
Privacy Enhanced Demand Response with
Reputation-based Incentive Distribution

Matteo Vasirani, Tri Kurniawan Wijaya, Georgios Liassas, Karl Aberer
School of Computer and Communication Sciences

LSIR, EPFL, Switzerland
{matteo.vasirani, tri-kurniawan.wijaya, georgios.liassas, karl.aberer}@epfl.ch

ABSTRACT
Demand response (DR) is a Smart Grid application that aims
at managing consumption of electricity in response to supply-
side signals. The exchange of sensitive information (i.e.,
electricity consumption data) between the consumers and
the DR provider is necessary for the functioning of DR, but
at the same time it is an obstacle to its wide-spread adop-
tion, due to the related privacy concerns. This paper pro-
poses the use of homomorphic encrypted user aggregation
and reputation-based incentive distribution to address the trade-
off between enhancing user privacy and correctly assessing
the contribution of each user to the demand reduction.

Categories and Subject Descriptors
E.3 [Data Encryption]: Public key cryptosystems

Keywords
homomorphic encryption, demand response

1. INTRODUCTION
Demand Response (DR) is an application that is con-

sidered a fundamental building block of the Smart Grid
vision. The goal of DR is influencing the energy con-
sumption pattern of users in response to supply-side
signals. When a DR event is issued by a DR provider,
a DR signal is sent to the users, containing the start
and end time of the event, and optionally the amount
of consumption to be reduced. DR is based on the
exchange of privacy invasive energy consumption data
between users and DR providers [6]. For example, in
incentive-based DR, where an agreement between the
DR provider and the energy consumers is established,
it is necessary to have access to the user consumption
data in order to assess how the user responded to the
DR signal, and therefore the amount of incentives (e.g.,
money, discount vouchers redeemable at local shops, bill
rebates) that have to be granted to the user. The col-
lection of this type of data might entail many privacy
related issues [7]. For instance, non-intrusive load mon-
itoring techniques (NILM) can be used to infer the type
and number of appliances, as well as their state (on or

off ), using only the data collected by the house-level
meter. Also the activity of the user can be inferred
from energy consumption data. For instance, Greveler
et al. [4] employed a method to identify the displayed
TV channels. They exploit smart meter measurements
with sampling rate of 0.5 Hz to develop a function that
predicts the power consumption of a LCD monitor light-
ing system. The power consumption of the monitor is
correlated to the brightness of the content that is dis-
played, so that by inferring the energy consumption of
the TV it is possible to infer the program or movie that
is being displayed.

To alleviate the privacy-related problems, several Pri-
vacy Enhancing Techniques (PETs) such as anonymisa-
tion [5] or perturbation [2] are available to protect users
against activity and behavioural analysis [1],[3]. On the
other hand, these techniques usually imply an obfus-
cation phase that might deprive the DR provider from
important information that impedes an accurate assess-
ment of the DR performance of each user (i.e., demand
reduction). As a matter of fact, there exists a trade-off
between enhancing user privacy and accurately assess-
ing the demand reduction.

In this paper we propose the use of homomorphic
encrypted user aggregation as a way to enhance user
privacy. With homomorphic encryption it is possible
to sum up encrypted consumption time series of indi-
vidual users to generate an aggregated time series of
a group of users. Homomorphic encrypted user aggre-
gation is very effective for DR. User aggregation helps
to increase the privacy, since the collected information
does not refer to a certain individual energy user (i.e.,
data producer), but to a group of users. Another advan-
tage offered by homomorphic encryption is that exact
aggregates can be calculated. Thus, the DR provider
is able to accurately assess the demand reduction at
the group level, and to allocate the corresponding in-
centives to each group. On the other hand, the lack of
individual consumption data introduces error in the dis-
tribution of incentives to the group members, because
different users in a group might have contributed to the
group’s demand reduction in a different way. There-
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(2) Broadcast public key kPub

(4) Send Enc(e1, kPub)

(6) Aggregate energy data
     Enc(e1+e2, kPub) =

     Enc(e1, kPub)*Enc(e2, kPub)

(7) Send Enc(e1+e2, kPub)

...

(8) Send Enc(e1+e2+…+eG, kPub)

... ...

