
A Primal-Dual Algorithmic Framework for Constrained
Convex Minimization

Quoc Tran-Dinh • Volkan Cevher

Laboratory for Information and Inference Systems (LIONS),
École Polytechnique Fédérale de Lausanne (EPFL), CH1015 - Lausanne, Switzerland.

{quoc.trandinh, volkan.cevher}@epfl.ch.

March 3, 2015

Abstract

We present a primal-dual algorithmic framework to obtain approximate solutions to a prototypical con-
strained convex optimization problem, and rigorously characterize how common structural assumptions affect
the numerical efficiency. Our main analysis technique provides a fresh perspective on Nesterov’s excessive
gap technique in a structured fashion and unifies it with smoothing and primal-dual methods. For instance,
through the choices of a dual smoothing strategy and a center point, our framework subsumes decomposition
algorithms, augmented Lagrangian as well as the alternating direction method-of-multipliers methods as its
special cases, and provides optimal convergence rates on the primal objective residual as well as the primal
feasibility gap of the iterates for all.

Keywords: Primal-dual method; optimal first-order method; augmented Lagrangian; alternating direction
method of multipliers; separable convex minimization; monotropic programming; parallel and distributed
algorithm.

1 Introduction
This article is concerned about the following constrained convex minimization problem, which captures a
surprisingly broad set of problems in various disciplines [11, 18, 43, 70]:

f ? := min
x
{ f (x) : Ax = b,x ∈X } , (1)

where f : Rn → R∪ {+∞} is a proper, closed and convex function; X ⊆ Rn is a nonempty, closed and
convex set; and A ∈ Rm×n and b ∈ Rm are known. In the sequel, we develop efficient numerical methods to
approximate an optimal solution x? to (1) and rigorously characterize how common structural assumptions on
(1) affect the efficiency of the methods.

1.1 Scalable numerical methods for (1) and their limitations
In principle, we can obtain high accuracy solutions to (1) through an equivalent unconstrained problem [13, 54].
For instance, when X is absent and f is smooth, we can eliminate the linear constraint Ax = b by using
a projection onto the null-space of A and then applying well-understood smooth minimization techniques.
Whenever available, we can also exploit barrier representations of the constraints X and avoid non-smooth
f via reformulations, such as lifting, as in the interior point method using disciplined convex programming

1

[13, 33, 46, 48]. While the resulting smooth and unconstrained problems are simpler than (1) in theory, the
numerical efficiency of the overall strategy severely suffers from the curse-of-dimensionality as well as the loss
of the numerical structures in the original formulation.

Alternatively, we can obtain low- or medium-accuracy solutions when we augment the objective f (x) with
simple penalty functions on the constraints. For instance, we can solve

min
x

{
f (x)+(ρ/2)‖Ax−b‖2

2 : x ∈X
}
, (2)

where ρ > 0 is a penalty parameter. Despite the fundamental difficulties in choosing the penalty parameter, this
approach enhances our computational capabilities as well as numerical robustness since we can apply modern
proximal gradient, alternating direction, and primal-dual methods. Intriguingly, the scalability of virtually all
these solution algorithms rely on three key structures that stand out among many others:

Structure 1 (Decomposability): We say that the constrained problem (1) is p-decomposable if the objective
function f and the feasible set X can be represented as follows

f (x) :=
p

∑
i=1

fi(xi), and X :=
p

∏
i=1

Xi, (3)

where xi ∈ Rni , Xi ∈ Rni , fi : Rni → R∪{+∞} is proper, closed and convex for i = 1, . . . , p, and ∑
p
i=1 ni =

n. Decomposability immediately supports parallel and distributed implementations in synchronous hardware
architectures. This structure arises naturally in linear programming, network optimization, multi-stages models
and distributed systems [11]. With decomposability, the problem (1) is also referred to as a monotropic convex
program [63].

Structure 2 (Proximal tractability): Unconstrained problems can still pose significant difficulties in nu-
merical optimization when they include non-smooth terms. However, many non-smooth problems (e.g., of the
form (2)) can be solved nearly as efficiently as smooth problems, provided that the computation of the proximal
operator is tractable1 [4, 58, 62]:

proxλ f (x) := arg min
z∈X

{
f (z)+(1/(2λ))‖z−x‖2

2
}
, (4)

where λ > 0 is a constant. While the proximal operators simply use X = Rn in the canonical setting, we
employ (4) to do away with the X -feasibility of the algorithmic iterates. Many smooth and non-smooth
functions support efficient proximal operators [18, 21, 43, 70]. Clearly, decomposability proves useful in the
computation of (4).

Structure 3 (Special function classes): Often times, the function f in (1) or the individual terms fi in (3)
possess additional properties that can enhance numerical efficiency. Table 1 highlights common properties
that are typically (but not necessarily) associated with function smoothness. These structures provide iterative
algorithms with analytic upper and lower bounds on the objective (or its gradient), and aid the theoretical design
of their iterations as well as their practical step-size and momentum parameter selection [4, 13, 48, 54, 67].

On the basis of these structures, we can design algorithms featuring a full spectrum of (nearly) dimension-
independent, global convergence rates for composite convex minimization problems with well-understood ana-
lytical complexities [4, 48, 53, 52, 67]. Unfortunately, the scalable, penalty-based approaches above invariably
feature one or both of the following two drawbacks which blocks their full impact.

1It can be solved in a closed form, low computational cost or polynomial time.

2

Table 1: Special convex function classes. In the optimization literature, we refer to L,σ , and ν as the Lipschitz,
strong convexity, and barrier parameters, respectively.

Class Name Property
x,y ∈ dom(f) , v ∈ Rn,0≤ σ ≤ L <+∞

FL Lipschitz gradient ‖∇ f (x)−∇ f (y)‖∗ ≤ L‖x−y‖
Fσ Strong convexity σ

2 ‖x−y‖2 + f (x)+∇ f (x)T (y−x)≤ f (y)

F 2 Standard self-concordant |ϕ ′′′(t)| ≤ 2ϕ ′′(t)3/2: ϕ(t) = f (x+ tv), t ∈ R

F 2,ν Self-concordant barrier F 2 and supv∈Rn
{

2∇ f (x)T v−‖v‖2
x
}
≤ ν

Limitation 1 (Non-ideal convergence characterizations): Ideally, the convergence characterization of an
algorithm for solving (1) must establish rates both on absolute value of the primal objective residual

∣∣ f (xk)− f ?
∣∣

as well as the primal feasibility of its linear constraints ‖Axk−b‖, simultaneously on its iterates xk ∈X . The
constraint feasibility is critical so that the primal convergence rate has any significance. Rates on weighted
primal objective residual and feasibility gap is not necessarily meaningful since (1) is a constrained problem
and f (xk)− f ? can easily be negative at all times as compared to the unconstrained setting where we trivially
have f (xk)− f ? ≥ 0.

Table 2 demonstrates that the convergence results for some existing methods are far from ideal. Most
algorithms have guarantees in the ergodic sense (i.e., on the averaged history of iterates without any weight)
[15, 37, 38, 57, 64, 71] with non-optimal rates, which diminishes the practical performance; they rely on
special function properties to improve convergence rates on the function and feasibility [56, 57], which reduces
the scope of their applicability; they provide rates on dual functions [32], or a weighted primal residual and
feasibility score [64], which does not necessarily imply convergence on the absolute value of the primal residual
or the feasibility; or they obtain convergence rate on the gap function value sequence composed both the primal
and dual variables via variational inequality and gap function characterizations [15, 37, 38], where the rate is
scaled by a diameter parameter which is not necessary bounded.2

Limitation 2 (Computational inflexibility): Recent theoretical developments customize algorithms to ex-
ploit special function classes for scalability. We have indeed moved away from the black-box model of opti-
mization, which forms the foundation of the interior point method’s flexibility, where, for instance, we restrict
ourselves to compute solely the values and the (sub)gradients of the objective and the constraints at a point.

