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ABSTRACT 

Demand Response (DR) has recently garnered great attention, with 

many DR programs being deployed and evaluated worldwide. They 

are hailed as a significant benefit enabled by the Smart Grid and an 

efficient method to engage consumers in managing their energy 

usage and reduce environmental impact and costs. But while the 

opportunities are great, challenges still remain to exploit the 

untapped potential of DR. Due to the many diverse technological 

and social contexts where is applied, establishing a common 

framework for evaluating DR programs is a rather complex but 

essential task in order to design more efficient and easily adopted, 

by utilities and users, DR programs. In this paper, we apply in 

practice some of, already defined in literature, Key Performance 

Indicators, aiming to evaluate different DR programs and we assess 

their applicability. In that context, we present and discuss initial 

results from two indicative trial sites (residential and commercial) 

and provide suggestions for future DR designers. Finally, we 

introduce the DR dashboard, a way to get an overview of a DR 

system and visualize the indices calculated in each trial site. 
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1. INTRODUCTION 
The energy sector is experiencing major changes that are dictated 

by economical, technological and environmental factors. Due to its 

physical properties, electricity is not economically storable at the 

scale of large power systems. This means that the amount of power 

plant capacity available at any given moment must equal or exceed 

users’ demand for it in real time. This is not a trivial task as both 

supply and demand levels could change rapidly and unexpectedly. 

These mismatches result in the need of reducing load using such 

methods as load shedding and curtailment to keep load generation 

and demand in constant balance.  

There are various, often complementary, solutions to achieve this 

goal but, a promising method that also leverages the capabilities of 

Smart Grid infrastructures is Demand Response (DR). DR 

programs aim to alleviate the peak demand problem and to provide 

higher system reliability by altering user demand in response to 

power grid’s supply and economic conditions. According to [1], 

DR alone could achieve 25-50% of the EU’s 2020 targets 

concerning energy savings and CO2 emission reductions. Hence, 

DR systems are disclosed as one of the most important elements of 

the emerging Smart Grid networks [3][4].  

DR can be applied to all categories of users (industrial, commercial, 

and residential) employing many different technologies and 

strategies to achieve shifts in demand, such as direct-load-control, 

incentives, prices, or a combination of these schemes. Designing a 

successful DR program is challenging as it depends on a myriad of 

factors, e.g. the type of user, generation, distribution, consumption, 

and demography. For example the age and lifestyle of the users 

might have significant influence in the design of a DR program [5]. 

Consequently, evaluating these programs is a rather perplexing and 

composite task, but it is vital, as it would also provide the means to 

improve them. In order to practically evaluate DR programs many 

factors should be addressed. For example, programs that offer 

incentives for participation must calculate the baseline load and 

measure the change from it that occurs during a DR event in order 

to calculate the total change in demand thus enclosing the 

evaluation of the baseline method into the DR program evaluation.  

In this context, we exploit the Key Performance Indicators (KPIs) 

defined in our previous work [6], for the evaluation of the 

suitability and effectiveness of DR programs and practically apply 

and assess them in the context of two real-life trial sites (residential 

and commercial). Additionally, our proposed indices are easily 

traceable and measurable and can be utilised both from consumers 

and DR designers/Energy Managers (EMs), to estimate and 

evaluate the changes in energy consumption. For what is more, our 

conclusive subset of KPIs can facilitate DR program evaluation 

irrespectively of the magnitude of the application field and its 

specificities. 

This work is part of the EU FP7 WATTALYST project [2], which 

aims to understand how consumers respond to DR signals by 

increasing/decreasing their demands and how their participation is 

influenced by external and internal factors. Another goal of the 

project is to understand effective methods of conveying the DR 

signals to the users, something affecting DR program’s success. 

2. MOTIVATION AND DEFINITIONS 
There are various types of DR systems studied in literature [3]. Due 

to this variation, it becomes a challenge to establish a common 

framework in measuring and comparing the effectiveness of 

different DR programs. Evaluating their performance is an 

important and necessary step in the incorporation of demand 

resources into a well-functioning and thus sustainable electricity 

market. An objective evaluation would provide critical insights to 

the future development of DR capabilities and will help to guide 

technology investment priorities.  

Therefore, it is important to identify DR metrics that can be used to 

assess the efficacy and economic performance of DR systems. 

