
Scala AST Persistence
Technical Report

Mathieu Demarne Adrien Ghosn
Eugene Burmako
EPFL, Switzerland

{firstname.lastname}@epfl.ch

Abstract
The Scala compiler uses ASTs (abstract syntax trees) as an intermediate representation before generating

bytecode. With the development of Scala macros which expand trees at compile time, being able to access,
modify and recompose ASTs within the compilation scope is becoming more and more important.

One of the common scenarios of using macros is inspecting abstract syntax trees within reach in order to learn
more about the code being transformed, to apply more powerful optimizations, etc. However, arguments to
macros can depend on third-party libraries, which are precompiled as bytecode and don't have their ASTs
available. It would therefore be great to have a way to publish ASTs along with the bytecode. The publishing of
those ASTs should be a choice of the programmer and should take as little space as possible in order to be
transparent to the user.

The AST persistence compiler plugin has been developed to address this problem by intercepting ASTs
produced by the typechecker, compressing them with a dedicated tree compression algorithm and storing the
result along with the generated bytecode. An accompanying library is provided that can retrieve stored trees for
accesses in macros or even elsewhere. Finally, the AST persistence SBT plugin makes this experience as smooth
as possible by automating packaging, distribution and fetching of stored trees.

In order to persist abstract syntax trees, one needs to store their structure (types of AST nodes and the edges
between them) along with additional metadata, such as names, symbols and types. In the report we present a
compression algorithm that targets just the structure of trees and an algorithm to store arbitrary data alongside.
We have implemented and benchmarked these mechanisms to persist trees and names leaving support of other
kinds of metadata to future work.

Keywords: Scala, tree compression, compile time reflection

Main repository: github.com/scalareflect/persistence

1 | 20

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/148005479?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://github.com/scalareflect/persistence

Table of Contents
Abstract..1
1 Introduction..3

1.1 Motivation...3
1.2 The challenge of compressing ASTs...3

2 Compression Algorithm..3
2.1 Overview...3
2.2 Pseudocode...4
2.3 Compression Example..5
2.4 Most Frequent Patterns...6

3 Implementation...6
3.1 Overview...6
3.2 Internal Data Representation...7
3.3 Compiler Plugin Structure..8
3.4 Decompression Library Structure...11
3.5 Dedicated SBT Tasks..12

4 Testing throughout Development...13
5 Benchmarks..14

5.1 On Sizes..14
5.2 Compilation Time Results...16
5.3 Time Break Done..16
5.4 Jar Example...16

6 Future Work..19
6.1 Storing Type Hierarchy, Symbols and Constants..19
6.2 Storing Compressed ASTs in .class File at Compile Time...19
6.3 Scalability and Going Further...19

7 Conclusion..19

2 | 20

1 Introduction
1.1 Motivation
With the development of Scala macros1 and the use of

Scala reflection APIs2, abstract syntax trees often need
to be constructed. For example, reify and more
recently quasiquotes3 already provide suitable
abstraction to rebuild trees at compile-time. But what
if a code rebuilt by a quasiquote rely on a third-party
library, with inaccessible sources? The goal of AST
persistence is to provide, among others, a solution to
this problem: being able to package ASTs in a
compressed, minimalistic way, which will allow,
through a reflection library, to get and modify specific
parts of trees.

Moreover, storing ASTs provides other interesting
outcomes, even outside of the scope of Scala macros.
They could for instance be used in debuggers to
evaluate specific expressions and add debugging
commands inside the trees or allow run time macro
expansion.

1.2 The challenge of compressing
ASTs

Even though storing ASTs is useful, we need to mind
the associated overhead since space consumption
might also be important to the user. A natural choice
here is to go for compression.

ASTs contain important informations such as types,
symbols and names. Types and symbols don’t rely on a
redundant pattern as they have, respectively, parents
and children, or owners. Hence they are more or less
incompressible based on a structural approach.

As mentioned in the abstract, we view AST
persistence as a combination of two problems: 1)
storing the structure of trees and 2) storing the
metadata. Here we focus only on the first problem,
considering the second one in later sections of the

paper.

 An interesting thing about considering just the tree
structure in isolation is that it features unique styles of
redundancy. As will be shown later, such patterns can
be categorized in a dictionary which can be used to
simplify the trees and allow compression.

This problem was the object of research in the past.
For instance Slim Binaries4 use a tree-based
representation of programs in order to allow better
cross-platform portability and run time optimization,
while drastically reducing the size of the compiled
code.

It is not obvious that in Scala, which is a functional
language and therefore concise, the amount of
redundancy of the code is going to be considerable.
Fortunately, even if source code tends to be not very
redundant, ASTs use a lot of common patterns, which
can easily be compressed. For instance, our
experiments have shown that some simple sequences
are frequently repeated, such as:

TypeApply(Select(Ident), TypeTree)

Extracting, compressing and storing ASTs at compile
time could therefore be a viable solution, as the size
required to store them might be reasonably small
compared to bytecode and source code. ASTs could
moreover be packaged as artifacts and published along
with binary files.

This was our initial hypothesis when we started the
project. Follow along to discover where we ended up!

2 Compression Algorithm
2.1 Overview
The compression algorithm presented in this paper is

a variant of Lempel-Ziv-Welch5 and consists in
generating a dictionary of subtrees which will then be
used to transform the tree into a list of occurrences and
joining edges. It is mainly inspired by the paper

3 | 20

Efficient Lossless Compression of Trees and Graphs by
Shefeng Chen and John H. Reif from Duke University6,
which proposes a compression algorithm for
homogeneous, binary trees only. However the
algorithm developed here for Scala ASTs differs
greatly, as it considers typed nodes with unfixed and
unbounded number of children.

2.2 Pseudocode
The AST compression is done in two main phases:

first, the dictionary generation, which produces all
potential subtree sequences to be used as parts of the
compression dictionary; then, once the dictionary is
generated, the tree is reparsed in proper sets of entry
occurrences and joining edges.