Unfortunately, specialized algorithms requires knowledge of function class parameters, do not address the
full scope of (1) (e.g., with self-concordant functions or fully non-smooth decompositions), and often have
complicated algorithmic implementations with backtracking steps, which create computational bottlenecks.
Moreover, these issues are further compounded by their penalty parameter selection, such as ρ in (2) (cf., [12]
for an extended discussion), which can significantly decrease numerical efficiency, as well as the inability to
handle p-decomposability in an optimal fashion, which rules out parallel architectures for their computation.

1.2 Our contributions
To this end, we address the following two questions in this paper: “Is it possible to efficiently solve (1) using
only the proximal tractability assumption with global convergence guarantees?” and “Can we actually charac-

2We refer to the standard ADMM (see, e.g., [12]) and not the parallel ADMM variant or multi-block ADMM, which can have conver-
gence guarantees given additional assumptions.

3

Table 2: Illustrative convergence guarantees for solving (1) under the proximal tractability assumption. Note
that most convergence rate results in the table are in the ergodic or averaged sense, where x̂k = k−1

∑
k
i=1 xi.

Method name Assumptions Convergence References

ADMM ≤ 2-decomposable O(1/k) on the joint (xk,yk) using a gap
function

[15, 37, 38]

Decomposition method p-decomposable f (x̂k) − f ? + r‖Ax̂k − b‖2 ≤ O(1/k)
(r > 0)

[64]

[Fast] ADMM ≤ 2-decomposable and
f1 or f2 ∈Fµ

[O(1/k2)] O(1/k) on the dual-
objective

[32]

Bregman ADMM ≤ 2-decomposable f (x̂k)− f ?≤O(1/k) and ‖Ax̂k−b‖2≤
O(1/

√
k)

[71]

Fast Linearized ADMM ≤ 2-decomposable and
f1 or f2 ∈FL

f (x̂k)− f ?≤O(1/k) and ‖Ax̂k−b‖2≤
O(1/k)

[57]

Primal-Dual Hybrid
Gradient (PDHG)

Saddle point problem O(1/k) based on gap function values
composed both primal-dual variables

[31]

[Inexact] augmented
Lagrangian method

≤ 2-decomposable
∣∣ f (xk)− f ?

∣∣ ≤ O(1/k2) and ‖Axk −
b‖2 ≤ O(1/k2) (non-ergodic)

This work

Decomposition meth-
ods [Inexact] 1P2D and
2P1D

p-decomposable
∣∣ f (xk)− f ?

∣∣ ≤ O(1/k) and ‖Axk −
b‖2 ≤O(1/k) (non-ergodic)

This work

p-decomposable and
fi ∈Fσ

∣∣ f (xk)− f ?
∣∣≤O(1/k2), ‖Axk−b‖2 ≤

O(1/k2), and ‖xk − x?‖2 ≤ O(1/k)
(non-ergodic)

New ADMM and its
preconditioned variants

≤ 2-decomposable
∣∣ f (xk)− f ?

∣∣ ≤ O(1/k) and ‖Axk −
b‖2 ≤O(1/k) (non-ergodic)

This work

terize the convergence rate of the primal objective residual and primal feasibility gap separately?” The answer
is indeed positive provided that there exists a solution in a bounded primal feasible set X .

Surprisingly, we can still exploit favorable function classes, such as FL and Fσ when available, optimally
exploit p-decomposability and its special 2-decomposable sub-case, and have a penalty parameter-free black-
box optimization method. The second question is also important since in primal-dual framework, trade-off
between the primal objective residual and the primal feasibility gap is crucial, which makes algorithm numeri-
cally stable, see, e.g., [31] for numerical examples.

To achieve the desiderata, we unify primal-dual methods [10, 61], smoothing [50, 61], and the excessive
gap function technique introduced in [49] in convex optimization.

Primal-dual methods: Primal-dual methods rely on strong duality in convex optimization [60] and are also
related to many other methods for solving saddle points, monotone inclusions and variational inequalities [28].
In our approach, we reformulate the optimality condition of (1) as a mixed-variational inequality and use the
gap function as our main tool to develop the algorithms.

4

Smoothing: Smoothing techniques are widely used in optimization to replace non-smooth functions with
differentiable approximations. In this work, we describe two smoothing strategies for the dual function of (1)
in the Lagrange formulation based on Bregman distances and the augmented Lagrangian technique. We show
that the augmented Lagrangian smoother preserves convergence properties for the algorithm to solve (1) and
feature a convergence rate independent of the spectral norm of A. In addition, the Bregman smoother allows
us to handle p-decomposability by only relying on the proximal tractability assumption.

Excessive gap function: Excessive gap technique was introduced by Nesterov in [49] and has been used to
develop primal-dual solution methods for solving nonsmooth unconstrained problems. In this paper, we exploit
the same excessive gap idea but in a structured form for a variational inequality characterizing the optimality
condition of (1). We then combine these three existing techniques in order to develop a unified primal-dual
framework for solving (1) and analyze the convergence of its algorithmic instances under mild assumptions.

Our specific theoretical and practical contributions are as follows:
i) We present a unified primal-dual framework for solving constrained convex optimization problems of

the form (1). This framework covers augmented Lagrangian method [39, 45], (preconditioned) ADMM [15],
proximal-based decomposition [20] and decomposition method [68] as special cases, which we make explicit
in Section 6.

ii) We prove the convergence and establish rates for three variants (cf., Theorem 4.1) of our algorithmic
framework without any need to select a penalty parameter. An important result is the convergence rate in a
non-ergodic sense of both primal objective residual

∣∣ f (x̄k)− f ?
∣∣ ≤ O(1/kα) and the primal feasibility gap

‖Ax̄k−b‖ ≤ O(1/kα), where α = 1 or 2. Our rates are considered optimal given our particular assumptions
(cf., Table 2).

iii) We consider an inexact variant of our algorithmic framework for the special case of 2-decomposability,
which allows one to solve the subproblems up to given predetermined accuracy so that it still maintains the same
worst-case analytical complexity as in the exact case provided that the accuracy of solving the subproblems is
controlled appropriately. This variant allows us to handle 2-decomposability with only proximal tractability
assumption.

iv) We show how special function classes can be exploited and describe their convergence implications.
Our characterization is radically different from existing results such as in [5, 15, 23, 37, 38, 57, 64]. We

clarify the importance of this result in Section 4 as well as Section 6 in the context of existing convergence
results for ADMM and its variants. For the p-decomposability, the variants corresponding to our Bregman
smoothing technique can be implemented in a fully parallel and distributed manner, where the feasibility guar-
antee acts as a consensus rate. In special case, where p = 2, we propose a strategy to enhance the practical
convergence rate by trading off the objective residual with the feasibility gap.

On the computational front, we test our algorithms on several well-studied numerical problems using both
synthetic and real-world data, compare them to other existing state-of-the-art methods, and provide open-
source code for each application. We also discuss the update of the smoothness parameters in order to enhance
the performance of the algorithms by trading-off between the optimality gap and the feasibility gap. Numerical
results show the advantages of our methods on several numerical tests.