(9) Compute e1+e2+…+eG = 

Dec(Enc(e2+e2+…+eG, kPub), kPriv)

(1) Generate private key kPriv

(3) Encrypt energy data Enc(e1, kPub)

(5) Encrypt energy data Enc(e2, kPub)

DR provider Energy user

Figure 1: Homomorphic encryption for user aggregation

fore, it is possible that users that contributed the most
to the group’s demand reduction receive less incentives
than those they deserve or, even worse, users that did
not contribute at all to the group’s demand reduction
receive an undeserved share of the group incentives.
For this reason, we also define a reputation-based incen-
tive distribution mechanism that aims at minimising the
misallocation of incentives by creating groups of users
with similar response to DR signals.

The paper is structured as follows: Section 2 de-
tails the homomorphic encryption protocol for user con-
sumption data aggregation, while Section 3 describes
our reputation-based mechanism for group formation;
the metrics used for the experimental evaluation are
defined in Section 4, while in Section 5 we outline the
results of the experimental evaluation; finally, we con-
clude in Section 6.

2. HOMOMORPHIC ENCRYPTION
In this work we propose an aggregation protocol over

a group of data producers based on the Paillier cryp-
tosystem [8]. Figure 1 illustrates how the aggregation
protocol works. The DR provider (1) generates the pri-
vate key for decryption (kPriv) and (2) broadcasts the
Paillier public key (kPub). The public key kPub is used
by the energy users to encrypt their individual energy
consumption time series, while kPriv is used by the DR
provider to decrypt the aggregate of the individual en-
ergy measurements. The energy user that correspond to
a leaf in the tree (3) Paillier-encrypts its consumption
time series with the provided public key, and (4) sends
its encrypted consumption Enc(e1, k

Pub) to its direct
parent, where e1 is a time series of energy consumption
values. The parent (5) Paillier-encrypts its consump-
tion time series e2 and then (6) homomorphically adds
the result with the encrypted readings of its child in
the tree. In the Paillier cryptosystem, the additions in
plaintext are translated to multiplication in the cipher-
text. Thus, in order to generate the encrypted version

Enc(e1 + e2, k
Pub) of the sum of the two time series e1

and e2, the parent performs the multiplication opera-
tion directly on the encrypted time series Enc(e1, k

Pub)
and Enc(e2, k

Pub). After that, (7) the parent sends
the encrypted aggregated consumption of itself and its
child to its respective parent. After G aggregations have
been performed, where G is the size of the group, (8)
the last parent sends the encrypted aggregated time se-
ries Enc(e1 + e2 + · · · + eG, k

Pub) to the DR provider,
which (9) decrypts it with the private key kPriv to ob-
tain the energy consumption time series of the whole
group, e1 + e2 + · · ·+ eG.

In this work we assume an honest-but-curious adver-
sary model. Thus, the energy users will not tamper the
protocol execution process, but at the same time they
might try to read other users’ intermediate energy ag-
gregation results. The Paillier encryption used in the
protocol ensures that no intermediate node will ever be
able to disclose individual data, since none of the inter-
mediate participants in the tree has the private key. In
the end, only the DR provider will be able to decrypt
the Paillier-encrypted aggregate. Furthermore, given a
group size G > 1, the DR provider will not be able
to distinguish the individual consumption of any of the
participants.

We remark that the aggregation protocol proposed
here is one of the possible protocols to generate the
encrypted aggregated time series Enc(e1 + e2 + · · · +
eG, k

Pub). Indeed, this time series can be constructed
with different protocols and communication paths. For
example, all the users in a group could elect a leader
h that receives all the individual encrypted time se-
ries Enc(ei, k

Pub) ∀i 6= h and performs the multiplica-
tion operation on behalf of the group members. How-
ever, analysing the characteristics of different aggrega-
tion protocols (e.g., bandwidth, resiliency to communi-
cation failures, etc.) is not the scope of the paper.

3. INCENTIVE DISTRIBUTION
Each user i is characterised by the reduction rate

γi ≥ 0. We assume two types of users: legitimate and
free-riders. A user is legitimate if γi > 0, while it is con-
sidered a free-rider if γi = 0. Given that free riders do
not provide any demand reduction but they might still
receive some incentives, the primary goal of an incen-
tive distribution mechanism is to group together users
with similar performance by separating legitimate users
from free riders.