2.2.1 Dictionary Generation
The first phase goes through the tree and generates a

dictionary of matching subtrees while keeping the
frequencies of their occurrences.

Initialisation (dictionary D, queue S):

D contains only the root as
subtree, with frequence 0.

S contains the root of the tree.

Loop (until S is empty):

Let N be the head of the queue S;
remove N from S.

Starting from N, find the maximal
matching subtree match(N) in the
entry of D. Let’s call the subtree
below N (subtree with N as root node)
subtree(N).

If subtree(N) = match(N), then all
the subtree is covered.

Update the frequency of
match(N) in D (add 1 to the
previous value).

If |subtree(N)| > |match(N)|, then
only a subpart of subtree(N) is
covered by match(N).

Add to match(N) the first
node in BFS order L in
subtree(N) not covered by it.
Call this new match match'(N).

Update the frequencies of
all matching entries found
in D, and add match'(N) to
D. Also add L to D if not
already in it, and update
its frequency by adding 1 to
it.

Remove all nodes covered by
match'(N) in subtree(N), and
add the roots of each new
subtree to S.

2.2.2 Encoding
The encoding phase sorts the dictionary in order to

use the more common entries.

To have a valid compression the algorithm however
first rejects all the entries with size bigger than the
square root of n , where n is the size of the whole
tree to encode. This is a heuristic proposed by our
reference paper which intuitively makes sense. If a tree
has more than the square root of the number of nodes,
then expanding each of its nodes might create a
representation of the tree bigger than the original one,
which should not happen.

The entries inside the dictionary are then sorted
based on their frequencies and sizes.

Initialisation (Dictionary D, queue S):

Remove entries in D following the
heuristic presented above.

For each entry E in D with
frequency f, compute K = |E|·f.

Sort these entries based on K in
decreasing order. In case of
equality, the bigger subtree will be
first. Add a new frequency count,
initialized to 0.

Let S contains the root of the tree.

Let B be an output buffer for the
encoded tree, initially empty.

Let L be an output buffer for the
edges between each encoded
subtrees.

Loop (until S is empty):

Let N be the head of the queue S;
remove N from S.

4 | 20

Find all matching entries in D for
the subtree starting with root N.
Keep only the one with the biggest
K; let’s call this one match(N).

Remove all nodes covered by
match(N) in subtree(N), and add the
roots of each new subtree to S.

Add in L the indexes (calculated in
BFS order) of the nodes joining the
roots added to S, in order to store
the edges between the subtrees stored
separately.

Increase the frequency count for
match(N) in D by one.

Add the identifier of match(N) to B.

Finalization:

Remove all unused entries in D.

Compute Huffman code based on the
new frequencies computed in the
previous loop.

This frequency might be
different than the one
computed in the first phase
of the compression.

Replace the identifiers in B by the
Huffman codes, let’s call this new
output buffer B’.

Output D (subtrees and Huffman
codes only), B’, and L.

2.3 Compression Example
Below is a theoretical example to illustrate the

algorithm. Note first that the tree, for simplification
reasons, is not a valid Scala AST. The nodes are
however typed (hence the letter tag for each node) and
the degree of each node is not bounded nor fixed.

2.3.1 Dictionary Generation
Initially only [1]P is in S and D.

Step 1: the root [1]P is popped from S (i.e. N =
[1]P). As P was inserted in D, we have a matching
subtree match(N) of P only. Since the subtree below
[1]P is bigger than match(N), which has size one, we
insert the next node of the subtree starting at [1]P,
which is [2]C according to the BFS ordering.
Therefore we have: D = {P → 1, PC → 1} and we
add the roots of the subtrees not covered by match(P)
in S: S = {[3]C, [4]C}.

Step 2: this time, we pop N = [3]C. Since N has no
matching entry in D, we simply add it to D. Therefore
we have that D = {P → 1, PC → 1, C → 1}.
Moreover we add the root of the subtree immediately
below [3]C to S : S = {[4]C, [5]V, [6]V}.

Step 3: [4]C is popped from S and the algorithm is
repeated again until nothing remains in S.

The dictionary generated along with the frequencies
is therefore as follow:

P => f = 1
PC => f = 1
C => f = 2
CV => f = 2
V => f = 2

Those frequencies will then be used in the encoding
as explained in next section.

5 | 20

2.3.2 Encoding
The algorithm removes the entries in the dictionary

that are too big, i.e. more than √n where n is the
size of the tree. Here, √n=√9=3 . Nothing has
therefore to be removed.

The algorithm now computes K = |E|·f, for each
entry E in , D and sorts D based on K:

CV, K = 2·2 = 4
PC, K = 1·2 = 2
C, K = 2·1 = 2
V, K = 2·1 = 2
P, K = 1·1 = 1

Based on that, the algorithm finds the following
sequence of matching subtrees with maximal
frequencies:

PC / CV / CV / V / CV

The joining edges are:
L = {1,1,3,8}

The Huffman codes based on the frequencies of
occurrences are as follow:

PC frequency: 1 code: 01
CV frequency: 3 code: 1
V frequency: 1 code: 00

The compressed tree is therefore 0111001, and we
output it along with L = {1,1,3,8} and the reversed
dictionary:

1 => CV
01 => PC
00 => V

2.4 Most Frequent Patterns
Below are the most frequent patterns for the file
Typers.scala7 from the Scala compiler, along with
their appearance frequencies.

(Ident, Select) → 1664

(Ident, Select, Select) → 892

(TypeTree, ValDef) → 810

(Ident, TypeTree, Select, TypeApply) → 230

(This, Select, TypeTree, Select, TypeApply)
→ 220

(EmptyTree, TypeTree, Apply, ValDef,
Function) → 169

(Ident, Typed, TypeTree, Ident, Ident,
Apply, ValDef, TypeTree, Select, Apply,
Block, TypeApply, If, LabelDef) → 139

(Ident, Select, TypeTree, Select,
TypeApply) → 83

3 Implementation
3.1 Overview
The most information about a Scala program is

available in the Scala compiler right after
typechecking. Before typechecking, there is no
information about symbols and types, and after
typechecking trees are progressively simplified in order
to optimize bytecode generation, which loses
information about their original shapes. Thus the best
way to persist trees is to add a phase to the Scala
compiler that comes right after the typer phase. A
suitable way to do this is to implement a plugin for the
Scala compiler.