1.3 Related work
Due to the generality of (1), there has been an explosion of interest in the convex optimization in develop-
ing solution algorithms for it. Unfortunately, it is impossible to provide a comprehensive summary of the
ever-expanding literature in any reasonable space. Hence, this subsection attempts to relate some important
algorithmic frameworks for solving (1) to our work with selected, representative citations in each.

Methods-of-multipliers/primal-dual methods: One of the oldest primal-dual methods for solving (1) is the
method-of-multipliers (MoM), which is based on Lagrange dualization [10]. Without further assumptions on

5

f and X , the dual step of this method can be viewed as a subgradient iteration, which features a provably
slow convergence rate, i.e., O(1/

√
k), where k is the iteration count. MoM is also known to be sensitive to the

step-size selection rules for damping the search direction.
In order to overcome the difficulty of nonsmoothness in the dual function, several attempts have been made.

For instance, we can add either a proximal term or an augmented term to the Lagrange function of (1) to smooth
the dual function [20, 34, 35, 44, 45, 61]. Intriguingly, while the specific methods studied in [20, 34, 35, 61]
are quite borad, no global convergence rate has been established so far.

The works in [44, 45] provide convergence rates by applying Nesterov’s accelerated scheme to the dual
problem of (1). In recent paper [64], the authors shows that the method proposed in [20] has convergence rate
O(1/k). However, this convergence rate is a joint between the objective residual and the primal feasibility gap,
i.e., f (xk)− f ?+ r‖Axk−b‖2 ≤ O(1/k) for r > 0 given. We note that this convergence rate on the weighted
measure does not imply the convergence rate of

∣∣ f (xk)− f ?
∣∣ and ‖Axk−b‖2 separately in constrained opti-

mization.
In [27] the author studies several variants of the primal-dual algorithm and presented several applications

in image processing. Convergence analysis of these variants are also presented in [27], however the global
convergence rate has not been provided. In [31], the authors describe a primal-dual hybrid gradient (PDHG)
algorithm, which can be considered as a variant of the same primal-dual algorithm. In [31], the authors also
studied several heuristic strategies to update the parameters, and show that the convergence rate of this algo-
rithm is O(1/k) in an ergodic sense with respect to a VIP gap function values.

Methods from monotone inclusions and variational inequalities: The optimality condition of (1) can be
viewed as a monotone inclusion or a mixed variational inequality (VIP) corresponding to both the primal and
dual variables [x,y] ∈X ×Rm. As a result, we can leverage algorithms from these two respective fields to
solve (1) [15, 28, 37, 38]. For instance, the work in [15] exploit the idea from variational inequality proposed
in [47, 51]. Splitting methods including Douglas-Rachford and predictor-corrector methods considered [21,
22, 26, 36, 55] also belong to this direction. However, since monotone inclusions or variational inequalities
are much more general than (1), using methods tailored for optimization purposes may be more efficient in
practice for solving the specific optimization problem (1).

Augmented Lagrangian and alternating direction methods: Augmented Lagrangian (AL) methods have
come to offer an important computational perspective on a broad class of constrained convex problems of
the form (1). In this setting, we first define the Lagrangian function associated with the linear constraint
Ax = b of (1) as L (x,y) := f (x) + yT (Ax− b). Then, we introduce the augmented Lagrangian function:
Lγ(x,y) := L (x,y)+(γ/2)‖Ax−b‖2

2 for a given penalty parameter γ > 0. Classical augmented Lagrangian
method [11] solving (1) produces a sequence

{
(xk,yk)

}
k≥0 starting from (x0,y0) ∈X ×Rm as{

xk+1 := argminx∈X Lγ(x,yk),
yk+1 := yk + γ(Axk+1−b), (5)

Under a suitable choice of γ , it is well-known that method (5) converges to a global optimal (x?,y?) of (1)
at O(1/k) rate under mild assumptions, i.e., L (xk,yk)−L (x?,y?) ≤ O(1/k). In fact, this method can be
accelerated by applying Nesterov’s accelerating scheme [48] to obtain O(1/k2) convergence rate.

Within the class of augmented Lagrangian methods, perhaps the most famous variant is the alternating
direction method of multipliers (ADMM), which appears in many guises in the literature. This method has
been recognized as a special case of Douglas-Rachford splitting algorithm applying to its optimality condition
[12, 26, 32]. In ADMM, given that f and X are separable with p = 2. This case also covers the composite
minimization problem of the form minx1∈Rn1 f1(x1)+ f2(Ax1), where both f1 and f2 are convex. By using
a slack variable, we can reformulate the composite problem into (1) as minx∈Rn f1(x1) + h(x2) subject to

6

Ax1 = x2. In the ADMM context, the first problem in (5) can be solved iteratively as
xk+1

1 := arg min
x1∈X1

{
f1(x1)+(yk)T A1x1 +(γ/2)‖A1x1−xk

2‖2
2

}
,

xk+1
2 := arg min

x2∈X2

{
f2(x2)+(yk)T A2x2 +(γ/2)‖A1xk+1

1 −x2‖2
2

}
.

(6)

The main computational difficulty of ADMM is the x1-update problem (i.e., the first subproblem) in (6). In-
deed, we have to numerically solve this step in general except when AT A is efficiently diagonalizable. Inter-
estingly, the diagonalization step in many cases can be done via Fourier Transform. Many notable applications
support this feature, such as matrix completion where A models sub-sampled matrix entries, image deblurring
where A is a convolution operator, and total variation regularization where A is a differential operator with
periodic boundary conditions. We can also circumvent this computational difficulty by using a preconditioned
ADMM variant [15].

ADMM is one of the most popular method in practice. However, its efficiency depends significantly on the
choice of the penalty parameter γ . Unfortunately, theoretical guarantee for choosing this parameter is still an
open problem and is not yet well-understood. When f1 is strongly convex, we can drop the quadratic term in
the first line of (6) in order to obtain an alternating minimization algorithm (AMA) [69]. This method turns out
to be a forward-backward splitting algorithm for its optimality inclusion [32].

A note on [50]: We note that the approach presented in this paper builds upon the excessive gap idea in [50].
Technically, we use the same idea but in a much structured fashion, whereby we enforce a particular linear
form in preserving the excessive gap as shown in Definition 3.2. This particular structure is key in obtaining
our convergence rates.

Moreover, since our problem setting (1) is different from the general minmax formulation considered in
[49], there are still several differences between our algorithmic framework and the methods studied in [49] as
a result of the excessive gap technique. First, we use augmented Lagrangian functions and Bregman distances
for smoothing the dual problem of (1). Second, we consider the Lagrangian primal-dual formulation for (1)
where we do not have the boundedness of the feasible set of the dual variable. In this case the key estimate
[50, estimate (3.3)] does not apply to our setting. Third, we update all algorithmic parameters simultaneously
and do not need an odd-even switching strategy [49, Method 1: b) and c)]. Four, we do not assume that the
objective function f of (1) has Lipschitz gradient which is required in [49]. Note that there are several important
applications, where this assumption simply does not hold [43]. Fifth, our method is applied to the constrained
problem (1), which requires the feasibility gap characterization as opposed to unconstrained problems where
we only need to worry about the primal-dual optimality.

1.4 Paper organization
The rest of this paper is organized as follows. In the next section, we recall basic concepts, and introduce a
mixed-variational inequality formulation of (1). In Section 3, we propose two key smoothing techniques for
(1), called the Bregman and augmented Lagrangian smoothing techniques. We also provide a formal definition
for the excessive gap function from [50] and further investigate its properties. Section 4 presents the main
primal-dual algorithmic framework for solving (1) and its convergence theory. Section 5 specifies different
instances of our algorithmic framework for (1) under given assumptions. Section 6 makes further connections
to existing methods in the literature. Section 7 is devoted to implementation issues and Section 8 presents
numerical simulations. The appendix provides detail proofs of the theoretical results in the main text.