Some of these might be easily quantifiable, e.g. the actual peak 

reduction, whereas others may not, such as users’ acceptance and 

participation rate (dependent to the level of comfort). The choices 

are numerous and one of the challenges is to make the most 

appropriate selection and define the metrics and the success criteria 

of a DR program by taking into account the following potential 

impacts [6]: (i) Market price, (ii) different energy network 

architectures and infrastructures, (iii) the availability of historical 

or statistical data, (iv) customer impacts, (v) participation, (vi) 
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public good impacts, (vii) the gains of involved stakeholders and 

the improvement of economic efficiency (social welfare).  

Following the categorization in [6] and in the context of the trials 

deployed in [2], we have selected a set of KPIs to evaluate the 

applied DR programs in different contexts and requirements. The 

choice was based on the available information and the objectives 

for each trial case. The KPIs are summarized in Table 1. 𝐾𝑃𝐼𝑟𝑥, 𝑥 =
1, … ,5 correspond to the KPIs for the residential trials, while 

𝐾𝑃𝐼𝑐𝑦 , 𝑦 = 1, … ,5 refer to the KPIs for the commercial trials.  

Table 1. KPIs utilised  

KPIs Description based on [6] 

𝐾𝑃𝐼𝑟1, 𝐾𝑃𝐼𝑐1 % change in total electricity consumption 

during the peak hours (DR event). 

𝐾𝑃𝐼𝑟2, 𝐾𝑃𝐼𝑐2 % change in total electricity consumption 

during the off-peak hours (DR event). 

𝐾𝑃𝐼𝑟3, 𝐾𝑃𝐼𝑐3 % difference of the real consumption from 

the baseline. 

𝐾𝑃𝐼𝑟4 % User acceptance and rate of participation. 

𝐾𝑃𝐼𝑟5 % User responsiveness. 

𝐾𝑃𝐼𝑐4 Absolute discomfort impact (1 to 5 scale). 

𝐾𝑃𝐼𝑐5 % discomfort level against total energy 

reduction constraint. 

 

In this paper, we present results based on the aforementioned KPIs 

and discuss associated issues and challenges. For each trial site, we 

first present the problem it encounters in terms of peak energy 

consumption and the DR program applied in each case. Thereafter, 

we discuss and present briefly the KPIs used to gauge the above 

DR programs. Each section concludes with some initial results and 

evaluation from the first trial period, regarding the precision and 

reliability, as well as the actions that could be taken to improve the 

results and associated KPIs. Lastly, we introduce and present the 

DR dashboard (DRD), an innovative tool, which is used for the 

visualization of the defined KPIs.     

3. BASELINE ESTIMATION 
Regardless of the type of DR program employed, all require 

analysis to estimate the demand reduction. The estimate is the 

difference between what the user actually consumed and what that 

user would have consumed had the program not been enacted. What 

the user would have used is referred to as the DR baseline (or 

simply baseline) and is key to effective measurement and 

verification. 

The baseline is one of the ways to determine the DR performance 

of a user, for example, by comparing the baseline with the metered 

consumption during the DR event to quantify the demand reduction 

provided by a user or a set of users [8]. Several methods have been 

used in various DR programs to compute baselines, such as 

HighXofY, MidXofY, exponential moving average, and linear 

regression [9][10]. According to several practical experiences, the 

DR baseline should be simple enough for all stakeholders to 

understand, calculate, and implement, including end-users. 

3.1.1 HighXofY baseline 
The baseline is the average load of the X highest consumption days 

within those Y days. More formally, the baseline for timeslot t on 

day d is: 

𝑏(𝑑, 𝑡) =
1

𝑋
 ∑ 𝜆(𝑑, 𝑡)

𝑑 ∈𝐻𝑖𝑔ℎ(𝑋,𝑌,𝑑)

 

where (d,t) is the past consumption on day d at timeslot t, and 

High(X,Y,d) is the set of X highest consumption days within the 

most recent Y days before the DR event. Examples of HighXofY 

baseline are PJM Economic (High4of5), NYISO (High5of10) and 

CAISO (High10of10) [9]. 

3.1.2 MidXofY baseline 
The baseline is the average load of the X days out of a set of Y most 

recent non-DR days, from which the highest and lowest 

consumption days are removed. More formally: 

𝑏(𝑑, 𝑡) =
1

𝑋
 ∑ 𝜆(𝑑, 𝑡)

𝑑 ∈𝑀𝑖𝑑(𝑋,𝑌,𝑑)

 

where Mid(X,Y,d) is the set of X middle consumption days within 

the most recent Y days before the DR event. Example of MidXofY 

baseline is the Mid4of6 [9]. 