As a consequence, the new phase of the compiler

6 | 20

changes the representation of the Scala trees prior to
perform the compression, by storing separately names,
types, symbols and other metadata. Those informations
are removed from the ASTs, producing a simplified
version of them. The ASTs are then compressed using
the algorithm presented above (at tree-level), and then
compressed again at byte-level using an XZ library8

built in Java.

Once compressed, the ASTs as well as the other
required informations are put into an asts/ folder
right near the compiled classes and respect the
packaging hierarchy.

Accompanying the plugin we have implemented a
decompression library. It provides various methods to
access specific parts of the trees, such as methods or
classes declarations.

Moreover, the plugin and the packaging of the ASTs
should be as transparent as possible to the user. New
packaging and publishing tasks were added to SBT and
abstracted behind an SBT plugin, as well as the use of
the compiler plugin.

3.2 Internal Data Representation
Unfortunately manipulating trees isn’t always easy.

There is no way to keep a parent and a child close
together in a list while preserving the ordering. The
algorithm builds a new intermediate representation by
flattening all the children contained in an AST into a
single, simple list, which can then be accessed
uniformly without having to take the type of the node
into consideration.

In order to easily manipulate those new nodes, the
algorithm also heavily relies on a BFS representation of
the whole tree, with children first. This ordering is well
suited since it becomes relatively easy to cut a tree at a
specified position without generating orphan children.
Moreover, the compression algorithm builds a
dictionary of entries which are monotonically

increasing and follow a BFS ordering. This
representation was therefore even more indicated.
Furthermore, our algorithm needs to traverse the tree
in a uniform way both for compression and
decompression. As a consequence, we had to find a
new representation for the ASTs that fits our needs and
simplified the implementation of the algorithm.

More specifically, we only need to store a subset of
information contained in the original ASTs, namely,
the type of a node, its name if any, and its children.

3.2.1 Representing Nodes
Since we only need to remember the type of a node

and its children, we created a case class named Node
with the following signature:

case class Node(
tpe: NodeTag.value,
children: List[Node])

where NodeTag is an enumeration of the types that
exist in the Scala AST’s, and children is simply the list
of nodes that have this one for parent. With this
representation we can now uniformly access and
traverse the nodes of the tree without worrying about
its type and, therefore, its attributes.

3.2.2 Representing Nodes in BFS Order
We said before that our algorithm uses a breadth first

search traversal of the tree. As a consequence, we
created another case class that wraps the Node's
representation into what we called a NodeBFS:

case class NodeBFS(
node: Node,
bfsIdx: Int,
parentBfsIdx: Int)

where the bfsIdx is the index of the node in BFS
order, starting at the root of the tree, parentBfsIdx
is the index in the same representation of the node’s
parent (if the node is at the root, then it is -1). We
usually use this representation when we flatten the tree
into a list that respects the BFS order. By doing this, we

7 | 20

are able to use the functions defined for Lists.

3.2.3 Representing Names
As you can see, names for types and terms are not

part of this representation. We removed them and put
them into a separated List. This list respects the order
of appearance in the tree. We then transform it into a
Map[String, List[Int]] where the list
corresponds to BFS indexes of the nodes where they
appear. This representation avoids repeating duplicates
and moreover allows a better compression due to its
concise representation. This enables an efficient search
through the tree represented as a BFS list of nodes
when we need to find the definition of some element,
since we don't have to go through the whole list (see
high level compression on names for an example).

3.2.4 Representing Edges
Representing edges was a challenging part. In the

algorithm presented above an edge linking a subtree to
its parent is stored using the BFS index of the parent of
its root node. However such index must be known at
decompression, which is impossible since not all the
tree is rebuilt. To address this issue, we decided to
represent the edges as a list of pairs of integers. The
first integer is the parent’s subtree index, that is, it is
the index of the subtree corresponding to an entry in
the dictionary, in BFS order, that contains the node to
which the subtree we are considering is connected. The
second integer is the BFS index, relative to the subtree,
of the parent node. We only need the inter-subtrees
edges to be able to reconstruct the original tree (since
the other edges are part of the entries in the
dictionary). Another way to see this, is that we
transform the original tree by merging nodes that form
a subtree contained in the dictionary and therefore
create a much simpler tree for which we need to store
the edges.

Example

Let’s take back our tree used as a compression
example. Here subtrees corresponding to entries in the
dictionary are colored. Edges in black are inter-subtree
edges:

Then, we merge all nodes belonging to a single
subtree into one node, but we keep the inter-subtree
edges:

Each color corresponds to a Huffman code. To be able
to get back the original tree, we simply need to know
how to relink the nodes that we have here. Once this is
done, we can expand each node to the original tree
that it corresponds to.

3.2.5 Huffman Dictionary
The dictionary is used to encode the tree and is a

specific type HuffDict, which is simply a map from a
list of NodeBFS, representing a subtree, to a list of
bytes, which is the Huffman code corresponding to this
entry. We chose to generate Huffman codes in order to
both save space and get rid of any possible ambiguity
in the decompression phase. At this point, each byte in
the list is either 0 or 1, but when we compress the
dictionary we transform them into bits (hence the need
for an unambiguous representation encoding).

3.3 Compiler Plugin Structure
For the compression, the Plugin.scala class has an

8 | 20

apply method that is responsible for correctly
generating the compressed representation of the AST
and writing it to a file.

We can break the compression into two phases: the
encoding of the AST and Names from the internal data
representation to an array of bytes (“high-level
compression”), and the use of the XZ library to
compress those bytes (“low-level compression”).

The first phase produces a list of bytes that are to be
compressed in the second phase.

