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1 Introduction

In past years there has been an increased modernization of mobile devices, most of which are GPS equiped.
Consequently, an abundance of applications that collect location directly from these devices, in order to pro-
vide personalized and contextual services for users, emerged. People trade in their location in order to search
for points of interest, such as restaurants, shops, landmarks, or directions from their phone. Location-based
activities have become popular on online social networking sites (OSNs) as well. People can share and interact
more with their friends when they share their location too. Today’s modern mobile devices typically have cam-
eras as well, which, alongisde high-speed mobile internet connections and the popularity of OSNs, resulted in
astonishing and still increasing amount of photos uploaded online. More than 250 billion photos are uploaded
on Facebook, with 4,000 photos being uploaded per second [4] and 1.54 million are uploaded on Flickr daily
[2]. For an enriched experience, people can, and often do, disclose their location to their friends when sharing
their pictures. Furthermore, most picture taking devices (phones, cameras) can embed metadata information
(e.g., EXIF headers) within a digital photograph, such as location information or user identity, and some OSNs
do allow geo-tagged pictures to be uploaded.

Such trends have naturally raised concern regarding user privacy. As a response to these issues, various Lo-
cation Privacy Protection Mechanisms (LPPMs) have been proposed. They include obfuscating a person’s true
location by hiding it, adding noise or reducing precision. There is extensive work in the literature including ex-
perimental and theoretical analysis of user location privacy under sporadic user location exposure in the presence
of LPPMs. Shokri et al [5] provide a formal framework for the analysis of LPPMs, propose an optimal inference
algorithm and a convincing metric to quantify location privacy based on adversary incorectness. They measures
the privacy of mobile users for different LPPMs, showing that LPPMs can protect users’ location privacy, but
still leave room for harmful activities, when users don’t use the right protection setttings.

Online privacy mostly gives users control over individual settings and content, not actions or content of
others. Yet, other people can disclose or facilitate the inference of sensitive location information about their
friends on OSNs. Such location information about more users, or co-location, can be declared on OSNs via
status updates, declared or detectable from posted pictures that tag other people, contain metadata or via face
recognition software. Co-location can also be infered based on Bluetooth sharing or from traffic requests with
the same IP (users behind the same NAT). Srivatsa et al [6] show that de-anonymizing mobility traces is pos-
sible using a social graph as a side channel, which they infer from co-location information. Henne et al [1]
discuss privacy implications of the emerging trend of geo-tagged photos by others. But, despite co-locations
being so widely available, we are not aware of any work studying directly the impact of co-locations on user
privacy. When combined with individual location information, co-location could improve the location inference.
Take the example of two users, one declares he is with the other in some location - the other’s location can
be immediately infered. Or two users independently disclose their location and one of them later discloses the
fact that they are together - without even knowing the exact location of the co-location, it is easier to infer
the users’ location at the time of co-location, based on their habits and physical constraints of mobility. Or
the users individually disclose their obfuscated location at some time instant and one of them declares they
are togehter - deobfuscating their individual location becomes easier with the knowledge that an obfuscated
version of the same actual location is reported by both. While co-locations provide more information to an
attacker, they add complexity, making infering location a joint optimization among all users. Without taking
into account co-locations, the localization problem can be solved as an isolated optimization problem for each
user. Co-locations add user dependencies which require a solution to be jointly evaluated. Taking into account
all possible combinations for a solution, leads to an exponential explosion of the size of the possible solution space.

In this work, we formalize the localization problem by expanding the model presented in [5] to include
co-locations. We analize and formally prove its complexity and propose two optimal inference algorithms. We
evaluate one of our algorithms on a real dataset [8], [9], [7] and quantify the additional privacy loss due to
co-locations on user privacy. We confirm the intuition that co-locations lead to privacy loss by providing more
information to an attacker. We also look at how different individual LPPM settings impact privacy for users
with co-locations, showing that an individual user has less control over his privacy through his individual privacy
settings, when co-locations that include him can be observed.

