated to minimize the operation costs of the targeted mi-
crogrid. In [16], a methodology for allocating energy storage
systems in a medium-voltage distribution network is proposed
with the aim of decreasing wind energy curtailment and mini-
mizing annual cost of the electricity. The authors in [17] used
a hybrid GA, combined with a sequential quadratic program-
ming algorithm to size and site DGs, energy storage, and reac-
tive power compensation systems. The objective function pro-
posed in [17] accounts for the network losses and the costs asso-
ciated to the network upgrades together with energy flow from
the external grid. A hybrid method of dynamic programming
with GA has been presented in [18] for the optimal integration
of energy storage in distribution networks. The objective was to
find the best siting, rating, and control strategy of storage sys-
tems, in order to minimize the overall investments and network
costs (network upgrade and Joule losses). In [19], the problem of
the calculation of the total reserve provided by storage systems
of a noninterconnected power network, with large penetration
of renewables, is formulated. The peculiarity of the proposed
approach consists in the use of the discrete Fourier transform
(DFT) to determine the required balancing power in different
time-spans. For each time-span (i.e., intra-day, intra-hour, and

real-time), the proposed approach identifies, by using the DFT
components, the total amount of power/energy required by en-
ergy storage systems.
A common drawback of the above-listed works is that they

did not account for the capability of DSSs to provide ancillary
services to ADNs with particular reference to voltage control
and feeders/lines congestion management.
In [4], a preliminary study has been presented in which a

specific algorithm for the optimal siting of DSSs to maximize
their contribution to voltage control was proposed. Voltage sen-
sitivity coefficients, as a function of the nodal power injections,
were used to infer a linear formulation of the problem [20].
The study was performed considering different scenarios asso-
ciated to DG composed of volatile energy resources (essentially
PV-injections). In [21], the optimal siting and sizing of DSSs
in ADNs has been addressed with the objective of minimizing
the ADN voltage deviations, losses and energy cost imported
from the external subtransmission grid. In this respect, a hybrid
GA and nonlinear programming approach was used to solve the
mixed-integer nonconvex nonlinear problem. However, the ap-
proach proposed in [21] is computationally expensive and the
global optimal solution is not guaranteed for both fitness func-
tion (represented by an optimal ac power flow) and the GA
procedure.
Another drawback in the literature is related to the proper

treatment of the nonlinearity and nonconvexity of the problem.
The above-mentioned papers either use nonconvex formulation
of the OPF problem or only address the economic aspects
without considering the technical constraints of the networks
(e.g., network power flows and bus voltage constraints). Re-
cently, several works have been presented in order to convert
the AC-OPF problem into a convex one for networks charac-
terized by a generic topology (e.g., [22]).
With reference to the specific case of radial distribution net-

works, some relaxations have been proposed in order to make
the AC-OPF problem convex. A relaxation of the local load/
generation balance is proposed in [23], and it is proven to result
into a convex problem. In [24], a sufficient condition is proposed
for verification of the relaxed OPF problem exactness. The au-
thors of [21] suggested a relaxation with more conservative con-
straints for the network nodal voltage limits. A mixed-integer
quadratically constrained quadratic programming model is pro-
posed in [25] for the optimal reconfiguration of passive distri-
bution systems.
In this paper we adapted the second-order cone programming

(SOCP) OPF approach of [25] to formulate the problem of the
optimal allocation of DSSs in ADNs accounting for the presence
of dispatchable and nondispatchable DGs. The reactive power
associated with shunt impedances of the lines is also added to
the model. The DSSs are accurately modeled in terms of ac-
tive and reactive power capability limits, internal losses and
state-of-charge (SoC). Dispatchable DG units are also modeled
and added to the problem. In particular, it is assumed that dis-
patchable DGs have the capability of supporting the network
with both active and reactive power like DSSs. Like in [21], the
allocation problem is represented by a multi-objective function
that, in addition to voltage and loss minimization, is augmented
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in this paper. We have accounted for the following elements: 1)
augmentation of the objective function in order to include the
following fundamental elements not accounted in [21]: mini-
mization of line current flows and load curtailment, minimiza-
tion of dispatchable DG units operation cost, and maximization
of DSS round-trip efficiency; 2) linearization of the objective
function; 3) convexification of the problem in order to enable
its fast/accurate solution; and 4) account for multiple scenarios
generated by a suitable data clustering method.
The remainder of this paper is organized as follows. Section II

describes the proposed approach by providing first a brief de-
scription of SOCP problems, and then it defines the allocation
problem and its optimal solution. Section III illustrates the ap-
plication example with reference to realistic data and a standard
network configuration.Section IV concludes the paper with final
remarks concerning the applicability of the proposed procedure.