3.1.3 Exponential moving average 
The exponential moving average baseline is a weighted average of 

the historical load, where the weight decreases exponentially with 

time. This baseline is computed using all the historical consumption 

data. Let D = {d1, d2, … dk} be the set of all measured days 

preceding the target day d having the same day type as d. In 

addition, let 1 ≤ 𝜏 ≤ 𝑘 be a constant. We define 𝑠(𝑑𝜏 , 𝑡) as the 

initial average load at time t: 

𝑠(𝑑𝜏 , 𝑡) =
1

𝜏
∑ 𝜆(𝑑𝑗

𝜏

𝑗=1

, 𝑡) 

The exponential moving average for 𝜏 < 𝑗 ≤ 𝑘 is: 

𝑠(𝑑𝑗 , 𝑡) =  𝛼 ∙ 𝑠(𝑑𝑗−1, 𝑡) + (1 − 𝛼) ∙ 𝜆(𝑑𝑗 , 𝑡) 

where 𝛼 ∈ [0,1] is the constant smoothing factor for weighting 

decrease. Then, we define the exponential moving average baseline 

on day d at timeslot t as: 

𝑏(𝑑, 𝑡) = 𝑠(𝑑𝑘 , 𝑡) 

An example of this baseline is the ISONE baseline, for which 𝜏 =
5 and 𝛼 = 0.9. 

3.1.4 Regression 
The baseline of day d is computed by fitting a series of linear 

regressions (on for each time slot t) to the historical consumption 

data. The baseline on day d at timeslot t is computed as: 

𝑏(𝑑, 𝑡) =  (𝜽𝑡)T𝒙𝑡 + 𝜀𝑡 

where 𝒙𝑡 is the feature vector, (𝜽𝑡)T is the (transposed) vector of 

regression coefficient, and 𝜀𝑡 is the error term. The feature vector 

is a vector of explanatory variables such as historical consumption, 

temperature, or sunrise/sunset time. The regression coefficients and 

the error term can be estimated with standard methods such as least 

squares or ridge regression. 

Figure 1 summarises the performance of the different baseline 

methods applied to the total electricity consumption data of the 

SAMPOL headquarters. We used the data from June 2013 until 

March 2014. The Mean Absolute Error (MAE) is defined as: 



 

Figure 1. The performance of the different baseline methods 

 

𝐌𝐀𝐄 =  
1

24𝑁
∑ ∑|𝑏(𝑑, 𝑡) − 𝜆(𝑑, 𝑡)|

24

𝑡=1

𝑁

𝑑=1

 

where N is the number of days for which the baseline has been 

computed, 𝑏(𝑑, 𝑡) is the baseline on day d at time t, and 𝜆(𝑑, 𝑡) is 

the real consumption for the same day at the same time.  The Mean 

Error (ME) is defined as: 

𝐌𝐄 =  
1

24𝑁
∑ ∑ 𝑏(𝑑, 𝑡) − 𝜆(𝑑, 𝑡)

24

𝑡=1

𝑁

𝑑=1

 

By keeping the sign, the Mean Error is a metric that shows whether 

the baseline estimation method systematically overestimates or 

underestimates the real consumption, representing therefore the 

bias of the estimation. Based on the results, all the methods tend to 

overestimate the real consumption (i.e. positive ME). Among them, 

ISONE turns out to be the most accurate method (i.e. lowest MAE), 

albeit the most positively biased, while Mid4Of6 is the least biased. 

4. EVALUATING DR PROGRAMS  
In this section we introduce the two trial sites, in which different 

DR programs were implemented. For conciseness, we have chosen 

to present a small number of applied DR programs that are, 

nonetheless, representative of the measurements we obtained from 

a larger set of tests. 

4.1 Residential Trial Site: Luleå, Sweden 

4.1.1 Introduction 
The field trials in Luleå focus on energy consumption in private 

homes. The fine grained measurements include consumption of 

district heating (house level) and electrical (smart meter and 

selected appliances level) energy. District Heating (DH) is the 

major energy source used for heating in Luleå and is the lowest 

priced DH in Sweden, due to the availability of excess gas from the 

local steel work plant.  In this case, the KPIs that are considered for 

evaluation of the applied DR program are presented in Table 2. The 

first two refer to the peak reduction quantification category,  
the next one relates to the demand variation analysis and demand 

reshaping category and the last two belong to the economic-related 

KPIs category of [6].  