2 Formalization

We assume a model with N users, with GPS-equipped devices that sporadically disclose their location and co-
locations. Users move within a set of M geographic regions R = {r1, ..., rM} and their location is observed at
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time instants ranging from 1 to T . We consider an honest-but-curious adversary, typically the service provider,
but could be anyone that can collect publicly available users’ data from OSDNs (check-ins, pictures) or an ISP
having access to users’ traffic, from which co-locations can be inferred. Such an adversary can gather knowledge
about users’ mobility and incorporate it into a Markovian model. For a user u, we denote this model by Pu -
an M ×M matrix, where Puji represents the probability that user u will move from region ri to region rj in one
unit of time. The adversary can build such knowledge from users’ past traces, as described in [5].

At any point in time t ∈ {1, ..., T}, the adversary can make either one or both types of observations:

• A single obseration for u, which we denote by (u@tr) (at time t user u is in region r). The observed
region r can be an obfuscated version of the true region.

• A social observation, or a co-location, for ui and uj . This can be obtained from either ui’s or
uj ’s behavior. We denote such an observation by (ui ↔t uj) meaning that at time t users ui and uj are
together.

Notice that a typical co-location observation does not disclose the users’ location, only the fact that they are
together. A simple co-location cannot be hidden or obfuscated, but it is possible for it to not be declared by the
users or missed by the attacker. In reality, a user can also declare the location and tag or mention friends that
are with him, for example Alice can check-in on Facebook with Bob, at EPFL. We represent such information by
a co-location observation (Alice↔t Bob) and a single observation (Alice@tEPFL), where, again, the declared
location can be obfuscated. We can also include scenarios when more than two users are together at the same
time by multiple pairwise co-location observations.

We assume any user u can have an LPPM, which we generically model to include location hiding and/or
location obfuscation.

• location hiding - the true user’s location is hidden with probability λu
• location obfuscation - if not hidden, an obfuscated version of the true location can be disclosed. Any

function f : R×R→ R s.t. ∀x ∈ R,
∑
y∈R fx(y) = 1 can be used as pdf for the obfuscation mechanism.

These protection mechanisms are applied individually for each user, independent of the time and actual loca-
tion at that time. The adversary observes a user’s location as the output of the LPPM. Specifically, if the
location at time t is r, the adversary can either not observe it at all (with probability λu), or observe any obfus-
cated r′ for which fr(r

′) > 0, each with probability (1 − λu) · fr(r′). Notice that due to the randomness of the
processes, the same actual location r can be perceived as a different obfuscated location at different time instants.

As users move over time, they produce individual actual traces, while their location (reported or infered) is
observed. These potentially obfuscated observed locations form obfuscated traces, which can be incomplete.
The location at some time instant cannot be observed either due to location hiding, or technical issues on the
user side (such as no internet/GPS connectivity). The adversary only observes these obfuscated traces of single
observations. Over time, users also report co-locations (via posted pictures tagging each other, or via location
disclosing status updates mentioning friends), which the adversary can observe.

We consider these single and co-location observations over the time interval [1 T ] to be the input for the
adversary. Together with his prior knowledge mobility model for each user, he aims to solve the localization
problem, i.e. find the backwards mapping from observed location at some time instant t for some u to the
actual location of u at t.

Notations

• PU = {Pu1 , ..., PuN }
• πui - the steady state vector of Pui , i.e. πui ∈ RMs.t. πui · Pui = πui ; πU = {πu1 , ..., πuN }
• aui(t)− actual location of u at t, a(t) = {au1

(t), ..., auN
(t)}

• θui(t) - observed location of ui at t, θ(t) = {θu1(t), ..., θuN
(t)}

• @t1..t2 ,↔t1..t2 - the set of all single, co-location observations for all users and time instants in the interval
[t1 t2], respectively.

• ui @t1..t2 - the set of all single observations for ui at time instants in the interval [t1 t2], respectively.
• v ∈ Sd|vi = x - any d-dimentional vector with elements in S with the value at position i fixed to x.