In order to correctly read the elements, due to the
fact that we do not have a uniform encoding, we
needed to find a way to efficiently detect when the
encoding of one element ends, and when another
begins. Furthermore, as we will see later, our
implementation generates bytes equal to -1 which
prevents us from using most of the tools that I/O
libraries provide to detect the end of the input.

3.3.1 Transforming the AST
Representation

The Scala ASTs are first transformed into our own
internal data representation by a tail recursive call in a
specific class called TreeDecomposer.scala. The
tree decomposer moreover stores the names in a
separated list. Those two kinds of instances are then
used by the tree compression as well as the name
compression, respectively.

3.3.2 High-level Compression (on
ASTs)

The class AstCompressor.scala contains the
concrete implementation responsible for encoding the
original tree.

It performs the compression of the AST in its apply
method. This class contains different methods to
encode each and every element that we decide to store.
We will present them and the technique to encode

them in the same order they are processed in the apply
method.

The Occurrences

We begin by saving the occurrences, that is, the series
of Huffman codes representing the tree flattened in BFS
order and encoded with our dictionary. This is done in
a very straightforward way, we first generate two bytes
corresponding to the size in bytes of the occurrences.
Then we simply write the occurrences. Of course, in
order to save as much space as possible, all bits
representing this encoding are concatenated and
grouped into bytes. Since we use a Huffman code, we
know that we can unambiguously recover the original
list of entries by using the longest prefix match rule.

The Edges

The next element to be saved are the edges.

As we said, this part was quite challenging, not only
because we needed to adapt the original algorithm to
be able to handle nodes with variable number of
children, but also in terms of space required to store
this information. As a matter of fact, edges are
containing the whole structure of the tree which,
obviously, represents a lot of information. The first
version of our algorithm was not efficient enough
simply due to the fact that edges took too much space.
Hopefully, we found a way to reduce the size needed
to store them.

To encode them, we decided to break the list of pairs
of integers into two lists of integers.

In fact, we noticed that the indexes of the parent tree
repeat themselves a lot and are ordered. Therefore, we
were able to delete this redundancy by encoding a
parent’s entry as the index, followed by the number of
time it repeats itself. We also took advantage of the
fact that indexes are close to each other. Therefore,
instead of encoding all of them as integers (four bytes),
we decided to store a short (two bytes) that represents

9 | 20

the difference between this element and the precedent
one, therefore reducing greatly the average length of
the data needed to encode the edges.

The Dictionary

The next phase writes the dictionary. For that
purpose we first write the number of entries in the
dictionary as an integer (encoded on four bytes). Then,
for each entry, we write the size of the list of bytes
representing the Huffman code corresponding to the
list of NodeBFS defining the entry. We then transform
the list of NodeBFS into a simpler representation,
where each element is encoded as a triplet (Byte,
Short, Short), where the byte encodes the type (the
tpe attribute), the second element is the BFS index of
the node and the third the parent’s index.

3.3.3 High-level Compression (on
Names)

Names are encoded to bytes using the
NameCompressor.scala class. For each name, we
generate a list of the BFS indices where it appears,
therefore creating a map from a string to a list of
occurrences. The first occurrence corresponds to the
definition of the element. We did this hack in order to
be able to quickly reconstruct only a subtree of the
original tree. When the user specifies a class, object,
value or method definition that he wants to
reconstruct, we simply feed it as input to the map
containing the names as keys, look for the definition
bfs index, extract the subtree from the list of NodeBFS
and recompose only the part that we want. This is
explained in more details in the next chapter.

Storing the map of names was however done using a
different representation to allow a better compression
at low-level. The mapping [String, List[Int]] is
transformed as follow. First, the strings of the names
are sorted and stored with a simple separator of one
byte. All of them then receive a specific Id. Those ids

are then used to generate a list of consecutive
occurrences of names, each position specifying in BFS
order the id of the name of the next named node (not
the BFS indices directly). For example, if we have the
following dictionary:

• a → 1, 4, 5

• b → 2, 3

• c → 6, 7

… with corresponding ids for keys:

• a → 0, b → 1, c → 2

… then the encoding would be:

“a\nb\nc\n0110022”

Using this representation, repeating patterns in the
sequence of names can then be more efficiently
compressed by the low-level compression.

3.3.4 Low-level Compression
Now that we have all the bytes corresponding to each

element, all we need to do is to feed them to the XZ
library in order to apply the LZMA9 compression
algorithm. This is done by XZWriter.scala. Using
this library, we had to face an important problem. The
library provides, for decompression, an available
method that estimates the number of bytes that we can
still read from the input source. This method’s
implementation is based on the assumption that the
byte -1 is reserved and used to mark the end of the
input. But we sometimes generate -1 as a byte
encrypting one of our elements. Therefore, in order to
be able to correctly decompress the file, we had to
perform the following trick: we first write the total
number of bytes that corresponds to the whole
compression, and then write the compression to the
file using the XZ library. Using this method, we know
exactly how many bytes we are supposed to read and
we are able to stop the decompression at the exact
correct moment.

10 | 20

3.4 Decompression Library Structure

3.4.1 Low-level Decompression
The XZReader.scala class is responsible for

decompressing the bytes corresponding to our
encoding. It begins by reading a long (four bytes)
corresponding to the total number of bytes that are
supposed to be decoded by the XZ library. We then
decompress this number of bytes.

3.4.2 High-level Decompression (ASTs)
The AstDecompressor.scala class is the

symmetric of AstCompressor.scala that we
presented before and therefore we will not explain in
details how it works. All elements are regenerated
from the list of bytes we got from the XZReader in the
precedent step in the obvious way.

3.4.3 High-level Decompression
(Names)

The NameDecomposer.scala class is responsible
for getting back the names and their occurrences.

Due to their representation, names are not stored
along with their BFS indices in the tree, but are only
ordered in BFS. Therefore those indices need to be
reconstructed by traversing the tree during
decompression. The result is a map from String to a list
of integers corresponding to the BFS indexes of the
nodes in which the names appear.

3.4.4 Recomposing the Tree
The TreeRecomposer.scala class is responsible

for reconstructing the Scala AST. In other words, it
translates our representation, which uses Node and
NodeBFS, into the original structure used in the Scala
compiler to represent syntax trees.