7

2 Preliminaries
First we recall the well-known definition of the Bregman distance, the primal-dual formulation for (1), and a
variational inequality characterization for the optimality condition of (1), which will be used in the sequel.

2.1 Basic notation
Given a proper, closed and convex function f , we denote dom(f) := {x ∈ Rn | f (x)<+∞} the domain of f ,
∂ f (x) := {v ∈Rn | f (x̃)− f (x)≥ vT (x̃−x), ∀x̃ ∈ dom(f)} the subdifferential of f at x. If f is differentiable,
∇ f (x) denotes the gradient of f at x. For given vector x ∈ Rn, we define ‖x‖2 the Euclidean norm of x. We
use a superscripted notation L f > 0 to denote the corresponding Lipschitz constant of a differentiable function
f . Similarly, we use a subscripted notation σg > 0 to denote the corresponding strong convexity constant of a
convex function g.

2.2 Proximity functions and Bregman distances
Given a nonempty, closed convex set X , a nonnegative, continuous and σb-strongly convex function b is
called a proximity function (or prox-function) of X if X ⊆ dom(b). For example, the simplest prox-function
is bX (x) := (σb/2)‖x− xc‖2

2 for any σb > 0 and xc ∈X . Whenever unspecified, we use this specific prox-
function with σb = 1.

Given a smooth prox-function b of X with the parameter σb > 0. We define

db(x,y) := b(x)−b(y)−∇b(y)T (x−y), ∀x,y ∈ dom(b) , (7)

the Bregman distance between x and y with respect to b. Given a matrix S, we also define the projected
prox-diameter of a given set X with respect to db as

DS
X := sup

x,xc∈X
db(Sx,Sxc). (8)

Here, we project the set X onto the range space of matrix S. If X is bounded, then 0 ≤ DS
X < +∞. For

b(x) := (σb/2)‖x−xc‖2
2, we have db(x,y) = (σb/2)‖x−y‖2

2, which is indeed the Euclidean distance.

2.3 Primal-dual formulation
We write the min-max formulation of (1) based on the Lagrange dualization as follows:

max
y∈Rm

min
x∈X

L (x,y)≡ max
y∈Rm

min
x∈X
{ f (x)+yT (Ax−b)}, (9)

where L is the Lagrange function and y is the dual variable. We write the dual function g(y) as

g(y) := min
x∈X
{ f (x)+yT (Ax−b)}, (10)

which leads to the following definition of the so-called dual problem

g? := max
y∈Rm

g(y). (11)

Let x?(y) be a solution of (10) at a given y ∈ Rm. Corresponding to x?(y), we also define the domain of g as

dom(g) := {y ∈ Rm | x?(y) exists} . (12)

8

If f is continuous on X and if X is compact, then x?(y) exists for any y ∈ Rm. Unfortunately, the dual
function g is typically nonsmooth, and hence the numerical solutions of (11) are usually difficult [48]. In
general, we have g(y) ≤ f (x), which is known as weak-duality in convex optimization. In order to guarantee
strong duality, i.e., f ? = g? for (1) and (11), we require the following assumption:

Assumption A. 1 The constraint set X and the solution set X ? of (1) are nonempty. The function f is proper,
closed and convex. In addition, either X is a polytope or the following Slater condition holds:

{x ∈ Rn | Ax = b}∩ relint(X) 6= /0, (13)

where relint(X) is the relative interior of X .

Under Assumption 1, the solution set Y ? of the dual problem (11) is also nonempty and bounded. More-
over, the strong duality holds, i.e., f ? = g?. Any point (x?,y?) ∈X ?×Y ? is a primal-dual solution to (1)
and (11), and is also a saddle point of the Lagrange function L , i.e., L (x?,y)≤L (x?,y?)≤L (x,y?) for all
x ∈X and y ∈ Rm. These inequalities lead to the following estimate

f (x)−g(y)≥ f (x)− f ? ≥−‖y?‖2‖Ax−b‖2, ∀x ∈X , y ∈ Rm. (14)

Our goal in this paper is to solve the primal constrained problem (1), while numerical algorithms only give
an approximate solution up to a certain accuracy. Hence, we need to specify the concept of an approximate
solution for (1).

Definition 2.1 Given a target accuracy ε ≥ 0, a point x̃? ∈X is said to be an ε-solution of (1) if | f (x̃?)− f ?| ≤
ε and ‖Ax̃?−b‖2 ≤ ε .

Here, we assume in Definition 2.1 that x̃? ∈X , i.e., x̃? is exactly feasible to X . This requirement is reasonable
in practice since X is usually a “simple” set where the projection onto X can be computed exactly. Moreover,
we can use different accuracy levels for the absolute value of the primal objective residual | f (x̃?)− f ?| and the
primal feasibility gap ‖Ax̃?−b‖2 in Definition 2.1.

2.4 Mixed-variational inequality formulation and gap function

Let w := (x,y)≡ (xT ,yT)T ∈Rn×Rm be the primal-dual variable and F(w) :=
(

AT y
b−Ax

)
be a partial Karush-

Kuhn-Tucker mapping. Then, the optimality condition of (1) becomes

f (x)− f (x?)+F(w?)T (w−w?)≥ 0, ∀w ∈X ×Rm, (15)

which is known as a mixed-variational inequality [28]. If we define

G(w?) := max
w∈W :=X ×Rm

{
f (x?)− f (x)+F(w?)T (w?−w)

}
, (16)

then G is known as the Auslender gap function of (15) [1].
Let W := X ×Rm. Then, by the definition of F , we can see that

G(w?) = max
(x,y)∈W

{
f (x?)+yT (Ax?−b)− f (x)− (Ax−b)T y?

}
= f (x?)−g(y?)≥ 0.

It is clear that G(w?) = 0 if and only if w? := (x?,y?) ∈W ? := X ?×Y ?, which is indeed the strong duality
property.

9

3 Primal-dual smoothing techniques
This section shows how to use augmented Lagrangian functions and Bregman distances as a principled smooth-
ing technique [48, 3] within our primal-dual framework. We can then obtain different algorithmic variants by
simply choosing an appropriate prox-center at each iteration.

3.1 Dual function is a smoothable function
The dual function g defined by (10) is convex but in general nonsmooth. We approximate this function by a
smoothed function gγ defined as:

gγ(y) := min
x∈X

{
f (x)+yT (Ax−b)+ γdb(Sx,Sxc)

}
, (17)

where db is a given Bregman distance with the strong convexity parameter σd > 0, xc ∈X is the prox-center
of db, S is a given consistent projection matrix and γ > 0 is a [primal] smoothness parameter. The following
definition characterizes approximation properties of the smoothed function gγ .

Definition 3.1 ([3]) The dual function g defined by (10) is called a (γ,D, L̄g)-smoothable function if there exist
positive numbers γ , D and L̄g and a concave and smooth function gγ : dom(g)→ R∪{+∞} so that:

gγ(y)− γD≤ g(y)≤ gγ(y), ∀y ∈ dom(g) . (18)

In addition, ∇gγ(·) is Lipschitz continuous with a Lipschitz constant Lg
γ := γ−1L̄g. �

We call gγ the (γ,D, L̄g)-smoothed function of g or simply the smoothed function of g when these parameters
are specified. We note that gγ defined by (17) is not necessarily Lipschitz gradient for an arbitrary choice of S
and xc. We consider two cases as follows.