Let N be the total population of users, G the size of
the groups created before each DR event by the aggrega-
tion protocol, and NG = N/G the corresponding num-
ber of groups. Furthermore, let NFR < N be the num-
ber of free riders in the population, and ρFR = NFR/N
the corresponding percentage.

Each user i has an intended consumption `i (i.e., the
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intended energy that would have been consumed if there
were no DR event) and a realised consumption ri (i.e.,
the actual load during the DR event), defined as

`i =

tend∑
t=tstart

ei(t) ri =

tend∑
t=tstart

(1− γi)ei(t) (1)

where tstart and tend are the start and end time of the
DR event respectively, and ei(t) is the intended energy
consumption at time t. Therefore, the contribution of
user i to the group demand reduction is

δi = `i − ri = γi

tend∑
t=tstart

ei(t) (2)

For a group j, the intended and realised consumption
are defined as

Lj =
∑
i∈j

`i Rj =
∑
i∈j

ri (3)

We remark that the DR provider does not have access
to the individual terms ri. In fact, the DR provider
can only accurately measure the aggregated value Rj ,
provided by the individual users through the homomor-
phic encryption protocol described in Section 2. Fur-
thermore, we assume that, using past aggregated con-
sumption data and possibly other contextual informa-
tion (e.g., weather forecasts, calendar events, etc.), the
DR provider is able to perfectly estimate the aggregated
intended consumption Lj .

The demand reduction of group j can be computed
as ∆j = Lj −Rj . After the DR event, the DR provider
has to allocate a certain amount of incentives to each
group. Let M be the total amount of incentives, the
fraction allocated to a group j is defined as

Mj =
∆j

NG∑
j=1

∆j

·M (4)

Although the amount of incentives allocated to a group
is accurate with respect to the demand reduction of the
group, the DR provider has no error-free way of split-
ting Mj among the group members such that each of
them receives its deserved share, given that the indi-
vidual contribution δi is impossible to measure. For
this reason, each group member receives an amount of
incentives equal to

mi =
Mj

G
(5)

which may differ from the deserved amount, defined as

m∗i =
δi
∆j
·Mj (6)

The difference between mi and m∗i determines the in-
centive distribution error committed by the DR provider,
which is defined as

E =
1

N

N∑
i=1

(|m∗i −mi|) (7)

Although the DR provider is not able to measure δi,
which is determined by the reduction rate γi, it might
try to create groups of users with similar reduction rate
γi, in the attempt of minimising the incentive distribu-
tion error.

For this reason, we defined a reputation-based mech-
anism that aims at creating groups composed of users
with similar reduction rate γi. The reputation score of
a user is defined as

πi =
1

|D|
∑
d∈D

mi(d)

Mi∈j(d)
(8)

where D is the set of DR events occurred so far, mi(d)
is the incentive received by user i after DR event d, and
Mi∈j(d) is the incentive received by the group j that i
belonged to during DR event d.

The objective of the reputation-based mechanism is
grouping together users with similar reputation values.
Prior to a DR event, the DR provider sorts the users in
decreasing order based on the reputation score. Then
the DR provider selects as the next user to place in the
current group that is being formed either the first user
of the list with probability 1− ε, or a random user with
probability ε. Once the user has been selected, it is
removed from the list, so that the first element of the
list is always the user with the highest reputation score.

The probabilistic insertion rule is necessary in order
to perform some exploration, otherwise after the first
DR events always the same groups would be formed.
To enforce convergence, we geometrically decrease the
value of ε after a DR event d using the update scheme
ε(d + 1) = a · ε(d), where a ∈ (0, 1) is a parameter to
control the speed of convergence and ε(0) ∈ (0, 1) is the
initial exploration rate. With this scheme, in the long
run ε tends to 0, which implies that the same groups will
be formed, based on the assumption that the reputation
score of the users is accurate.