For that, it traverses the tree node by node and
rebuilds the corresponding AST element using the
universe object that it received in its constructor. This

is done in a straightforward way, using a match on the
tpe attribute of the node.

This implementation had some challenges. First, since
we extracted the names from the trees, we needed to
find an efficient way to put them back. Our solution
was greatly influenced by the fact that we expected a
toolbox (see next section) to be used to get back only
parts of the original tree. Thus, only some parts of the
tree needed to be reconstructed.

3.4.5 The “Toolbox”
The Toolbox (ToolBox.scala) is designed to be the

interface between the user and the decompression
library. The interface proposes a method to get classes,
objects methods or value definitions corresponding to
some symbol specified as input:

def getSource(symbol: Symbol): Tree

This one could moreover be easily wrapped in an
implicit class to be called by a one-liner such as:

symbol.source

Our goal is to be as efficient as possible and avoid
unnecessary computations. This greatly influenced the
overall implementation of our compiler plugin as well
as our decompression library as our internal
representation had to enable us to reconstruct
specifically selected parts of the original AST.

To answer the user’s request, we first fetch the file
corresponding to the path obtained from the symbol.
This file has to be in a jar contained in the classpath.
We extract the file, decompress it and then search for
the part that we need to answer the request correctly.
We take care to save the triplet formed by the tree
represented as a Node, the BFS representation of it
(which is expensive to compute) and the map for
names occurrences.

If a request then comes for the same file, we do not
have to parse anything again and can directly look into

11 | 20

the map.

One limitation of our implementation is that the
smallest unit that we can read is a file. In fact, for any
request we need to read at least one entire file, even if
we will not use every element that we get from it.

This problem can be addressed with some
modifications in the future. In fact, we could imagine
storing the names first in the file, then the other
needed information with the occurrences last. Since we
have the size for each of them, reading the map for
names would give us the BFS index of the part that we
need to read from the occurrences, and we could
therefore jump to the correct place, that is, we ask XZ
to discard bytes that we are not interested in (we do
not try to recompose anything from them). But this is
quite complicated and XZ works sequentially. So we
cannot ask it to process byte number 4 before byte
number 3 for example, which forces us to read
everything that precedes what we are interesting in, in
the file. We did not try to implement this solution for
the moment.

Once the file is decompressed, we have the elements
corresponding to the tree, as described in the
precedent part.

We then lookup for the name corresponding to the
user’s request in the map containing the names
occurrences. We take the BFS index corresponding to
the definition of this element and check that the node
in the BFS tree has the type corresponding to the user’s
request (class, method, or value definition). If it does
not, we look at the next index in the occurrences. We
repeat the process until we find the correct NodeBFS.
Then, we extract the subtree from the list of NodeBFS
corresponding to the element’s definition. This can be
done efficiently using our NodeBFS representation,
since it allows tree manipulation by removing elements
from the BFS list.

Finally we feed this to the TreeRecomposer which

will produce the AST that we can return to answer the
user’s request.

For the moment, we did not implemented the code to
handle the cases of overloading or multiple definitions
of same type (i.e. same Scala AST type, with the same
name). But we will easily add some function that will
take a more detailed path, for example by full names,
and would correctly identify the subtree to reconstruct,
hence providing the user with a way to select the
definition that he is interested in.

Example

class C{}

object X {

class C {}

}

Where the enclosed C in X could be accessed by :

symbolOf[X.C].source

3.5 Dedicated SBT Tasks

3.5.1 Overview
Creating, packaging and publishing the compressed

AST should be as much transparent to the user as
possible. A way to ensure this property is to create an
SBT plugin which will automatically add the
compilation settings as well as creating the required
commands for publishing the new artifacts.

More specifically, our SBT plugin provides the
following features:

• It adds by default the compiler plugin and
ensures consistency, even if compilation fails,
by keeping into a backup the previously
compressed ASTs and restoring them if needed.
This is done by overriding the main compile
task as well as defining a task executed prior to
any compilation.

• It adds a packageAst task which creates a

12 | 20

new jar with a specific AST classifier ready to
be published.

• The package task is overriden in order to
execute packageAst along with the
packageBin task as well.

• The packaged ASTs are also added as an
artifact to be published.

The SBT plugin is implemented as a
AstcPlugin.scala file, extending the default SBT
plugin class. We decided not to use the new
AutoPlugin from SBT 0.13.510, to avoid errors in
overriding settings of older SBT versions.

3.5.2 Example
Assuming we have a simple project on which we

would like to use our SBT plugin. In the plugins.sbt
file, we can simply specify :

addSbtPlugin("org.scalareflect" %
"persistence-sbt" % "0.1.0-SNAPSHOT")

This will automatically add the compiler plugin as
well as the features required to manipulate ASTs files.
Below is a simplified output using SBT:

> packageAst
Updating {file:/tests/}tests... Resolving
jline#jline;2.11 ...
Done updating.
Compiling 1 Scala source to ...
Packaging .../tests_1-asts.jar ...
Done packaging.
[success] Total time: ...
> publishLocal
Packaging

.../tests_2.11-1-sources.jar ...
Done packaging.
Packaging .../tests_1-asts.jar ...
Main Scala API documentation to ...
Done packaging.
Wrote .../tests_2.11-1.pom
:: delivering :: ...
delivering ivy file to ...
Packaging .../tests_2.11-1.jar ...
Done packaging.
model contains 2 documentable templates
Main Scala API documentation successful.
Packaging

.../tests_2.11-1-javadoc.jar ...
Done packaging.
published tests_2.11 to

.../tests_2.11.jar

published tests_2.11 to
.../tests_2.11-javadoc.jar

published tests_2.11 to
.../tests_2.11-asts.jar

published tests_2.11 to
.../tests_2.11-sources.jar

published tests_2.11 to
.../tests_2.11.pom

published ivy to .../ivy.xml
[success] Total time: ...

Following those commands, the ASTs are already
available in the local repository. Of course, the added
settings also allow to publish in non-local repositories.