II. PROPOSED APPROACH

A. Second-Order Cone Programming (SOCP)

SOCP problems are nonlinear convex ones where a linear
objective function is minimized over the intersection of an
affine linear manifold and the product of second order cones
(quadratic) (e.g., [26] and [27]). This problem can be solved
by efficient primal-dual interior point methods. It is worth
noting that several classes of convex optimization problems
like, for instance, linear program (LP), quadratic program (QP),
and quadratically constrained quadratic program (QCQP), are
special cases of SOCP. However, SOCP problems are less
general than semidefinite (SDP) ones [26]. Wide varieties of
engineering problems can be formulated as SOCP such as
filter design, truss design, and so on [26], [27]. In this paper,
we propose a mixed-integer SOCP formulation of the optimal
DSSs siting and sizing in ADNs. In Section II-B, the developed
model is described in detail.

B. Problem Definition
As mentioned in the introduction, the context refers to ADNs

with the presence of both dispatchable and nondispatchable gen-
eration together with DSSs. It is supposed that the ADN is con-
nected to an external subtransmission grid characterized by a
given day-ahead hourly cost of the energy exchange known for
a time window of 24 h. The goal is to optimally site and size
DSSs in the given radial ADN. The objective function includes

two parts: 1) the investment and maintenance costs of DSSs as
shown in

(1)

and 2) operation cost of the grid during the DSSs lifetime
(brought to the year of investment).
The cost in (1) is composed of a fixed investment cost for

each DSS and the cost related to its relevant power and energy
capacities. The maintenance cost (brought to the year of the in-
vestment) is also accounted.
The operation objective aims at minimizing a virtual cost as-

sociated to the system operation conditions. This virtual cost
includes: 1) voltage deviation; 2) feeder current flows; 3) total
network losses; 4) cost of energy from the external grid and DGs
(including DGs start-up cost); 5) DSSs losses; and 6) load cur-
tailment. Each term in the objective function of operation pro-
cedure has a suitable weighting coefficient. The virtual cost is
minimized for the whole simulated time period that considers
all of the scenarios , all of the hours in each day, and all
of the years . The operation objective function is formulated
as in (2), shown at the bottom of the page.
The weighting coefficients of each term of (2) have been de-

termined by using the analytic hierarchy process (AHP) pro-
posed by Satty in [28].
In the AHP method, first, a pairwise comparison is done be-

tween the objectives. The decision-maker (i.e., the DNO) will
define the importance of the each factor in the comparison with
all the other factors [28]. It depends on the needs of the decision
maker and it can vary from network to network and operator to
operator. Then a matrix is built based on these pairwise compar-
isons and the final weights are calculated based on this metric.

C. Constraints

The constraints of the problem are given as follows.
1) DSSs Installation Constraints:

(3)

(4)

(5)

(2)
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(6)

(7)

The constraint (3) defines the maximum number of buses, in
which DSSs can be installed. The constraints (4) and (5) show
the maximum/minimum capacity (power rating and energy) of
DSS that can be installed on each particular bus. The constraints
(6) and (7) define the maximum of total DSS power rating and
energy reservoir capacity that can be installed in the whole net-
work. These two last constraints represent the limitation of the
DNOs budget for DSSs installation.
The constraints (8)–(34) are for every scenario , every

time in each day, and every year .
2) DSS Operation Constraints:

(8)

(9)

(10)

(11)

(12)

(13)

(14)

(15)

Equations (8) and (9) refer to the maximum amount of en-
ergy that can be stored, or taken, from a generic DSS reser-
voir. They represent the linking constraints along the hours of a
generic day. In particular, (8) means that the sum of all injected
and taken energy, including the losses, from the beginning of
the day until each generic time interval should be less than ini-
tial energy available in the DSS reservoir. Similarly, constraint
(9) means that the sum of all injected and taken energy in the
DSS reservoir from the beginning of the day to each generic
time should be less than the initial available capacity of DSS
reservoir. It should be noted that we assumed that the genera-
tion/absorption of reactive power from a DSS does not affect
its energy-reservoir level. However, like the active power, it in-
creases the DSS losses (e.g., the one taking place into a power
electronic converter). Equations (10) and (11) define the max-
imum and minimum capacity of the DSS reservoir as well as the
relevant real-power rating. Equation (12) models the capability
curve of a DSS based on the assumption that these devices are
interfaced with the grid using a power electronic converter. In
this respect, their capability curve is governed by the ampacity
limit of the power converter that, in case of an operation under
constant ac grid voltage, can be translated into a constraint on
the apparent power delivered by the DSS. This nonlinear con-
straint is linearized into the model by merging an a-priori de-
fined number of linear boundaries approximating the original
curve (see Fig. 1). Constraint (13) defines the losses related to
DSS active/reactive absorption/production assuming, as a first