4. EVALUATION METRICS
There are several evaluation criteria to evaluate the

user aggregation protocol and the reputation-based in-
centive distribution. In this section, we describe the
following metrics that will be used for the experimental
evaluation:
Group homogeneity is defined as:

GH = 1− HFR

H∗
= 1−

NG∑
j=1

nFRj
G

log

(
nFRj
G

)
NG · ( ρFR · log(ρFR) )

(9)

where HFR is the entropy of percentage of free rid-
ers (nFRj /G) that are present in each group, and H∗
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Figure 2: Group homogeneity (the higher GH, the better)
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Figure 3: Average reputation of free riders (the lower ΠFR, the better)

is the maximal entropy of percentage of free riders, cor-
responding to a situation where all the created groups
have the same percentage of free riders ρFR = NFR/N
inside. When GH = 0, the group entropy is maximal,
as each group is composed of legitimate users and free
riders. GH approaches 1 when each group is composed
of a single type of user: either all legitimate users or all
free riders.
Average reputation of free riders is defined as:

ΠFR =

1

NFR

∑NFR

k=1 πk

π∗
(10)

where NFR is the total number of free riders, πk is the
reputation score of free rider k, and π∗ is the maximum
reputation value for a user in a group of size G. When
the reputation is computed according to Eq. 8 and the
incentive is equally split among group members, we have
that π∗ = 1/G. When the free riders have been isolated
into homogeneous groups, the average reputation ΠFR

approaches 0 because they do not provide any demand
reduction nor they receive incentives.
Incentive distribution error reduction is defined
as:

IER = 100
ERND − EREP

ERND
(11)

where EREP is the incentive distribution error of the
reputation-based mechanism (see Eq. 7), and ERND is

the incentive distribution error of a benchmark mecha-
nism for group creation that forms random groups. The
metric IER quantifies the gains offered by the reputation-
based mechanism.
Privacy is related to the aggregation of the energy con-
sumption values of G users into a single value Y . An
adversary is therefore faced with the task of disaggreat-
ing the single value Y into G values, one for each user,
corresponding to the user original consumption values.
To quantify the privacy of the aggregation of G values
into a single aggregated value Y , we use the Shannon
entropy associated with the disaggregation of Y into G
values. In general, the entropy of a system with S states
is expressed as H =

∑
s∈S −p(s) · log(p(s)), where p(s)

is the probability that the system is in state s. In our
case, S is the set of all the possible disaggregations, i.e.,
all the possible ways a value Y can be split into G val-
ues such that the sum of the G values equals Y . The
number of possible disaggregations (i.e., the state space
size |S|) is called weak integer composition of Y into G
parts, and it is computed as

|S| =
(
Y +G− 1

G− 1

)
=

(Y +G− 1)!

(G− 1)! Y !
. (12)

Assuming that each disaggregation Y into G values has
the same probability, we can rewrite the entropy as

H(Y ) = log (|S|) . (13)
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Figure 4: Incentive distribution error reduction (the higher IER, the better)
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Figure 5: Trade-off between privacy and incentive distribution error reduction

The privacy metric is therefore defined as

PR =
1

NG|D|
∑
d∈D

NG∑
j=1

H(Rj(d)) (14)

where NG is the number of groups, D is the set of DR
events, and H(Rj(d)) is the realised consumption of
group j during DR event d, that is, the value Y to
be disaggregated by the adversary, as in Eq. 13.

5. EXPERIMENTAL EVALUATION
For the evaluation, we used the electricity usage dataset

published by Ireland’s Commission for Energy Regu-
lation (CER) in 2012.1 The project ran in the pe-
riod 2009-2010 with 5000 residential and business en-
ergy consumers participating. The data are cleaned
from missing values and filtered out to contain the en-
ergy consumption time series of 782 residential users
that belong to the control group. From this set, we
randomly picked 512 consumers, in order to evaluate
groups of increasing size G ∈ {2, 4, 8, 16}. Legitimate
users are assumed to have a reduction rate γi = 0.2.
We performed several experiments with different per-
centages of free riders in the population of users, ρFR ∈
{25%, 50%, 75%}.

DR events of 3 hour duration are simulated with the
dispatch of a DR signal to the participating users, which
1http://www.cer.ie

are aggregated into several groups of size G. The DR
signal requests a demand reduction during 3 hours, from
18:00 in the evening to 21:00 in the night, which corre-
sponds to the energy peak in Ireland. The parameters
of the insertion rule ε(d+ 1) = a · ε(d) were selected by
trial-and-error and set to a = 0.95 and ε(0) = 0.9.