To fetch published ASTs for dependencies, we can
then specify needing them in the build, as follow:

libraryDependencies += "your.org" % "tests"
% "0.10" classifier "asts"

This could also be done transitively by specifying
which classifiers to fetch for all the dependencies:

transitiveClassifiers := Seq("asts")

Those settings are standard options in SBT11.

The decompression library will then automatically
fetch the ASTs, since they are available throughout the
classpath once the classifiers fetched.

We first thought of adding those settings
automatically using our SBT plugin, but unfortunately
there is no way to know exactly for which
dependencies the project would require the ASTs
without knowing in advanced its definition. Using the
lines specified above, the user can specify the
classifiers he needs easily.

4 Testing throughout
Development

Since we are experimenting with new algorithms for
which we only had a theoretical support, and no
reference implementation, we needed a way to check
the correctness of our implementation step by step.
Again, the overall architecture / organization we
decided to adopt for this project helped us. As you

13 | 20

have seen, each step of the compression is
implemented separately and has enough independence
to be tested on its own.

One major difficulty we had to address was to
generate test cases on demand, of variable complexities
without requiring the plugin to be executed on a real
Scala file.

We decided to use ScalaTest's funSuite12 in order to
ensure that our code had the required properties.
Furthermore we created two parsers that generate trees
from simple strings in order to be able to quickly and
easily generate test cases. The semantic to write trees
is as follows:

… where tpe is the type of the node, encoded as one
character and the identifier between “!” is the name of
the node.

So for example, one tree corresponding to the
following schema:

... would be represented as:

“m !F! (v (c !La! v !Le! (m !M! c !C! c)))”

This proved very useful for debugging.

5 Benchmarks
The compression algorithm basically has the same

compression properties as a classic Lempel-Ziv-Welch
algorithm. The more redundant the tree is, the better
the compression. We didn’t know at first how
redundant the Scala ASTs would be in average and
therefore didn’t know how our algorithm would
perform.

In order to test if the algorithm was working well, we
create two benchmarks, respectively on compression
ratio and compilation time. We decided to compile for
our test the whole Scala standard library
(scala-library.jar), which proposed
approximately 500 different source files of various
sizes. We also added an extreme case by compiling the
Typers.scala file from the Scala compiler
(scala-compiler.jar), which contains more than
five thousands lines of code.

5.1 On Sizes

5.1.1 Comparison Source
In order to compare our compression ratio with an

industrial algorithm we create another, small, compiler
plugin to extract the raw printout of the trees. In order
to have a comparison as correct as possible, our
benchmark removes all metadata from trees except
names for the tests including them. Below is an
example of simplified ASTs only (no names):

PackageDef(Ident(<empty>),
List(ModuleDef(Modifiers(), Test,
Template(List(TypeTree(),
TypeTree().setOriginal(Select(Ident(scala),
scala.App))), noSelfType,
List(DefDef(Modifiers(),
termNames.CONSTRUCTOR, List(),
List(List()), TypeTree(),
Block(List(Apply(Select(Super(This(TypeName
("Test")), typeNames.EMPTY),
termNames.CONSTRUCTOR), List())),
Literal(Constant(())))),
ValDef(Modifiers(PRIVATE | LOCAL),
TermName("a "), TypeTree(),

14 | 20

Literal(Constant(4))),
DefDef(Modifiers(METHOD | STABLE |
ACCESSOR), TermName("a"), List(), List(),
TypeTree(), Select(This(TypeName("Test")),
TermName("a "))), ValDef(Modifiers(PRIVATE
| LOCAL), TermName("b "), TypeTree(),
Literal(Constant(33))), …

... is encoded as :

a(G, S(R(, x, i(S(Q(), Q()T(F(G(x),x))), ,
S(e(, , S(), S(S()), Q(), j(S(C(F(R(E((x)),
),), S())), I((())))), d(, (x), Q(),
I((4))), e(, (x), S(), S(), Q(), F(E((x)),
(x))), d(, (x), Q(), I((33))), …

... and then compressed using LZMA
(Lempel–Ziv–Markov chain algorithm) and compared
to our algorithm. Of course, for fairness of comparison,
we compress only one file at a time with LZMA.

5.1.2 Results without Names
We achieved to have a better compression in average

than LZMA, with some extreme cases where our
algorithm performed twice as well. When our
algorithm obtained worse results than LZMA, both
compression ratio were close.

Global statistics

Sources: 2419914, Raw: 3544620, xz: 346008,
astc: 285232

In general, our compression is smaller than
a classic xz of .82435

Tests where xz was better: 61 over 516
tests

In comparison with the sources, our
compression is 8.48402 times smaller.

For detailed results, see:

github.com/scalareflect/persistence/blob/master/ben
chmark/results/SizeBenchmarkNoNames.txt

5.1.3 Results without Names and no
showRaw Preprocessing

When we do not help LZMA by preprocessing the
output of showRaw, we get the following result, which
is really good:

Global statistics

Sources: 2419914, Raw: 9577264, xz: 721000,
astc: 285232

In general, our compression is smaller than
a classic xz of .39560

Tests where xz was better: 0 over 516 tests

In comparison with the sources, our
compression is 8.48402 times smaller.

For detailed results, see:

github.com/scalareflect/persistence/blob/master/ben
chmark/results/SizeBenchmarkNoNamesNoModifShow
Raw.txt

5.1.4 Results with Names
In order to test our implementation with compressing

names as well as ASTs, we modified our simplification
of showRaw as presented above to preserve names.

In average, we also obtained better results than the
industrial LZMA. This time, the results of two
techniques were closer due to the fact that our
implementation targets the compression of trees,
therefore forcing names to be stored separately.

Global statistics

Sources: 2419914, Raw: 4595521, xz: 548996,
astc: 517684

In general, our compression is smaller than
a classic xz of .94296

Tests where xz was better: 176 over 516
tests

In comparison with the sources, our
compression is 4.67450 times smaller.