Fig. 1. Linearized DSS capability curve.

approximation, the voltage where the DSS is connected is equal
to 1 p.u. This constraint is nonconvex, therefore it is relaxed in
the problem. The losses related to active and reactive power for
each DSS are imposed to be equal or greater than the envelope
given by this constraint. Since the losses of the DSSs are also
minimized in the objective function, the relaxed inequality con-
straint is the same as the original equality constraint. Finally,
constraints (14) and (15) define the ramp-up and ramp-down
limits of the DSS power capability.
3) Network Security Constraints: The SOCP formulation

proposed in [25] has been adapted to define the network secu-
rity constraints together with the representation of the line shunt
admittance. This last has been included in terms of a further re-
active power generated by the line itself and accounted for the
reactive power flow constraint of each line.
Only the square of voltages and current flows appear in the

both objective function and constraints. Therefore, the square of
voltages and flows are replaced as in

(16)

(17)

The following constraints account, respectively, for the balance
of active and reactive power flows on each line feeder:

(18)

(19)

The term is the set of the lines, which are connected to bus j
except the line between buses and . Equations (18) and (19)
show that the active/reactive flow from bus to bus of line
between these two buses is equal to the sum of the flows of other
lines which are connected to the bus plus the net injection on
the bus and the losses over the line. The following constraints
define the current line flow constraints:

(20)

(21)
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Fig. 2. Linearized DG capability curve.

The constraint (20) is relaxed version of the original one that is
equality instead of inequality.
The following equation shows the nodal voltage constraints

[25]:

(22)

The quadratic term in (22) is much smaller than the two other
terms. Therefore, this term can be neglected. The following con-
straint has been added to the problem to ensure that the nodal
voltages are in the feasible region.

(23)

Finally, the following constraint accounts for the amount of re-
active power related to the shunt impedance of the lines:

(24)

4) DGs Constraints:

(25)

(26)

(27)

Constraints (25) and (26) define the maximum and minimum
active and reactive power that can be produced by dispatchable
DGs, respectively. The constraint (27) defines the capability
curve of DG generator that is linearized and shown in Fig. 2.
A linear formulation is used for DGs operation and startup

costs [29]. The startup cost is modeled by a one step cost
function.
Wind turbines and PV panels are assumed to be available in

the network as nondispatchable DGs. The output power function
formulated in [30] is used here for wind turbines.

D. Linearization of the Objective Function

The voltage deviation minimization and the flow minimiza-
tion appearing in (2) are not differentiable. However, they are

similar to Chebyshev approximation problem and can be re-
placed by a linear program [31]. Such a linearization process
is described in what follows.
Two sets of auxiliary variables are defined for voltage and

lines current flows. The obtained linear functions are further
constrained as described below. Since only the square of voltage
and lines current flows appears in (2), quantities and , which
are equal to squares of and , respectively, are used.
1) Voltage Deviation Minimization:

(28)

(29)

(30)

2) Flow Minimization:

(31)

(32)

The above-mentioned problem is a mixed-integer SOCP
(MISOCP) problem with relaxed version of constraints (13)
and (20) being the only quadratic terms in the problem. They
can be modeled as the second order cone constraints as follows.

(33)

(34)

where (33) and (34) correspond to (13) and (20), respectively.
The YALMIP-MATLAB interface [32] has been selected and

used to implement theMISOCP problem, and the GUROBI [33]
solver has been used to solve it.

E. Modeling of Scenarios

The input parameters of the optimization problems are char-
acterized by different stochastic behaviors over a given time
span. In particular, these variations refer to the following time
spans: daily, weekly (including weekdays and weekends espe-
cially for the loads), seasonally, and yearly. To deal with these
variations, a reasonable number of scenarios should be consid-
ered. However, accounting for all possible scenarios results in
a large-scale and computationally expensive simulation. Due to
this computationally complexity, often the number of scenarios
is reduced to a reasonable one characterized by the same degree
of volatility/stochasticity of the original scenarios.
In this paper, we used the data clustering method to group the

input data and reduce the number of input scenarios. Cluster
analysis is used for grouping data according to measured or
perceived inherent characteristics or similarity (e.g., [34]). The
K-means method is used here to cluster the data since it is one of
the most well-known and widely used algorithms for data clus-
tering. As is known, it divides sets of -dimensional data
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Fig. 3. Modified IEEE 34-bus test feeder. the modifications refer to the pres-
ence of the DG units and the grid modeling accounting for the direct sequence
parameters only.