Figure 2 shows the evolution of the group homogene-
ity metric over time. The lower the value of the group
homogeneity metric, the more able the free riders are
to infiltrate all the groups. When the group size G is
small (2 to 4 users per group), the reputation-based
mechanism is able to learn with time to separate the
legitimate users from the free riders and create groups
with a single type of user. Furthermore, the bigger the
percentage of free riders in the population of users, the
easier is for the reputation mechanism to spot and iso-
late them. On the other hand, when the group size G
is bigger (8 to 16 users per group), the mechanism is
less able to spot the free riders, so that it is easier for
them to spread among bigger groups. As a result, the
group homogeneity is lower, because all groups tend to
be invaded by free riders.

The successful separation of legitimate users and free
riders performed by the reputation-based mechanism is
also visible in the average reputation value of free riders
ΠFR (see Figure 3). When free riders are grouped to-
gether, their reputation value tends to go to zero, since
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the system detects that they do not contribute to any
demand reduction. For bigger group sizes, and when
the number of free riders is relatively small, their repu-
tation does not decrease substantially with time, since
the system is less able to distinguish their behaviour
from that of legitimate users. For example, when the
group size is 8 or 16 and the percentage of free riders is
25, their reputation is maximal,2 indicating that they
are able to perfectly hide inside a group and receive
undeserved incentives, thus increasing their reputation.
When the percentage of free riders is very high, there
are fewer groups of legitimate users to invade, thus the
reputation tend to decrease even when the group size is
16.

The ability of the reputation-based mechanism to sep-
arate legitimate users from free riders has a direct ef-
fect on how well the incentives are distributed among
the users. To quantitatively assess this aspect, we com-
puted the incentive distribution error reduction, plot-
ted in Figure 4. When the group size is small, the
reputation-based mechanism provides an error reduc-
tion in the range of 20% to 50%, depending on the per-
centage of free riders in the system. This reduction
tends to decrease with bigger groups. When the group
size is 16, the reduction vanishes when the percentage
of free riders is 25 to 50%, and it is severely reduced
when the percentage of free riders is 75%.

Finally, one of the objectives of this paper is to assess
the trade-off between privacy and incentive distribution
error reduction (Figure 5). When the group size G is 2
or 4, the privacy-level of the user is small, but a great
error reduction (20% to 50%) is achieved. When the
group size is set to 8, there is a significant increase in
privacy, while the error reduction is lowered to 0%, 10%
and 30% when the percentage of free riders is 25%, 50%
and 70% respectively. Finally, when the group reaches
size 16, the error reduction disappears completely, al-
though the privacy of the users is very effectively en-
sured.

6. CONCLUSIONS
In this paper we proposed homomorphic encryption

as a privacy enhancing technique for incentive-based
DR. We defined a protocol to aggregate the consump-
tion time series of individual users, combined with a
reputation-based mechanism that aims at minimising
the error committed by the DR provider in the assess-
ment of the individual contribution to the demand re-
duction. We analysed the trade-off between the correct
incentive distribution among users and the enhance-
ment of user privacy. The experimental results showed
that for small groups, or when the percentage of free
riders is big, the reputation-based mechanism is able

2In Figure 3, 25% of free riders, the series for G = 8 and
G = 16 are completely overlapping

to identify free riders and isolate them from legitimate
users. When the users are aggregated in bigger groups,
the privacy of the users is greatly improved, at the ex-
pense of the correct assessment of the DR performance
of each user, which leads to misallocations of incentives.

Future work includes analysing different mechanisms
for creating groups of users and different reputation
scores. Another line of work is improving the reputation-
based mechanism to cope with a heterogeneous popula-
tion of users (i.e., all legitimate users but with different
reduction rate γi) and/or dynamic changes in the pop-
ulation (i.e., reduction rates γi that change over time).
Finally, another possible extension is assessing the pri-
vacy by actually developing an adversary model to infer
the individual consumption of each user from the aggre-
gated consumption value.
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