For detailed results, see:

github.com/scalareflect/persistence/blob/master/ben
chmark/results/SizeBenchmarkWithNames.txt

5.1.5 Results with Names and no
showRaw Preprocessing

Again, we tried to compare our algorithm without
helping LZMA with the output of showRaw. This time,

15 | 20

https://github.com/scalareflect/persistence/blob/master/benchmark/results/SizeBenchmarkWithNames.txt
https://github.com/scalareflect/persistence/blob/master/benchmark/results/SizeBenchmarkWithNames.txt
https://github.com/scalareflect/persistence/blob/master/benchmark/results/SizeBenchmarkNoNames.txt
https://github.com/scalareflect/persistence/blob/master/benchmark/results/SizeBenchmarkNoNames.txt
https://github.com/scalareflect/persistence/blob/master/benchmark/results/SizeBenchmarkNoNamesNoModifShowRaw.txt
https://github.com/scalareflect/persistence/blob/master/benchmark/results/SizeBenchmarkNoNamesNoModifShowRaw.txt
https://github.com/scalareflect/persistence/blob/master/benchmark/results/SizeBenchmarkNoNamesNoModifShowRaw.txt

the results were as follow:

Global statistics

Sources: 2419914, Raw: 9577264, xz: 721000,
astc: 517684

In general, our compression is smaller than
a classic xz of .71800

Tests where xz was better: 2 over 516 tests

In comparison with the sources, our
compression is 4.67450 times smaller.

For detailed results, see:

github.com/scalareflect/persistence/blob/master/ben
chmark/results/SizeBenchmarkWithNamesNoModifSho
wRaw.txt

5.2 Compilation Time Results
The algorithm involves a lot of manipulations on

trees under the form of lists in BFS order, and a couple
of construction / deconstruction from those lists to
actual tree representation.

The lookup into the dictionary of subtrees during the
encoding phase in the worst case is in O (n⋅m) ,
where n is the average subtree size and m the
number of dictionary entries, since we have to
compare each node inside the BFS trees step by step.

By changing a bit our implementation we were able
to drastically reduce the time needed for the
compression. Our algorithm still increases the time
required by the compilation of 15% in average:

Total time with astc: 2893.549

Total time normally: 2541.068

In average, the time is increased of
(ratio): .13871

Results on an Intel I5 @ 2.67 Gz

For detailed results, see :

github.com/scalareflect/persistence/blob/master/ben
chmark/results/TimeBenchmarkNoNames.txt

The reader should be aware of the fact that, even if
having good time performance was important, we did

not put any specific effort into optimizing it. That
means that we did not run any profiler tool on the
code, and therefore, it is highly likely that some
optimization can be performed in order to improve
those results. Furthermore, we do not provide any
comparison of time with the LZMA algorithm, since
our plugin has compilation overhead and runs in the
JVM, which is not the case of the industrial LZMA
implementation we used, provided by 7zip.

5.3 Time Break Done
The main overhead of the algorithm comes from the

transformation of Scala ASTs to our internal
representation:

#Plugin part ~~~~~~~~~~ Time (seconds)

Start of the plugin 0
Parsed into Nodes 1.02
End of ComputeFreqs 0.21
End of SplitTree 0.22
End of Huffman gen 0.0
End of encodeOccs 0.52
End of outputOccs 0.0
End of outputEdges 0.32
End of outputDic 0.02
End of plugin 0.00

Compilation times for Typers.scala (5500
lines of code) on an Intel I5 @ 2.67 Gz

We believe that the big part of the conversion
overhead comes from the inefficient organization of
the big pattern match that comprises the conversion
function, because such pattern match is in O (n) and
also relies on run time reflection. In project
Palladium13, abstract syntax trees have integer tags,
which can be efficiently matched upon in O (1) .

5.4 Jar Example
We packaged the sources, the binaries as well as the

ASTs for the whole Scala Library in order to have a
rough approximation of the size ASTs could take
compared to other packages.

Simplified output of ls -l:

16 | 20

https://github.com/scalareflect/persistence/blob/master/benchmark/results/TimeBenchmarkNoNames.txt
https://github.com/scalareflect/persistence/blob/master/benchmark/results/TimeBenchmarkNoNames.txt
https://github.com/scalareflect/persistence/blob/master/benchmark/results/SizeBenchmarkWithNamesNoModifShowRaw.txt
https://github.com/scalareflect/persistence/blob/master/benchmark/results/SizeBenchmarkWithNamesNoModifShowRaw.txt
https://github.com/scalareflect/persistence/blob/master/benchmark/results/SizeBenchmarkWithNamesNoModifShowRaw.txt

drwxr-xr-x 5 4096 api

drwxr-xr-x 16 4096 asts

drwxr-xr-x 3 4096 classes

-rw-r--r-- 1 767818
tests_2.11-0.1-SNAPSHOT-asts.jar

-rw-r--r-- 1 5524069
tests_2.11-0.1-SNAPSHOT.jar

-rw-r--r-- 1 15858557
tests_2.11-0.1-SNAPSHOT-javadoc.jar

-rw-r--r-- 1 891105
tests_2.11-0.1-SNAPSHOT-sources.jar

ASTs take a little less space than the sources, but
binaries are definitely bigger.

17 | 20

18 | 20

Illustration 1: With names and preprocessing of showRaw. x: size of showRaw output. y: sizes of the
compressed files. All sizes are in bytes.

Illustration 2: Without names and no preprocessing of showRaw. x: size of showRaw output. y: sizes of the
compressed files. All sizes are in bytes.

6 Future Work

6.1 Storing Type Hierarchy, Symbols
and Constants

The goal of the AST persistence project was to find a
way to store ASTs in a compressed way. This goal is
achieved in the sense that the results of compression
are better than a classic LZMA.

However this is only a prototype: to be properly
usable, the plugin would require to store type, constant
and symbols informations.

Storing constant for instance is trivial: it is basically
the same as names and could rapidly be added.

Such informations could also be used for IDE
integration and interpretation, which are among the
other subparts of the Palladium project. Once the exact
fields required for such a tool are known, the plugin
will be easily extended.