Fig. 4. Initial yearly load profile (base power ).

into clusters in and assigns each of the set to a corre-
sponding cluster. The method tries to synthesize the clusters
so that the mean square distance from each data of the original
set and the synthesized clusters is minimal [34], [35].
A matrix that contains the 24 h of data of the load, PV, wind,

and price for all of the days of the year creates the set of used
data (in our case, is equal 365 and is equal to 96; see
Section V for the case study).

III. SIMULATION AND RESULTS

The modified IEEE 34-bus test system [36] is used as a test
case (see Fig. 3). It is supposed to have both nondispatchable
DGs composed by PV panels and wind turbines and dispatch-
able DGs. The yearly profile of active power loads for the entire
network is shown in Fig. 4. The load profiles are considered to
be voltage-independent PQ absorptions. Even for PV and wind
units, it has also considered that they are voltage-independent
active power injections with null reactive power component.
Their yearly power production profiles are shown in Figs. 5 and
6. The price scenarios related to the load profiles have been gen-
erated bymaking reference to typical average price of electricity
in a region in the southern part of Switzerland and are adjusted
by the load profile. The load data corresponds to real measure-
ments recorded into a primary high-to-medium voltage substa-
tion. The PV and wind profiles are obtained from [37] and [38],
respectively.
The simulation parameters are shown in Table I. It is assumed

that PV units are installed on all the load buses and the wind
turbines are connected to buses #18 and #22 (see Fig. 3).

Fig. 5. Initial yearly PV production profile (base power ).

Fig. 6. Initial yearly wind production profile (base power ).

In order to cover the uncertainties and variation of different
parameters over the years, we have considered the scenarios of
the load, PV, and wind as shown in Figs. 4–6 in addition to price
scenarios. As mentioned before, the K-means method is used
here to cluster the similar scenarios and reduce their number.
A DSS’s lifetime of five years has been assumed. The simula-
tion is done for the considered DSS’s lifetime, where the pa-
rameters’ growth/variations are taken into account. The data of
each year are grouped into 30 clusters, resulting in 150 sce-
narios in total. The load growth is considered constant during
the lifetime. The wind power capacity is considered to be con-
stant during the lifetime while the PV capacity is considered to
have a growth associated with the one of the load since these
systems are normally installed on the customers’ side. The en-
ergy and fuel prices growth over the years are modeled by using
the Geometric Brownian Motion (GBM) [39]. Table II shows
the pairwise comparison of selected relative weights fed into
the AHP.
The scaled coefficients of each term in the objective function,

obtained by using the pairwise comparison reported in Table II
feeding into AHP, are: , ,

, , and . The
coefficient of load curtailment is considered to be equal to 100.
It is equal to the value of the unsupplied load. It should be noted
that the coefficient of load curtailment is not considered in
the AHP method. In this respect, a large weighting coefficient
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TABLE I
SIMULATION PARAMETERS

TABLE II
PAIRWISE COMPARISIONS OF THE OBJECTIVE TERMS

has been considered in order to prevent at most the load cur-
tailment. The coefficient adopted to weight the cost of energy
consumed from the external grid has been chosen to weight
the installation and maintenance costs of DSSs . This
decision is based on the need of having an homogeneity that is
required by the elements of the objective function quantifying
the cost elements for both investments and operation.
Table III shows the optimal obtained DSS locations and rel-

evant sizes. From the results of Table III, we can see that two
buses are selected by the proposed method to host the DSSs.
In order to quantify the benefits associated with the optimal

DSS placement, in what follows we have reported the results of
two cases corresponding to: case 1 with optimal allocated DSSs

TABLE III
OBTAINED OPTIMAL DSS LOCATION AND SIZE (BASE POWER 2.5 MW)

Fig. 7. Node voltage CDFs for the case with and without optimally planned
DSSs.