4.1.2 The problem 
Luleå Energi's DH is probably the most developed in Sweden. 

Within the urban area, all areas with large buildings are connected, 

while there are approximately 8600 private homes using DH in 

Luleå. Luleå Energi has four large boiler plants in reserve to replace 

power plant in the event of downtime, and serves as peak load 

plants in really cold weather. The main boiler uses the steelworks 

excess gas and is the best choice from both an economic and 

environmental perspective. But when this production is not enough 

extra heating generation capacity must be provided. As a result, the 

generation cost increases, as well as the environmental impact. The 

problem is mainly tracked during certain days of the week, leading 

mostly to two peak demand periods per week. At the peak demand 

time the energy supplier activates the backup system by using 

alternative energy production to produce electricity, in order to 

meet the demand. Our objective is to reduce or shift this demand at 

and from the peak periods by creating and providing the right 

incentives to users by the means of DR mechanisms. 

4.1.3 Planning the DR events 
As mentioned above, the aim is to reduce the consumption during 

peak demand periods. This can be achieved by exploiting the DR 

mechanisms, i.e. at specific periods when the demand is high, the 

users that participate receive event signals, i.e. text messages, 

notifying them about the need to alter their consumption. These 

messages are known as DR messages/signals and may include 

information about the users’ real time consumption, the time of the 

DR event, the providers’ incentives etc. However, the design of 

effective DR events is not apparent and we need to take into 

account specific variables according to the research interest. These 

variables are divided into categories as shown in Table 2. 

The DR events are separated into different campaigns depending 

on which of the above variables we want to address. For example, 

the campaign “Context” aims to investigate how context affects the 

users. For this campaign we will change the Context variable 

[Season, Special days etc.], while we keep all other variables (User 

response, Communication, Incentive) fixed.  

For the purposes of the project a residential Home Energy 

Efficiency Persuasive Interface (EEPI) was developed, which is a 

collection of intuitive user interfaces to be used by residential users. 

Users are provided with a tablet and they can access the project’s 

residential EEPI link by using a web browser on it. Each user is 

provided with credentials to login into the system and view the DR 

messages along with real-time energy consumption information. 

For evaluation we also use other means to communicate to the users 

such as email, SMS and face-to-face meetings. This enables us to 

compare, which is the preferred and most effective method for DR 

communication. 

Table 2. Campaign variables 

User response  Communication  Incentive  Context  
Levels of 

shifting/reduction  

Phone/Display  Price level  Season  

Tolerance  Environmental/Cost  Recognition  Special 
days  

Loads  Notification time  Open 

reduction  

Economic 

status  

Fatigue    Awareness  

   Family 

size  

 

4.1.4 DR events evaluation and suggestions 
In this section, we consider two tests that took place on Nov 26th 

2013 (Tuesday) and Dec 1st 2013 (Sunday), in order to present 

indicative numerous results for the 𝐾𝑃𝐼𝑟1 to 𝐾𝑃𝐼𝑟4, while results 

for 𝐾𝑃𝐼𝑟5 and 𝐾𝑃𝐼𝑟6 are presented within a campaign too. 

The tests belong to the campaign “Context” as defined earlier and 

are representative of two different contexts: weekdays and 

weekends. The DR signal was sent to the users via an SMS and the 

message was to reduce the hot water consumption between 8:00 

and 8:59. The baseline methods introduced in Section 3 have 



different characteristics in terms of accuracy and bias, which affect 

the user decision-making and participation in a DR event, as well 

as the demand reduction obtained by the DR provider. It has been 

shown that positively biased baselines tend to foster user 

participation and, as a side effect, benefit the DR provider. For this 

reason, in our case we used the NYISO baseline, which in general 

is a good compromise between bias and accuracy. For each test, we 

computed the aggregated baseline of all the users that participated 

to the test before (from 6 to 7), during (at 8) and after (from 9 to 

10) the DR event, and we compared it with the metered 

consumption. 

Figure 2 shows the hourly consumption and baseline of the users 

that participated in the test performed on Nov 26th 2013. It is 

possible to see that the highest consumption is expected (and 

metered) from 6 to 7, when users typically prepare to leave to reach 

their workplaces. Furthermore, there is no significant consumption 

change before and after the DR event. In fact, we estimated for 

𝐾𝑃𝐼𝑟2 (before and after the DR event) a small reduction of 3.8% 

and 0.22 % respectively. On the other hand, during the DR event, 

𝐾𝑃𝐼𝑟1 was decreased by 40.7%, indicating a strong effort from the 

users that accepted the DR signal, by altering their consumption. 