6.2 Storing Compressed ASTs in
.class File at Compile Time

For simplicity and to avoid loading in memory
unnecessary data at run time, our plugin stores the
ASTs in a separated compilation folder. Since those
files are small it would be possible to store them
directly into bytecode, avoiding the generation of more
files at compile time. During packaging the compressed
ASTs could then be extracted from the bytecode and
packaged, like it is now the case with the packageAst
SBT task, as an artifact with its own classifier.

6.3 Scalability and Going Further
In this implementation, we used the XZ library to

perform a compression on our internal representation
of the ASTs. The implementation is such that replacing
this library by any other one would be really easy and,
therefore, if a library with better ratios appears, we
should be able to scale our performance by integrating

it. We could imagine a system in which the user
chooses among a list of such libraries which one he
wants to use, according to his needs in terms of space /
run time.

7 Conclusion
During the first phase of development we read

numerous papers14 on tree compression, leading us to a
better understanding of the challenges it raises.
Developing the compression algorithm was a really
interesting challenge.

Its implementation is however complicated as we had
to do some complex tree manipulations. The
compression library was partially optimized to avoid
large overhead on compilation time, but unfortunately
its main time consumption comes from the translation
to our internal representation, which is a cornerstone
of the whole implementation.

The AST persistence project was developed as a part
of the Palladium project. The main use of the AST
persistence compiler plugin were therefore developed
at the same time and the exact informations required
to be stored were not known during the development
phase. As such, our solution targets Scala trees but its
port to Palladium seems straightforward, especially
given the only non-tree fields in Palladium trees are
primitives and strings (names, symbols and types are
represented as trees).

For this project we feel like we achieved our goals,
since we found a way to efficiently store ASTs along
with their names. We also think that adding other
metadata such as constants would be easy.

Moreover, the implementation of the plugin respects
the transparency requirement that we wanted for the
user, giving him a very simple way to add the plugin as
well as other tasks related to them through SBT. The
toolbox also provides a simple, neat interface to get
back ASTs from symbols.

19 | 20

References

[1]Scala macros: docs.scala-lang.org/overviews/macros/overview.html

[2]Scala reflection APIs: docs.scala-lang.org/overviews/reflection/overview.html

[3]Quasiquotes: infoscience.epfl.ch/record/185242

[4]Slim Binaries: wiki.tcl.tk/4400

[5]Lempel-Ziv-Welch: en.wikipedia.org/wiki/Lempel-Ziv-Welch

[6]Efficient Lossless Compression of Trees and Graphs: www.cs.duke.edu/~reif/paper/chen/graph/graph.pdf

[7]Typers: github.com/scala/scala/blob/2.12.x/src/compiler/scala/tools/nsc/typechecker/Typers.scala

[8]XZ library: tukaani.org/xz/java.html

[9]LZMA: www.7-zip.org

[10]SBT 0.13.5: github.com/sbt/sbt/releases/tag/v0.13.5

[11]Classifiers options in SBT: www.scala-sbt.org/0.13.5/docs/Detailed-Topics/Library-Management.html

[12]Scalatest funSuite : doc.scalatest.org/2.1.7/#org.scalatest.FunSuite

[13]Palladium project: scalareflect.org

[14]See: goo.gl/FrjsdR

http://goo.gl/FrjsdR
http://scalareflect.org/
http://doc.scalatest.org/2.1.7/#org.scalatest.FunSuite
http://www.scala-sbt.org/0.13.5/docs/Detailed-Topics/Library-Management.html
https://github.com/sbt/sbt/releases/tag/v0.13.5
http://www.7-zip.org/
http://tukaani.org/xz/java.html
https://github.com/scala/scala/blob/2.12.x/src/compiler/scala/tools/nsc/typechecker/Typers.scala
http://www.cs.duke.edu/~reif/paper/chen/graph/graph.pdf
https://en.wikipedia.org/wiki/Lempel-Ziv-Welch
http://wiki.tcl.tk/4400
http://infoscience.epfl.ch/record/185242
http://docs.scala-lang.org/overviews/reflection/overview.html
http://docs.scala-lang.org/overviews/macros/overview.html

	Abstract
	1 Introduction
	1.1 Motivation
	1.2 The challenge of compressing ASTs

	2 Compression Algorithm
	2.1 Overview
	2.2 Pseudocode
	2.2.1 Dictionary Generation
	2.2.2 Encoding

	2.3 Compression Example
	2.3.1 Dictionary Generation
	2.3.2 Encoding

	2.4 Most Frequent Patterns

	3 Implementation
	3.1 Overview
	3.2 Internal Data Representation
	3.2.1 Representing Nodes
	3.2.2 Representing Nodes in BFS Order
	3.2.3 Representing Names
	3.2.4 Representing Edges
	3.2.5 Huffman Dictionary

	3.3 Compiler Plugin Structure
	3.3.1 Transforming the AST Representation
	3.3.2 High-level Compression (on ASTs)
	3.3.3 High-level Compression (on Names)
	3.3.4 Low-level Compression

	3.4 Decompression Library Structure
	3.4.1 Low-level Decompression
	3.4.2 High-level Decompression (ASTs)
	3.4.3 High-level Decompression (Names)
	3.4.4 Recomposing the Tree
	3.4.5 The “Toolbox”

	3.5 Dedicated SBT Tasks
	3.5.1 Overview
	3.5.2 Example

	4 Testing throughout Development
	5 Benchmarks
	5.1 On Sizes
	5.1.1 Comparison Source
	5.1.2 Results without Names
	5.1.3 Results without Names and no showRaw Preprocessing
	5.1.4 Results with Names
	5.1.5 Results with Names and no showRaw Preprocessing

	5.2 Compilation Time Results
	5.3 Time Break Done
	5.4 Jar Example

	6 Future Work
	6.1 Storing Type Hierarchy, Symbols and Constants
	6.2 Storing Compressed ASTs in .class File at Compile Time
	6.3 Scalability and Going Further

	7 Conclusion