3.1.1 Smoothing via augmented Lagrangian

Let us choose db(u,uc) := (1/2)‖u− uc‖2
2, S ≡ A and xc ∈ X so that Axc = b. Then, we have trivially

db(Sx,Sxc) := (1/2)‖Ax− b‖2
2. As a result, the function gγ defined by (17) becomes the augmented dual

function, that is
g̃γ(y) := min

x∈X

{
f (x)+yT (Ax−b)+(γ/2)‖Ax−b‖2

2
}
. (19)

Here, Lγ(x,y) := f (x)+yT (Ax−b)+(γ/2)‖Ax−b‖2
2 is exactly the augmented Lagrangian of (1) associated

with the linear constraint Ax=b. We denote by x̃?γ(y) the solution of (19) and dom
(
g̃γ

)
:=
{

y ∈ Rm | x̃?γ(y) exists
}

.
It is well-known that g̃γ is concave as well as smooth, and its gradient is Lipschitz continuous with a Lipschitz
constant Lg̃

γ := γ−1. We refer to g̃γ as an augmented Lagrangian smoother (in short, AL smoother) of g. The
following lemma shows that g̃γ is a smoothed function of g, whose proof can be found, e.g., in [10].

Lemma 3.1 For any γ > 0, g̃γ defined by (19) is concave and smooth. Its gradient is given by ∇g̃γ(y) =
Ax̃?γ(y)−b and satisfies:

‖∇g̃γ(y)−∇g̃γ(ŷ)‖2 ≤ Lg̃
γ‖y− ŷ‖2, ∀y, ŷ ∈ dom

(
g̃γ

)
, (20)

where Lg̃
γ := γ−1 > 0.

Consequently, g̃γ is a (γ,DA
X , L̄g̃)-smoothed function of g in the sense of Definition 3.1, i.e., g̃γ(y)−γDA

X ≤
g(y)≤ g̃γ(y), where DA

X := (1/2)supx∈X ‖Ax−b‖2
2 and L̄g̃ := 1.

10

3.1.2 Smoothing via Bregman distances

If we choose S := I to be the identity matrix of Rn, then the smoothed function gγ defined by (17) becomes

ĝγ(y) := min
x∈X

{
f (x)+yT (Ax−b)+ γdb(x,xc)

}
. (21)

Let us denote by x̂?γ(y) the solution of (21), which always exists. We refer to ĝγ as a Bregman distance smoother
(shortly, BD smoother) of g. The following lemma summarizes the properties of ĝγ (see, e.g., [50, 68]):

Lemma 3.2 The function ĝγ defined by (21) satisfies:

ĝγ(y)− γDI
X ≤ ĝγ(y)− γdb(x?(y),xc)≤ g(y)≤ gγ(y), ∀y ∈ Rm, (22)

where DI
X is the prox-diameter of X with respect to db and x?(y) is the solution of (10).

Moreover, ĝγ is concave and smooth. Its gradient is given by ∇ĝγ(y) := Ax̂?γ(y)−b for all y ∈ Rm, and
satisfies ∥∥∇ĝγ(y)−∇ĝγ(ŷ)

∥∥
2 ≤ Lĝ

γ‖y− ŷ‖2, ∀y, ŷ ∈ Rm, (23)

for Lĝ
γ := ‖A‖22

γσd
. Consequently, ĝγ is a (γ,DI

X , L̄ĝ)-smoothed function of g, where L̄ĝ := ‖A‖22
σd

and σd is the
strong convexity parameter of db.

We note that if X is bounded and f is continuous (or X ⊂ relint(dom(f))), then x?(y) always exists for
any y ∈ Rm. In this case, the prox-diameter DI

X of X is finite. Consequently, (22) holds for all y ∈ Rm.

3.2 Smoothed gap function
As we observe from the previous section, the optimality condition of (1) can be represented as a variational
inequality of the form (15). By using Auslender’s gap function G(·) defined by (16), we can show that w? ∈W ?

is a primal-dual solution to (1) and (11). Since the gap function G(·) is generally nonsmooth, we smooth it by
adding the following smoothing function:

dγβ (w)≡ dγβ (x,y) := γdb(Sx,Sxc)+(β/2)‖y‖2
2, (24)

where db is a given Bregman distance, S is a projection matrix and γ and β are two positive smoothness
parameters.

Remark 3.1 For simplicity of our analysis, we use a simple quadratic prox-function (β/2)‖y‖2
2 in (24) for the

dual variable y. However, we can replace this term by βdby(y,yc), where dby is a given Bregman distance and
yc is a given point in Rm. However, depending on the choice of dby , the dual variable y∗

β
(·) may no longer have

a closed form expression. However, the overall practical performance may be improved.

The smoothed gap function for G is then defined as follows:

Gγβ (w̄) := max
w∈X ×Rm

{
f (x̄)− f (x)+F(w̄)T (w̄−w)−dγβ (w)

}
, (25)

where F is defined in (15). The function Gγβ can be considered as Fukushima’s gap function [29] for the vari-
ational inequality problem (15). We can see that Gγβ (w̄)→ G00(w̄)≡ G(w̄) as γ and β → 0+ simultaneously.

It is clear that the maximization problem (25) is a convex optimization problem. We denote by w?
γβ
(w̄) :=

(x?γ(ȳ),y?β (x̄)) the solution of this problem. Then, by using the optimality condition of (25) we can easily check
that x?γ(ȳ) is the optimal solution to (17) at y := ȳ, while y?

β
(x̄) can be computed explicitly as

y?
β
(x̄) := β

−1(Ax̄−b). (26)

Our goal is to generate two sequences
{

w̄k
}

k≥0⊆W and {(γk,βk)}k≥0 ∈R2
++ so that

{
Gγkβk

(w̄k)
}

k≥0 becomes
firmly contractive. We formally encode this idea using the following definition.

11

Definition 3.2 (Model-based Excessive Gap) Given w̄k :=(x̄k, ȳk)∈W and (γk,βk)> 0, a new point w̄k+1 :=
(x̄k+1, ȳk+1) ∈ W and (γk+1,βk+1) > 0 so that γk+1βk+1 < γkβk is said to be firmly contractive (w.r.t. Gγβ

defined by (25)) if:
Gk+1(w̄k+1)≤ (1− τk)Gk(w̄k)−ψk, (27)

where Gk(·) := Gγkβk
(·), τk ∈ [0,1) and ψk ∈ R are two given parameters. �

Here, the parameter τk and the decay term ψk will be specified accordantly with different algorithmic schemes.
In the context of excessive gap technique introduced by Nesterov, the smoothed gap function Gµ1µ2(w̄)

measures the excessive gap fµ2(x̄)−φµ1(ȳ) in [49, cf., (2.5) and (2.9)]). Hence, we will call Gγβ (w̄) Nesterov’s
smoothed gap function customized for the constrained convex problem (1). We note that the excessive gap
condition fµ2(x̄) ≤ φµ1(ȳ) in [49, (3.2)] only requires Gµ1µ2(w̄) ≤ 0. In our case, we structure this condition
using the basic model in (27) so that we can manipulate τk and the new parameter ψk simultaneously to analyze
the convergence of our algorithms.

In the sequel, we often assume that the second parameter ψk is nonnegative, which allows us to estimate the
convergence rate of

{
Gk(w̄k)

}
k≥0. However, the following remark shows that the sequence

{
Gk(w̄k)

}
k≥0 can

still converge to 0+ even if ψk is positive. However, we find the ensuing convergence analysis to be difficult.