2.1 A Forward-Backward Algorithm with joint variables

Without co-locations, the localization problem translates to solving a typical HMM model for which a forward-
backward algorithm is a known solution. However, with co-locations, users locations are no longer independent
and incorporating this dependancy is not entirely trivial. In our first approach, we consider user’s locations at
every instant jointly, and propose a forward-backward algorithm.
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Notations

• ∀r, ρ ∈ RN : PUρr =
∏
i=1,N

Pui
ρiri , π

U (r) =
∏
i=1,N

πui(ri)

• ∀r ∈ RN : fr(θ(t)) =
∏

i=1,Ns.t.∃ ui @t

fri(θui
(t))

• 1(r,↔t) = ∧ui↔tuj∈↔t(ri = rj). This is equal to 1 for a joint region space that is compatible with co-
location observations at t and 0 otherwise. For example, with N = 2,M = 2, R = {0, 1}, if the two users
that have a colocation at t, 1([0, 0],↔t) = 1([1, 1],↔t) = 1 and 1([0, 1],↔t) = 1([1, 0],↔t) = 0 (there
can’t be a co-location at t if users are not in the same region). If the users do not have a co-location at t′,
1([r1, r2],↔t′) = 1,∀r1, r2 ∈ {0, 1}.

For any set U of N users, t ∈ [0 T ] and r ∈ RN we define:

αUt (r) := Pr( @1..t ,↔1..t, a(t) = r | PU ) (2.1)

Theorem 1. For any r ∈ RN and any t ∈ [0..T ], αUt (r) can be computed by the following formula:

αUt (r) =


πU (r) if t = 0

1(r,↔t) · fr(θ(t)) ·
∑
ρ∈RN

PUrρ · αUt−1(ρ) if t > 0 (2.2)

For any set U of N users, t ∈ [0 T ] and r ∈ RN we define:

βUt (r) := Pr( @t+1..T ,↔t+1..T | a(t) = r, PU ) (2.3)

Theorem 2. For any r ∈ RN , any t ∈ [0..T ], βUt (r) can be computed by the following formula:

βUt (r) =


1 if t = T∑
ρ∈RN

1(ρ,↔t+1) · βUt+1(ρ) · fρ(θ(t+ 1)) · PUρr if t < T (2.4)

Notice there are no single observations at t = 0, but we define our variables at 0 in order to facilitate their
iterative computation.

Theorem 3. For any user ui and any t, the following holds:

∀r ∈ R : Pr(aui
(t) = r| @1..T ,↔1..T , P

U ) =

∑
r∈RN |ru=r

αUt (r) · βUt (r)

∑
r′∈RN

αUt (r′) · βUt (r′)
(2.5)

Complete derivations for 2.2, 2.4 and 2.5 can be found in our technical report [3].

Formula 2.5 can be used to perform a localization attack for any user, at any time instant. Such an attack
can be done in two stages. The first stage includes the computation of α and β variables with a time complexity
of O(T ·M2N ). In the second stage, computing the probability distributions for all users at all time instants can
be done in O(N · T ·MN ). This result, which shows the algorithm’s complexity is exponential in the number of
users, proves the complexity of the problem.

2.2 A dynamic programing approch with individual variables

We propose another solution to the localization attack. For any user ui ∈ U , for any two time instants tb, te ∈
[1...T ], tb ≤ te and for any regions rb, re ∈ R, we define:

γitb,te(rb, re) := Pr(ui @tb+1..te , aui
(te) = re|aui

(tb) = rb, P
ui) (2.6)

Theorem 4. For any ui ∈ U , any regions rb, re ∈ R and any tb, te ∈ [0..T ], γitb,te(rb, re) can be computed by the
following formula:

γitb,te(rb, re) =



0 if tb = te > 0 and rb 6= re

1 if tb = te > 0 and rb = re

fre(θui
(te)) · πui(re) if tb = 0, te = 1

fre(θui
(te)) ·

∑
ρ∈R

(Pui
reρ · γ

i
tb,(te−1)(rb, ρ)) if te > tb ≥ 0

(2.7)
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Notations

• C - the total number of co-location observations between any two users
• Ci - the total number of co-location observations user ui is a part of;