Quite interestingly, different user behavior during the weekend is 

observed (Figure 3). For this test, the baseline consumption was 

expected to be higher at 9 and 10, given that on weekends people 

usually spend more time at home. The demand reduction (𝐾𝑃𝐼𝑟3) 

before the DR event is 11.1%, while during the DR event is 33.3%. 

However, after the DR event a consumption increase of 47.3% has 

been estimated. A possible explanation is that for this test the users 

decided to shift the water usage after the DR event, given the 

absence of the time constraints that typically occurs on weekdays. 

Both tests had a considerable participation rate (𝐾𝑃𝐼𝑟4) in the DR 

event, 60% and 70%, respectively altered their consumption, while 

the users’ responsiveness (𝐾𝑃𝐼𝑟5) was quite high, i.e. 70% and 90% 

respectively answered by “ACCEPT” or “REJECT”. Figure 4 

shows how 𝐾𝑃𝐼𝑟4 and 𝐾𝑃𝐼𝑟5 evolve within the campaign. Only 

𝐾𝑃𝐼𝑟5= 42% of the users responded to the DR message, while 

𝐾𝑃𝐼𝑟4=24% accepted to enroll the action proposed. 

During the campaign, the users were notified for the existence of a 

DR message through the display, except of the two tests described 

above, in which users were alerted via SMS only. The results show 

(Figure 4) that via SMS more users were triggered to engage 

themselves in the DR event, when comparing with the rest of the 

days. This means that an improvement of the display is essential, 

so that it becomes more attractive and easy to use. According to 

users’ feedback, the display should be part of their normal 

behaviour if this is the way for the DR designer/energy manager to 

interact with them. 

4.2 Commercial Trial Site: SAMPOL, Palma 

de Mallorca 

4.2.1 Introduction 
SAMPOL’s headquarters are located in the city of Palma, capital 

of the Balearic Islands (Spain). It is a large building including 

different business units with 150 employees. Most electricity 

consumption is due to lighting, air conditioning/heating (HVAC), 

computers and other appliances. During the trials, consumption 

measurements are carried out in 3 different areas of the building. In 

each area, electricity consumption is monitored separately for 

lighting, HVAC and appliances. 

The KPIs exploited in this case are presented in Table 2. The first 

two refer to the peak reduction quantification category, the next two 

relate to the demand variation analysis and demand reshaping 

category and the last belong to the economic related KPIs category. 

 

Figure 2. Luleå trial site, Nov 26th 2013 (Tuesday) 

 

Figure 3. Luleå trial site, Dec 1st 2013 (Sunday) 

 

Figure 4.  𝑲𝑷𝑰𝒓𝟒 and 𝑲𝑷𝑰𝒓𝟓 for campaign “Context” 

4.2.2 The problem 
The problem in the Mallorca site resides on peak load reduction. 

The trials aim to evaluate DR programs, designed for this purpose. 

Furthermore, we aim to investigate the way users choose to attain 

the required energy reduction, e.g. what appliances they choose to 

modify in relation with external factors and also in regard to the 

change of their comfort zone. In the Mallorca case the DR program 

designer aims at re-shaping the demand curve in two ways, by 

reducing demand and/or shifting it from the peak hours to the non-

peak hours. 

Similarly to the Lulea trial, the DR events are separated into 

different campaigns depending on the objective we are targeting 

and composed from several use cases.  For example, the campaign 

“Act” includes all the events, in which the users are not informed 

about their existence. A campaign aims to investigate the 

consequences of the event actions in the comfort perception of the 

users. The selected appliances for DR are the HVAC, lighting and 

total energy of the building, with HVAC being the most important 

source of energy consumption in the building. HVAC and lighting 



are monitored separately and are also the most susceptible to be 

shifted or altered. Appliances such as computers or other working 

equipment are unlikely to be affected, something that differentiates 

this setting compared to the Lulea one. 

4.2.3 DR events evaluations and suggestions 
In this section, in order to illustrate the use of the KPIs, we present 

the results of one of the tests that have been performed at the 

SAMPOL headquarters. The test took place on Oct 15th 2013 (a 

Tuesday). The recipient of the DR message was the EM, who was 

asked to reduce electricity usage by 12kWh between 10h and 14h. 