Remark 3.2 Let {τk}k≥0 ⊆ (0,1) and {ψk}k≥0 be sequences in Definition 3.2. If

lim
k→∞

τk = 0,
∞

∑
k=0

τk =+∞, and
∞

∑
k=0

ψk <+∞, (28)

then the sequence
{

Gk(w̄k)
}

k≥0 converges to 0+. �

From Definition 3.2, if
{

w̄k
}

k≥0 ⊆ W and {(γk,βk)}k≥0 ∈ R2
++ satisfy the condition (27), then we have

Gk(w̄k)≤ ωkG0(w̄0)−Ψk by induction, where

ωk :=
k−1

∏
j=0

(1− τ j) (k ≥ 1) and Ψk := ψk +
k

∑
j=0

k

∏
i= j

(1− τi)ψ j−1 (k ≥ 0). (29)

Consequently, the rate of convergence of
{

Gk(w̄k)
}

k≥0 depends on the rate of {τk}k≥0 and {ψk}k≥0.
The next lemma shows the relation between problem (1) and its smoothed function gγ and g. The proof of

this lemma can be found in the appendix.

Lemma 3.3 Let gγ be defined by (17) and Gγβ defined by (25). Also, let
{

w̄k
}

k≥0 ⊂ W and {(γk,βk)}k≥0 ∈
R2
++ be the sequences satisfying Definition 3.2. Then we have

f (x̄k)−gγk(ȳ
k)≤ ωkG0(w̄0)−Ψk− (1/(2βk))‖Ax̄k−b‖2

2. (30)

In addition, we also have the following bound:

−‖y?‖2‖Ax̄k−b‖2 ≤ f (x̄k)− f ? ≤ f (x̄k)−g(ȳk)≤ Sk, (31)

‖Ax̄k−b‖2 ≤ βk

[
‖y?‖2 +

√
‖y?‖2

2 +2β
−1
k Sk

]
(32)

where Sk := ωkG0(w̄0)+ γkDS
X −Ψk, provided that βk‖y?‖2

2 +2Sk ≥ 0.

From Lemma 3.3 we can see that if G0(w̄0) ≤Ψk, then the primal objective residual
∣∣ f (x̄k)− f ?

∣∣ and the
primal feasibility gap ‖Ax̄k−b‖2 of (1) are bounded by

∣∣ f (x̄k)− f ?
∣∣≤max

{
γkDS

X ,
[
2βkDY ? +

√
2γkβkDS

X

]
DY ?

}
,

‖Ax̄k−b‖2 ≤ 2βkDY ? +
√

2γkβkDS
X ,

(33)

12

where DY ? := min{‖y?‖2 | y? ∈ Y ?}, which is the norm of a minimum norm dual solution. The estimate (33)
hints that we can derive algorithms based on {(γk,βk)} whose convergence rate depends directly on how we
update the sequence {(γk,βk)}k≥0.

4 The main algorithmic framework
The key objective in this section is to design a primal-dual update template from w̄k ∈W and (γk,βk) ∈ R2

++

to w̄k+1 ∈ W and (γk+1,βk+1) ∈ R2
++ so that the conditions in Definition 3.2 hold. We develop two distinct

schemes to update w̄k and (γk,βk) in the following two subsections.

4.1 An iteration scheme with two primal steps
Since the objective function is not necessary smooth, we consider the following mapping under Assumption 1:

proxS f (x̂, ŷ;β) := argmin
x∈X

{
f (x)+ ŷT A(x− x̂)+(L̄g/(2β))‖S(x− x̂)‖2

2
}
, (34)

where β > 0 and S is a projection matrix that satisfies the following condition:

‖Ax−b‖2
2 ≤ ‖Ax̂−b‖2

2 +2(Ax̂−b)T A(x− x̂)+ L̄g‖S(x− x̂)‖2
2, ∀x, x̂ ∈X . (35)

An obvious choice of S is either S ≡ A and L̄g = 1 or S ≡ I and L̄g = ‖A‖2
2. Since A is known, both are

feasible. Alternatively, local variable metrics can be used here, which might lead to different adaptation and
computation tradeoffs in optimization.

Now, given w̄k := (x̄k, ȳk) ∈ W and (γk,βk) ∈ R2
++, we compute x?γ(ȳk) the solution of the minimization

problem in (17) and y?
β
(x̄k) by (26). Then, we update the point w̄k+1 := (x̄k+1, ȳk+1) and (γk+1,βk+1) based on

the following scheme: 
x̂k := (1− τk)x̄k + τkx?γk

(ȳk),

ŷk := β
−1
k+1(Ax̂k−b),

x̄k+1 := proxS f (x̂k, ŷk;βk+1),

ȳk+1 := (1− τk)ȳk + τkŷk,

(2P1D)

where τk ∈ (0,1] and (βk+1,γk+1) is updated as

βk+1 = (1− τk)βk and γk+1 = (1− ckτk)γk, (36)

for some ck ∈ (−1,1], which will be specified later. It is important to note that if f is nonsmooth, solving
problem (34) requires the same cost as solving (17). Therefore, we can refer to (2P1D) as a primal-dual
scheme with two primal steps.

Remark 4.1 If f is L f -Lipschitz gradient, then we can replace f (x) in the proximal step at the third line of
(2P1D) by its linearization, which leads to the following gradient step:

gradS f (x̂, ŷ;β) :=argmin
x∈X

{
(∇ f (x̂)+AT y)T(x−x̂)+(L f /2)‖x−x̂‖2

2+(2β)−1‖S(x−x̂)‖2
2
}
.

In particular, when f is p-decomposable as in (3) and if fi is Lipschitz gradient for some i = 1, . . . , p, then we
can use the gradient step for such a fi [68].

The following lemma provides conditions such that (x̄k+1, ȳk+1) updated by (2P1D) satisfies Definition 3.2,
whose proof is deferred to the appendix.

13

Lemma 4.1 Let (x̄k+1, ȳk+1) and (γk+1,βk+1) be updated as (2P1D) and (36). If S satisfies (35) and τk is
chosen such that

βk+1γk+1 ≥ L̄g
τ

2
k , (37)

then (x̄k+1, ȳk+1)∈W and satisfies Definition 3.2, i.e., Gk+1(w̄k+1)≤ (1−τk)Gk(w̄k)−ψk for ψk := τ2
k

2βk+1
‖Ax?γk

(ȳk)−
b‖2

2 ≥ 0.

4.2 An iteration scheme with two dual steps
Alternatively to (2P1D), we can switch from two primal steps to two dual steps. In this case, the new point
(x̄k+1, ȳk+1) is updated as follows:

ŷk := (1− τk)ȳk + τky?
βk
(x̄k),

x̄k+1 := (1−τk)x̄k + τkx?γk+1
(ŷk),

ȳk+1 := ŷk +
γk+1
L̄g

(
Ax?γk+1

(ŷk)−b
)
,

(1P2D)

where τk ∈ (0,1) and the parameters βk+1 and γk+1 are updated as (36). We refer to (1P2D) as a primal-dual
scheme with two dual steps.

The following lemma shows that (x̄k+1, ȳk+1) updated by (1P2D) maintains (27), whose proof can also be
found in the appendix.