∑
i=1,N C

i = 2C

• ki - the time instants for which ui is part of a co-location observation
• ρ ∈ RC+1 for some time instant t - a vector representing a possible combination of regions, each corre-

sponding to a time instant in {t} ∪
⋃

j=1,N

kj ; ∀t′ ∈ Nd, d < C, ρ[t′] - the subset of values in ρ, corresponding

to time instants in t′.
• For any user ui, for some dimension d < C, any time instants t ∈ Nd, any regions ρ ∈ Rd, each corresponding

to a time instant in t :

γi(ρ) :=
∑
r∈R

γi0,t1 (r, ρ(t1)) ·

 ∏
j=1,d

γitj ,tj+1
(ρ(tj), ρ(tj+1))

 ·∑
r∈R

γitd,T (ρ(td), r))

Theorem 5. For any user ui and any t, the following holds:

∀r ∈ R : Pr(aui
(t) = r| @1..T ,↔1..T , P

U ) =

∑
ρ∈RC+1|ρ

t
=r

γi(ρ[ki ∪ {t}]) ·
∏

j=1,N

j 6=i

γj(ρ[kj ])


∑

ρ′∈RC+1

γi(ρ′[ki ∪ {t}]) · ∏
j=1,N

j 6=i

γj(ρ′[kj ])


(2.8)

Complete derivations for 2.7 and 2.8 can be found in the technical report [3].

Formula 2.8 can be used to perform a two-stage localization attack for any user, at any time instant. The
first stage includes the computation of the γ variables, with time complexity O(N ·M2 · T 2). The second stage
consists of computing the probability distributions for all users at all time instants, with a time complexity of
O(N ·T ·MC+1). The complexity of the problem is expressed in an exponential with respect to the total number
of co-location observations, C, which can be at most (N/2 + 1)T (for any time instant, N/2 + 1 observations
are enough to represent the extreme case of a co-location for all N users). The choice of algorithm to employ
for an optimal localization attack could then be made depending on the dataset. If the dataset contains few
co-locations, the γ-attack would be a better choice, while with many co-locations (more than N) the αβ-attack
would be faster.

2.3 Quantifying user privacy

The localization attack can be implemented using either formula 2.5 or 2.8, for any user and any time instant,
including those for which no obfuscated single observation exists. In other words, the attacker received sparse
obfuscated traces, but can infer location at any time instant.

As shown in [5], a good measure for user privacy is adversary incorectness. We quantify user privacy by
the (normalized) expected adversary error. For a given t and u, whose true actual location at t is r∗ and
∀r ∈ R,Pr(au(t) = r) - the output of the localization attack for u at t, we measure u’s privacy at t by:

LP (u, t) =
∑
r∈R

Pr(au(t) = r) · d(r, r∗); LPN(u, t) =
LP (u, t)

max
r′,r′′∈R

d(r′, r′′)
(2.9)

where d(r1, r2) is a distance function defined on R×R→ R.

For a set of N users U , we compute the average user privacy across T time instants, having the same unit of
measure as the region distance function, and its normalized version, taking values in [0 1], by:

LP (U) =

∑
u∈U,t∈[1..T ]

LP (u, t)

N · T
; LPN(U) =

∑
u∈U,t∈[1..T ]

LPN(u, t)

N · T
(2.10)

3 Evaluation

We implement the αβ-attack algorithm and evaluate it for N = 2. We use the GPS trajectory dataset, collected
by Microsoft Research Asia [8], [9] and [7], which includes mobility traces for 182 users, mostly around Beijing,
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Figure 3.1: Evaluation dataset

China. We limit the observations to those with longitude ∈ [116.3, 116.35] and latitude ∈ [39.97, 40.01]. The
resulting area corresponds to a region with highly concentated data, as shown in Figure 3.1a.