TABLE IV
CHANGES IN EACH TERM OF THE OBJECTIVE FUNCTION ALONG FIVE YEARS

(BASE POWER/ENERGY IS EQUAL 2.5 MW/MWH)

and case 2 without DSS. In particular, the cumulative distribu-
tion functions (CDFs) of the voltages related to both cases 1
and 2 associated with the whole time period and for all of the
network buses are shown in Fig. 7. These results show that the
optimal solution improves the voltage profiles with reference to
the case without DSS. In particular, it can be observed that the
presence of voltages below 0.94 p.u. and larger than 1 p.u. is de-
creased essentially to zero. Further, the voltages exhibit a larger
probability in correspondence of an interval closer to the desired
voltage.
Changes of the other terms of the objective function during

the lifetime (i.e., total losses, energy cost, feeders loading, and
load curtailment) are shown in Table IV. These results show
that all the elements of the objective function, exhibit signif-
icant improvements. In addition to the total losses reduction,
the total cost of supplied energy, which includes the energy im-
ported from the external grid as well as the energy supplied by
local DG units, is significantly reduced.
Furthermore, the presence of load curtailment and feeders

overloading (representing the first and second goals in the objec-
tive function) are entirely eliminated with the proposed optimal
placement of DSSs. These two terms correspond to the potential
network upgrades required without the presence of DSSs.
The daily operation cycle of the two DSSs provided by the

case 1 in correspondence of two days (one day in winter and one
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Fig. 8. Profiles of the energy reservoir levels of the two DSSs during (a) one
summer day and (b) one winter day (base energy 2.5 MWh.

day in summer of the first year) are shown in Fig. 8. In partic-
ular, Fig. 8(a) shows the p.u. energy stored in the two DSS units
for the summer day and Fig. 8(b) the winter day. From these
two figures, it can be observed that, since the available PV pro-
duction in summer days is much higher compared with winter
ones, DSSs tend to use their available reservoir to achieve the
optimality of the objective function. Furthermore, in summer
days, the DSSs are used to store the power produced by the re-
newable resources in the mid-hours of the day (essentially the
energy produced by PVs) and supply it back to the grid during
high peak hours. As can also be seen from these results, the sat-
isfaction of the daily storage SoC is fulfilled.
The total active load, PV, wind, and dispatchable DGs

power productions are shown in Fig. 9. In particular, Fig. 9(a)
is related to a generic summer day and Fig. 9(b) to a generic
winter day. It can be observed that, in the winter days, the DSS
are used to accumulate energy in the first two-third of the day
(from both the external grid and, when available, wind and PV
supply), in order to support the grid in the peak hours in which
high prices appears. Concerning the case of summer days, it
can be seen that the DSS accumulate energy in the central part
of the day (essentially from PV) in order to behave similarly
to winter days in the peak hours. It should be underlined that
these objectives are always reached by supporting the quality
of the supply (i.e., voltage control, feeders congestion, and
losses minimization).

Fig. 9. Active power profiles of load, PV, wind, and two dispatchable DGs
during (a) one summer day and (b) one winter day (base power 2.5 MW).

IV. CONCLUSION

The paper has proposed a MISOCP formulation of a problem
aiming at optimally allocating DSSs into ADNs. The capability
of DSSs to support the network in terms of: 1) network voltage
deviations; 2) feeders congestion; 3) network losses; 4) cost of
supplying loads (from external grid or local producers); and 5)
load curtailment has been accounted to find their best locations
and sizes. Furthermore, the problem is able to account for the in-
vestment costs related to the DSS installation and maintenance.
The proposed approach is also characterized by a convexifi-

cation of the targeted problem enabling its fast/accurate solu-
tion. This peculiarity has allowed the analysis of multiple sce-
narios, generated by a suitable data clustering method. It ac-
counts for the stochastic behavior of both loads and renew-
ables together with their evolution in terms of growth and price
changes along the DSS lifetime.
The IEEE 34-bus test feeder, suitably modified to account

for the presence of dispatchable and nondispatchable distributed
generation, has been used to demonstrate the effectiveness and
capability of the proposed method. A five-year time-span has
been assumed to perform the optimal analysis. The obtained re-
sults have shown the capability of the proposed method to opti-
mally allocate DSSs to: 1) largely improve the quality of supply
of the ADN in terms of mitigating voltage deviations, elimi-
nating line congestions and load curtailment and 2) minimizing
the total cost of locally-used electricity and investment cost for
DSSs installation and maintenance.
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It is possible to conclude that optimally allocated DSSs can
represent a valid solution for ADN operators that do not want to
deploy massive DG controls. This opportunity will potentially
postpone large control infrastructure deployment as well as grid
infrastructure reinforcement.
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