Lemma 4.2 Let (x̄k+1, ȳk+1) and (γk+1,βk+1) be updated by (1P2D) and (36), respectively. If τk is chosen
such that

βk+1γk+1 ≥ L̄g
τ

2
k , (38)

then (x̄k+1, ȳk+1) ∈W and satisfies Gk+1(w̄k+1)≤ (1− τk)Gk(w̄k)−ψk for

ψk := τk(1− τk)γk
[
db(Sx?γk+1

(ŷk),Sxc)− ckdb(Sx?γk+1
(ȳk),Sxc)

]
≥ 0.

4.3 Finding a starting point
In principle, we can start our algorithm at any point (x̄0, ȳ0)∈W . However, we can find a point w̄0 :=(x̄0, ȳ0)∈
W such that Gγ0β0(w̄

0) ≤ 0. The following lemma shows how to compute such a point, whose proof can be
found in the appendix.

Lemma 4.3 Given x0
c ∈X , the point w̄0 := (x̄0, ȳ0) ∈W computed by{

x̄0 = x?γ0
(0m),

ȳ0 := β
−1
0

(
Ax̄0−b

)
.

(39)

satisfies Gγ0β0(w̄
0)≤−γ0db(Sx̄0,Sxc)≤ 0 provided that β0γ0 ≥ L̄g.

Alternatively, the point w̄0 := (x̄0, ȳ0) ∈W generated by{
ȳ0 := β

−1
0 (Axc−b) ,

x̄0 := proxS f (xc, ȳ0;β0),
(40)

also satisfies Gγ0β0(w̄
0)≤−γ0db(Sx̄0,Sxc)≤ 0 provided that β0γ0 ≥ L̄g.

14

4.4 Updating step-size parameter
It remains to derive an update rule for the step-size τk in both scheme (2P1D) and (1P2D). The update rule is
derived by using the same condition in both Lemma 4.1 and Lemma 4.2.

Since τk satisfies βk+1γk+1 ≥ L̄gτ2
k , τk+1 also satisfies the same condition, i.e., βk+2γk+2 ≥ L̄gτ2

k+1. In
addition, by (36), we have βk+2 := (1− τk+1)βk+1 and γk+2 := (1− ck+1τk+1)γk+1. These conditions lead to
τ2

k+1 ≤ (1− τk+1)(1− ck+1τk+1)τ
2
k . Since we want to maximize the value of τk+1, we take the equality, i.e.,

τ2
k+1 = (1− τk+1)(1− ck+1τk+1)τ

2
k . The last condition leads to

ak+1 :=
(
1+ ck+1 +

√
4a2

k +(1− ck+1)2
)
/2, and τk := a−1

k . (41)

In addition, from Lemma 4.3, we have β0γ0 ≥ L̄g. Let us choose β0 := γ
−1
0 L̄g. We need to choose τ0 ∈ (0,1]

such that γ1β1 = (1− τ0)(1− c0τ0)β0γ0 ≥ L̄gτ2
0 . Therefore, we get

a0 :=
(

1+ c0 +
√

4(1− c0)+(1+ c0)2
)
/2, and τ0 := a−1

0 . (42)

The following Lemma shows the convergence rate of ak, βk and βkγk. The proof of this lemma can be found in
the appendix.

Lemma 4.4 Let sk := ∑
k
i=1 ci. Then, the sequence {ak} updated by (41) with a0 given by (42) satisfies

(k+a0 + sk)/2≤ ak ≤ k+a0. (43)

Consequently, the sequences {βk} and {γk} updated by (36) satisfy

L̄g

(k+a0)2 ≤ γk+1βk+1 ≤
4L̄g

(k+a0 + sk)2 , (44)

where L̄g is given in Definition 3.1. Moreover, we also have{
β0

(k+2)2 ≤ βk+1 ≤ 4β0
(k+1)2 , if ck = 0,

βk+1 = β0
k+2 , if ck = 1.

(45)

4.5 A primal-dual algorithmic template
Now, we combine all ingredients presented in the previous subsection to obtain the template for solving (1)
shown in Algorithm 1.

The main step of Algorithm 1 is Step 5, where we need to update (x̄k+1, ȳk+1) based on either (2P1D) or
(1P2D). If we use (2P1D), then γk can be updated as γk+1 := (1−τk)γk, i.e., ck = 1. We can also fix γk = γ0 > 0
for all the iterations k ≥ 0, i.e., ck = 0. It is important to note that Step 5 and Step 6 are mixed. Depending
on the use of either (2P1D) or (1P2D), the corresponding parameter βk or γk is updated before Step 5. If we
choose ck < 0, then {γk} is increasing. Since the rate of βkγk is fixed at O(1/k2) due to (44), if we decrease the
rate of {γk} (i.e., increase γk), then {βk} converges faster than the O(1/k2) rate. We will discuss the stopping
condition at Step 4 later. We note that we can also alternate between (2P1D) and (1P2D) in Algorithm 1.
However, it is not clear whether this strategy would yield any numerical advantage.

4.6 Convergence analysis
Under Assumption 1, the dual solution set Y ? is nonempty. Recall that DY ? := min

y?∈Y ?
‖y?‖2 <+∞ is the norm

of a minimum norm dual solution. The following theorem shows the convergence of Algorithm 1.

15

Algorithm 1: (Primal-dual template using model-based excessive gap technique)
Inputs: γ0 > 0, c0 ∈ (−1,1], and a smoother (AL or BD).
Initialization:

1: a0 :=
(
1+ c0 +[4(1− c0)+(1+ c0)

2]1/2
)
/2 and τ0 := a−1

0 .
2: Use L̄g := 1 for AL smoother and L̄g := σ

−1
d ‖A‖

2
2 for BD smoother.

3: β0 := L̄g/γ0.
4: Compute (x̄0, ȳ0) by either (39) or (40).

For k = 0 to kmax
5: If stopping criterion, terminate.
6: Given (x̄k, ȳk), update (x̄k+1, ȳk+1) by either (2P1D) or (1P2D).
7: βk+1 := (1− τk)βk and update γk+1 := (1− ckτk)γk.
8: Update ck+1 from ck if necessary.
9: Update ak+1 :=

(
1+ ck+1 +[4a2

k +(1− ck+1)
2]1/2

)
/2 and set τk+1 := a−1

k+1.
End For

Theorem 4.1 Let
{
(x̄k, ȳk)

}
k≥0 be the sequence generated by Algorithm 1 after k ≥ 1 iterations. Then, if

gγ ≡ g̃γ , i.e., using augmented Lagrangian smoother g̃γ , then:

a) If ck := 0 for all k ≥ 0, γ0 := L̄g̃ = 1, then:{
‖Ax̄k−b‖2 ≤ 8DY ?

(k+1)2 ,

− 1
2‖Ax̄k−b‖2

2−DY ?‖Ax̄k−b‖2 ≤ f (x̄k)− f ? ≤ 0,
(46)

for all k ≥ 0. Moreover, the spectral norm of A does not affect the bounds in (46).

As a consequence, the worst-case analytical complexity of Algorithm 1 to achieve an ε-primal solution x̄k for
(1) in the sense of Definition 2.1 is O

(
ε−1/2

)
.

Alternatively, if gγ ≡ ĝγ , i.e., using Bregman distance smoother g̃γ , then:

b) If Algorithm 1 uses (2P1D), γ0 :=
√

L̄g and ck := 1 for all k ≥ 0, then: ‖Ax̄k−b‖2 ≤
√

L̄g
(

2DY ?+
√

2DI
X

)
k+1 ,

−DY ?‖Ax̄k−b‖2 ≤ f (x̄k)− f ? ≤
√

L̄g

k+1 DI
X .