We use the equi-rectangular projection to map the spherical coordinates (longitude, latitude) of all mea-
surements within this area onto a 2D grid, in which the Euclidean distance between two projections is a good
approximation of the Haversine Distance (i.e., great-circle distance) between the original projected points. We
use space discretization by splitting the selected grid into 25 approximately square grid cells (852m by 890m),
each representing a region, as shown in Figure 3.1b. Given a user’s original measurement in longitude and lati-
tude, we consider the corresponding single observation to be the region cell in which the point falls.

Measurements in the dataset are given at heterogenous time intervals, ranging from 1-2 seconds to days or
weeks. We down-sample the dataset in time by only keeping measuremnts at interval distance of 1 hour. When
a measurement does not exist, we approximate it by the nearest measurement 1 hour before or after the time of
interest.

For any two such processed user traces, we consider there to be a co-location between the two users at time
instant t if the cells corresponding to position t are the same in both their traces. We find that only 961 of the
possible 181 · 182/2 user pairs have at least one co-location in their traces. Of these 961 pairs, only 8 pairs have
more than 100 co-locations: users 0 and 4 with 315 co-locations, users 0 and 30 with 280 co-locations, users 3 and
4 with 578 co-locations, users 3 and 30 with 407 co-locations, users 4 and 30 with 444 co-locations, users 126 and
167 with 553 co-locations, users 126 and 167 with 315 co-locations and users 153 and 163 with 123 co-locations.
We select user pairs (3,4), (0,4) and (4,30) in our experiments (including results for the other user pairs with at
least 100 co-locations is in progress).

Figure 3.1c shows the total number of available measurements for users in these pairs. We use their full traces
to build user profiles (recall Puji - the probability to move from region ri to rj in one time instant) by counting
the number of occurences of ri followed by rj at consecutive time instants in the trace of user u. We perform the
attack on multiple, shorter, random portions of the full trace, which we call the actual trace of u. Specifically,
we set a desired number of co-location observations between two actual traces, which we denote by C, and obtain
pairs of actual traces such that exactly C co-locations can be observed in the actual traces.

For all actual traces, we apply location hiding and/or obfuscation. The result represents the attacker’s
input of obfuscated single observations. We implement location obfuscation by reporting a random location
in a neighbourhood of the real location, each with equal probability. We define the neighbourhood of any
region r, denoted by N(r, kfu), as the set of all regions r′ that satisfy: dMh(r, r′) ≤ kfu, where dMh(r, r′) :=
|rx − r′x|+|ry − r′y| denotes the Manhattan distance in the 2D region grid, for a given kfu. Hence, our location
protection function, incorporating both location hiding and obfuscation, can be summarized by the below formula,
where r⊥ is a dummy location that symbolises a hidden location:

∀ra ∈ R,∀ro ∈ R ∪ {r⊥} : fra(ro) :=


λu if ro = r⊥

(1−λu)
|(N(ra,kfu))| if ro ∈ N(ra, kfu)

0 otherwise

(3.1)

For example, for λ = 0.4 and kf = 1:
f4(r⊥) = 0.4; f4(3) = 0.2; f4(4) = 0.2; f4(9) = 0.2 and all other f4(∗) = 0
f7(r⊥) = 0.4; f7(2) = 0.12; f7(6) = 0.12; f7(7) = 0.12; f7(8) = 0.12; f7(12) = 0.12 and all other f7(∗) = 0

We aim to measure the influence on an attacker’s corectness when using co-location observations, in addition
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to single observations. To this end, we define ω, the proportion - expressed in % - of the existing C co-locations
for a user pair that an attacker observes. An existing co-location could be missed by the adversary if neither of
the users declare it or it cannot be inferred. For a given ω, we assume the adversary only observes ω% · C of C
random co-locations.

For quantifying user privacy we use the metrics described in 2.9 and 2.10, with the Euclidean distance in
the 2D grid as the distance function between two regions to obtain an average user privacy, LP (U), measured
in kilometers.