In order to fulfil the objective of this test, the EM decided to 

disconnect the HVAC system of 4 departments. Figure 5 shows the 

energy consumption of the HVAC system in one of the affected 

department (Energy Department). One can see, during the DR 

event, how 𝐾𝑃𝐼𝑐1 significantly decreases by 80% of the expected 

baseline consumption, i.e. 19.1kWh. A significant rebound effect 

caused by the action taken by the EM to respond to the DR message 

is also visible. After the DR event (from 14h to 20h), the 

consumption (𝐾𝑃𝐼𝑐2) increased by nearly 80%, i.e. 12.3kWh 

(almost the same amount saved during the DR event).  

The actions taken by the EM also impacted headquarters total 

electricity consumption (see Figure 6) as there was a reduction of 

total electricity usage of 38.6 kWh, which represents 𝐾𝑃𝐼𝑐3=13.6% 

of the baseline consumption. Although the EM accomplished (and 

exceeded) the DR objective, it is worth noticing an increase of the 

consumption (𝐾𝑃𝐼𝑐2) of 41.6 kWh after the DR event, which is 

more than the amount saved during the DR event.  

Considering the users’ side, which in this case are the employees of 

the company, after the DR event they were asked to answer a 

questionnaire about their comfort perception on the event. 

Apparently, the percentage of comfort varies with the different time 

zones of evaluation, i.e. between 8h to 11h, users were experiencing 

81.82% of comfort with the inside temperature, while during the 

DR event (11h to 14h) their comfort rate was decreased to 68.18%. 

Thus, 𝐾𝑃𝐼𝑐4 reaches the value of 3.4, which shows that the 

discomfort level was acceptable. The values are scaled down in the 

range of 5, where 1 shows that the room temperature is very high 

and 5 shows that the room temperature is very good.  Regarding 

that in this case the EM was asked to accomplish a specific target 

reduction, 𝐾𝑃𝐼𝑐5 is estimated to -35.6% and shows that the 

discomfort caused by the DR event was lower than the energy 

saved. This means that the users could afford working without the 

operation of the HVAC during those specific hours. 

However, the increase in the energy consumption after the DR 

event that is accompanied with an increase of the comfort rate of 

the users to 91.67%, indicates that extreme manual actions such as 

shutting down loads are very prone to rebound effects. In fact, these 

actions are reactive short-term responses and they do not take into 

account the medium term effects. For this reason, decision support 

systems and visual dashboards that help the recipients of a DR 

messages to select the best action to respond to the DR message are 

likely to be very important for a successful DR program. 

5. KPIs VISUALIZATION  
Based on the inputs obtained from DR Designers and EMs, we 

designed DR Dashboard, an interactive web application that DR 

designers and EMs can use to get an overview of a DR system 

deployed for residential and/or commercial consumers. Figure 7 

shows a screenshot of the DR message KPI page, which can be 

accessed by clicking the ‘Analyze’ icon on the top left corner of the 

screen. This page is divided into three parts: A) Select Search 

Parameter: providing a list of search parameters for DR designers 

to choose from, for the search query (left half of the page, Figure 

7). B) Time, Event and Weather Selector: provides a way to select 

time, and show/hide weather and event charts (top right of the page, 

Figure 7). C) Search Result: provides the analysis output using 

charts and tabular data (left half of the page, Figure 7). 

 

Figure 5. Sampol trial site, Oct 10th 2013, AC energy 

consumption of the Energy Department during the test 

 

Figure 6. Sampol trial site, Oct 10th 2013, Total energy 

consumption of the Energy Department during the test 

 

Figure 7. DR Dashboard interface: DR message KPI page 

5.1 Select Search Parameters 
DR designer can select from a list of Search parameters to get the 

desired analysis results. The designer can choose trial site location, 

choose either Demography or Individuals Participants (e.g., in 

Figure 7, Demography is selected), and can choose either Message 

Detail or Individual Messages (e.g. in Figure 7, Message Detail). 

Further, in Demography, the designer can choose multiple Family 



size (from 1, 2, 3, 4, and 5+), multiple Education (from High 

School, Bachelor’s, Master’s, and PhD), multiple House size (from 

0-600 sqft, 601-1000 sqft, 1001-2000 sqft, and 2001+ sqft). In 

Individual Participants, designer can choose multiple 

participants/users. Similarly in Individual Messages can choose 

multiple messages, while in Message Detail, can choose multiple 

Types of message (from shift-related and reduce-related message), 

multiple Incentive (from real, virtual, and no incentive), and 

Message Timing (a start time and end time). After selecting the 

required Search parameter, DR designer can submit the search 

query by clicking the ‘Submit’ button. 