3.1 Measuring the gradual effect of co-locations

For simplicity, we firstly assume both users in a pair use the same LPPM settings, same λ and same kf . We vary
λ in [0, 0.1, ..., 0.9, 1], where 0 corresponds to location hiding not being used, and kf in [0, 1], where 0 corresponds
to obfuscation not being used. We select pairs of user actual traces, each having C = 24 co-locations and an
average T = 178 and vary ω in [0, 25, 50, 75, 100], where 0 corresponds to an attack using only single observations.
U is the set of all users in the pairs, {0, 3, 4, 30}. We measure LP (U) and LPN(U) for all combinations of λ,
kf and ω. For the same LPPM settings (λ, kf), the user privacy can vary due to the users selected, due to the
actual traces selected for each user or due to the available co-locations used. In order to isolate the impact of
co-locations, we vary the user pairs and, for each user pair, we consider 10 different actual traces. Additionaly,
for each pair of actual traces, we consider 20 different obfuscation possibilities and 20 random ways to select
ω% · C co-locations for the attacker to observe. Finally, we report as user privacy the median of LP (U) and
LPN(U) over all the iterations for the same (λ, kf , ω).

In order to emphasize the difference in privacy which results from using co-locations, we define the relative
privacy loss w.r.t the case when only single observations are used, measured in %, for different values of ω:

∆LPω(U) =
LP 0(U)− LPω(U)

LP 0(U)
(3.2)

3.2 Measuring the impact of a friend’s privacy settings with the use of co-locations

In another experiment, we assume users in a pair use different LPPM settings: λu1
, λu2

∈ [0, 0.2, 0.4, 0.6, 0.8, 1]
and kf1, kf2 ∈ [0, 1]. We are interested in the impact on a user’s privacy of co-locations together with the privacy
settings of a user’s friend. Without loss of generality, we call the first user in a pair target and the other friend.
We select pairs of user actual traces, each having C = 24 co-locations and an average T = 166 and use all
available co-locations for an attack. We measure LP (U) and LPN(U) for all combinations of λ1, λ2, kf1 and
kf2, where U is the set of all target users in the pairs, {0, 3, 4, 30} - here we perform the attack for both ordered
versions of a pair ((u1, u2) and (u2, u1)). For each user pair, we generate 10 random pairs of actual traces and,
for each of these, 20 random obfuscated traces.

For every combination (kffriend, λfriend), we define and measure the relative privacy loss for target users
w.r.t. the case when only single observations are used, measured in %:

∆LP (U) =
LP 0(U)− LP kffriend,λfriend(U)

LP 0(U)
(3.3)

3.3 Results

In section 2.1 we proved the complexity of performing an attack which includes co-location observations along
side single observations. Now we look at the improvement in the attacker’s incorectness, or loss of user privacy,
resulting from the use of co-locations. Figure 3.2 shows the results from our experiment described in 3.1. We
notice that using co-locations results in a decrease of user privacy both with or without the use of location
obfuscation. The only case when co-locations don’t make a difference is when neither location obfuscation nor
location hiding are used, a case for which user privacy is already down to 0 because location can be efficiently
infered from fully disclosed actual traces based on the prior mobility knowledge alone. With location obfuscation,
up to 28% more privacy can be lost, while in the case when obfucation is not used, the aditional privacy loss
can be as high as 38%. Moreover, for the same LPPM setting λ, more privacy is lost as more co-locations are
observed by the attacker (ω increases). We can conclude that privacy is a decreasing function in the number of
co-locations used in the attack. This is in line with our original intuition that more information can decrease user
privacy.

Secondly, we look at the privacy loss for a target user, under different privacy protection settings of a friend.
The previous results show the case of a friend who is equally cautious as target, in terms of choosing his privacy
protection settings. Figure 4.2 shows results from the experiment described in 3.2. Comparing Figure 3.2a with
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Figure 4.2c and Figure 3.2b with Figure 4.2b, we observe that a λfriend < λtarget(a friend who is less cautious
than target) causes even more privacy loss for target than a similarly protected friend.
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(b) With location obfuscation
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Figure 3.2: Gradual effect of co-locations over user privacy. Experiment setup
as described in 3.1

In fact, even if friend
is more cautious than target
(λfriend > λtarget), the use
of co-locations still results in a
decrease of privacy for target
w.r.t. the case when no co-
locations are used. These ob-
servations are supported also by
Figure 4.2a and Figure 4.2d.
We can conclude that the
weaker protected a friend is
- either by hiding his loca-
tion less often than target, or
by not using location obfus-
cation - the stronger the co-
locations due privacy loss is for
target.