5.2 Time, Event and Weather Selector 
Furthermore, the DR Designer can select a time period for which 

the query is made, using the Time Selector at the top of the page. 

Data can be obtained over different time periods, such as months 

(on a day-basis), weeks (on a day-basis), and days (on an hour-

basis). Date, Week, and Month can be selected by clicking on the 

top three buttons on the page (in Figure 7, e.g. ‘week’ is currently 

selected), and the left and right arrow buttons need to be used to 

navigate and select a particular date, start-date and end-date for a 

week, or name of a month, as required. After selecting the time, 

clicking on the ‘View data’ button updates the search result. 

5.3 Search Result 
Figure 7 (right half) shows the result section, which can be divided 

in three parts. (i) Power Consumption and Baseline Data: Stacked 

bar graph with overlaying baseline as line graph, shows appliance-

level power consumption and baseline data for the selected time 

period, as per the search query. In addition, individual appliances 

and baseline can be selected and deselected using the Appliance 

Selector at the top of the graph. (ii) Weather and Event Data: A bar 

graph showing the weather data of the selected location, during the 

selected time period (Figure 7). This graph is only visible when the 

Weather toggle button is in ON state. Similarly a graph showing 

the event data of the selected location, during the selected time 

period (hidden in Figure 7, as the Event Toggle button is OFF). (iii) 

KPI Data: A tabular layout showing KPI related data such as 

percentage reduction in energy consumption compared to baseline 

at a day level, and also during DR message hours (Figure 7). 

Moreover the legend highlights the days with DR messages along 

with the time of the DR event. At an individual participant level, 

variance and entropy is shown using a bubble chart. 

Currently, DR Dashboard is being actively used by the researchers 

to analyse the data. In future, we would evaluate the usability and 

effectiveness of this dashboard with DR Designers and EMs. 

6. CONCLUSIONS AND FURTHER WORK 
KPIs are essential in revealing the efficacy of a DR system in terms 

of flattening the peak load, economic sustainability, altering 

consumer behaviour, etc. In this work, we presented a practical 

evaluation of different types of KPIs, based on [6], and in the 

context of two trial sites with different requirements and 

specificities. The data collected from appliance level sensors and 

smart meters along with users’ feedback were used to calculate the 

KPIs and assess the DR programs.  

The proposed KPIs are justifiably well-defined and adaptable to 

different environments and contexts. The results indicate that the 

KPIs for peak reduction quantification, together with the 

appropriate baseline methods, are the easiest way of detecting 

changes in energy consumption. Percentages are more appealing to 

the perception of users and these metrics can be easily captured in 

graphics, as shown in Figure 7. They can be used as a stand-alone 

core of metrics or even in combination with other KPIs. In the latter 

context, the KPIs that are relevant to users’ acceptance and 

responsiveness, as well as to the rate of their participation are very 

important, because they determine not only whether a DR program 

is successful or not, but also what actions led to this success. 

Additionally, we paid particular attention to the economic-related 

KPIs, for which the methods of calculating users’ comfort level are 

of great importance. We found that using a rating scale is a good 

approach, as it is a comprehensible way of the users to define and 

express their comfort or discomfort. A combination of these metrics 

is essential, in order to guarantee the success of a DR program and 

to identify the actions for further improvement.  

Our obtained results attest to the validity of the above conclusions. 

In the residential trials, initial tests resulted in considerable 

reductions in energy consumption during DR events as well as a 

significant participation rate. In addition, the users were more 

engaged to responding to the DR message after they were alerted 

by an SMS, which indicates the need of improvement of the 

communication display to be more user friendly and interactive.  As 

for the commercial trial site, the results indicated that by taking 

abrupt actions, the rebound effect is strongly reinforced. Visual 

dashboards such as the one presented in this paper constitute 

valuable tools for a DR designer in diminishing these side effects. 

Finally, several new campaigns are planned to be tested in both trial 

sites in the future. The results will be used to evaluate additional 

parameters that influence user participation as well as the impact of 

the KPIs in order to gain better insights about the design, 

sustainability and evolution of future DR systems. 
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