Figure 4.1 shows target’s
relative privacy loss (∆LP ),
for all possible combinations of
privacy settings for him and
friend. We observe that the
most dangerous cases are those
when the friend rarely uses lo-
cation hiding (low values for
λfriend). In this case, the rel-
ative privacy loss for target is
very high - between 25-40% -

regardless of his own privacy protection settings. This trully shows the power co-locations can give an at-
tacker. A user can be very conscious about privacy threats and use conservative settings (hide and obfuscate his
location), yet his privacy is highly threatened when co-locations with a poorly protected friend can be observed.
The intuition behind this is that observing co-locations creates a connection between users: privacy is no longer
soley determined by the user itself via the privacy settings he chooses for his LPPM, but it’s a combination of
the privacy settings of all users connected via co-locations. This implies that a user has less control over his
privacy, when co-locations can be declared by his friends, or infered.

4 Conclusions and Future Work

Figure 4.1: A friend’s effect on user privacy,
measured by ∆LP (target).
Experiment setup as described in 3.2.
kftarget ∈ [0, 1], kffriend ∈ [0, 1]
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We analyze and formalize the localization problem from a so-
cial aspect, including information obtained from user co-location
into an inference model. We prove its complexity and propose
algorithms for a localization attack including both single and co-
location observations. We implement and evaluate one of our
algorithms for two users on a real dataset, showing that the ad-
ditional information of co-locations leads to substantially more
privacy loss and, in fact, this loss is an increasing function of the
amount of co-locations available for the attack. We emphasize the
influence of a friend’s privacy settings on a user and show that
poor privacy protection for a friend with which a user shares co-
locations leads to more privacy loss for the user, despite his own
strong privacy protection settings. This shows that, as the local-
ization problem becomes a joint problem when using co-locations,
individual privacy becomes a joint function of the users’ privacy
settings.

In the future, we want to measure the social observations im-
pact for a tracking attack and test our optimal algorithms on
more datasets, with more users, for a better understanding of co-
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locations’ impact on privacy. We aim to expand our model by including a probabilistic model for prior knowledge
at the social level (such as Pr(ui @t r|uj @t r

′)). The reason for this is that people’s social relations can induce
correlation between their locations at a particular point in time - e.g., colleagues are likely to be together at
lunch time, husbands and wives are likely to be together in the evenings.
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(b) kftarget = 1, kffriend = 1
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(c) kftarget = 0, kffriend = 0
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(d) kftarget = 1, kffriend = 0
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Figure 4.2: A friend’s effect on user privacy. Experiment setup as described in
3.2

As some LPPMs also sup-
port user anonymization as
part of privacy protection,
i.e., each user identifier is
mapped to a user pseudonym,
we plan to include this in our
model. This adds another level
of complexity to the localiza-
tion problem, as user traces
would be both obfuscated and
anonymized. Finally, we want
to reduce complexity through
heuristics and compare these
with our optimal algorithms.
Examples of heuristics include
bounding the time window for
which co-locations are consid-
ered and bounding the number
of friends (with co-locations)
considered when performing an
attack by using a graph par-
tition that maximize the co-
locations kept. The intuition
here is that not all co-locations
provide the same amount of in-
formation for an attack on u
at t. A co-location at some t′

far enough from t will induce
a lower correlation between the
actual location at t and that
at t′ than a co-location close
to t will. And a direct co-
location for u with a friend has

a stronger influence in the attack on u than a co-location between a friend of a friend of u with someone u doesn’t
have direct co-locations.
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