(47)

c) If Algorithm 1 uses (1P2D), γ0 := 2
√

2L̄g
K+1 and ck := 0 for all k = 0, . . . ,K, then: ‖Ax̄K−b‖2 ≤

2
√

2L̄g(DY ?+
√

DI
X)

(K+1) ,

−DY ?‖Ax̄K−b‖2 ≤ f (x̄K)− f ? ≤ 2
√

2L̄g

(K+1)DI
X .

(48)

As a consequence, the worst-case analytical complexity of Algorithm 1 to achieve an ε-primal solution x̄k for
(1) in the sense of Definition 2.1 is O

(
ε−1
)
.

We note that the choice of γ0 in Theorem 4.1 trades-off the primal objective residual and the primal feasi-
bility gap. Indeed, smaller γ0 leads to smaller | f (x̄k)− f ?|.

We chose the (1P2D) scheme above due to its close relationship to some well-known primal dual methods
we describe below. Unfortunately, the (1P2D) scheme has the drawback of fixing the total number of iterations
a priori, which the (2P1D) scheme can avoid at the expense of more proximal operator calculations.

16

5 Instances of Algorithm 1
This section specifies Algorithm 1 under different assumptions to obtain specific instances of this algorithm
for solving (1).

5.1 Strong convexity assumption
If the objective function f of (1) is strongly convex with a convexity parameter σ f > 0. Then it is well-known
that (see, e.g., [50]) the dual function g(·) defined by (10) is smooth and Lipschitz gradient with a Lipschitz

constant Lg
f := ‖A‖22

σ f
. In this case, we modify accordingly both schemes (2P1D) and (1P2D) as follows:

(2P1Dσ)


x̂k := (1− τk)x̄k + τkx?(ȳk),

x̄k+1 := proxI f (x̂k,β−1
k (Ax̂k−b);βk),

ȳk+1 := (1− τk)ȳk + τk
βk

(
Ax̂k−b

)
.

(1P2Dσ)


ŷk := (1−τk)ȳk+τky?

βk
(x̄k),

x̄k+1 := (1−τk)x̄k+τkx?(ŷk),
ȳk+1 := ŷk+ 1

Lg
f

(
Ax?(ŷk)−b

)
.

While the scheme (1P2Dσ) remains similarly to (1P2D), the parameter βk in (2P1Dσ) has not updated yet as
in (2P1D).

The starting point w̄0 := (x?(0m), ȳ0) ∈W for Algorithm 1 with respect to this variant can be computed as
ȳ0 := (Lg

f)
−1(Ax?(0m)−b) and x?(y) is the unique solution of the minimization in (10). The parameters βk

and τk are updated as follows:

βk+1 := (1− τk)βk, τk+1 := (τk/2)[(τ2
k +4)1/2− τk], k ≥ 0, (49)

where β0 := Lg
f and τ0 := (

√
5−1)/2. The following corollary shows the convergence of both schemes, whose

proof is in the appendix.

Corollary 5.1 Assume that f of (1) is σ f -strongly convex. Let
{
(x̄k, ȳk)

}
k≥0 be a sequence generated by either

(2P1Dσ) or (1P2Dσ) using the update rule (49). Then
‖Ax̄k−b‖2 ≤

4‖A‖22
(k+2)2σ f

DY ? ,

−DY ?‖Ax̄k−b‖2 ≤ f (x̄k)− f ? ≤ 0,
‖x̄k−x?‖2 ≤ 4‖A‖2

(k+2)σ f
DY ? ,

(50)

where DY ? is defined in Theorem 4.1 and x? ∈X ?.
As a consequence, the worst-case analytical complexity for finding an ε-primal solution x̄k of (1) in the

sense of Definition 2.1 is O(1/
√

ε).

Remark 5.1 The bounds in (50) do not depend on the prox-diameter DI
X of the feasible set X . Hence, the

boundedness of X is no longer required.

Remark 5.2 Convergence of the objective indeed depends on the absolute value of the primal residual, i.e.,

| f (x̄k)− f ?| ≤ 4‖A‖22
(k+2)2σ f

D2
Y ? .

5.2 Lipschitz gradient assumption
The aim of this subsection is to develop a variant of Algorithm 1 using (1P2D) without fixed the accuracy as
stated in Theorem 4.1(c). However, this variant is only limited to problems of the form (1) that satisfy the
following technical assumption:

17

Assumption A. 2 The following conditions hold:

(a) The objective function f and the feasible set X of (1) are separable as in (3).

(b) The last term fp is L fp -Lipschitz gradient and the smallest eigenvalue λmin(AT
p Ap) of matrix Ap is

positive.

(c) The Bregman distance d(Sx,Sxc) is chosen as d(Sx,Sxc) := ∑
p
i=1 di(Sixi,Sixc

i), where Sp ≡ I and
dp(·,xc

p) is smooth and ∇dp(·,xc
p) is 1-Lipschitz continuous.

(d) The last term gp
γ of the smoothed dual function gγ defined by (17) satisfies

gp
γ (y) = min

xp∈Rnp

{
fp(xp)+yT Apxp +(γ/2)dp(xp,xc

p)
}
. (51)

That is the primal constraint on the last component is not active.

Under Assumption A.2, we can write the function gγ defined by (17) as gγ(y) := ∑
p
i=1 gi

γ(y)−bT y, where

gi
γ(y) := min

xi∈Xi

{
fi(xi)+yT Aixi +(γ/2)di(Sixi,Sixc

i)
}
, i = 1, . . . , p.

A simple example for dp is dp(xp) := (1/2)‖xp−xc
p‖2

2. The last condition in Assumption A.2 shows that the
solution x?p,γ(y) of the minimization problem in gp

γ must be attained in relint(Xp). This condition is not too
restrictive, since we only require it for the last component gp

γ . It is automatically fulfilled if fp is strongly
convex and xc

p ∈ relint(Xp). Now, we show that the function gp
γ is strongly concave in the following lemma,

whose proof can be found in the appendix.

Lemma 5.1 Under Assumption A.2, the function gp
γ defined by (51) is strongly concave with the parameter

σgp
γ

:= (L fp + γ)−1λmin(AT
p Ap)> 0. Consequently, the function gγ defined by (17) is also strongly convex with

the same parameter σgp
γ
.

Using the result of Lemma 5.1, we can update γk and βk in the scheme (1P2D) as

γk+1 :=
(
1− τk/(1+ τk)

)
γk, βk+1 := (1− τk)βk and τk := (k+1)−1 ∀k ≥ 0, (52)

where β0 = γ0 :=
√

L̄g. In this case, we have γk+1βk+1 ≥ L̄gτ2
k for k ≥ 0. The following corollary shows the

convergence of this variant.

Corollary 5.2 Under Assumption A.2, let
{
(x̄k, ȳk)

}
k≥0 be a sequence generated by (1P2D) using the update

rule (52). Then  ‖Ax̄k−b‖2 ≤
2
√

2L̄g
(

DY ?+
√

DS
X

)
k+1 ,

−DY ?‖Ax̄k−b‖2 ≤ f (x̄k)− f ? ≤ 2
√

2L̄g

k+1 DS
X ,

(53)

where DY ? and L̄g are defined in Theorem 4.1.

Remark 5.3 Corollary 5.2 shows that, for certain subclass of problems (1) satisfying Assumption A.2, it allows
us to simultaneously update both parameters γk and βk instead of fixing a priori γ0 as in Theorem 4.1(c).

18

5.3 Inexact solution of the augmented Lagrangian smoother
In the augmented Lagrangian smoothing method, solving the minimization problem (19) exactly can be im-
practicable. However, we can often solve this subproblem up to a given accuracy δ > 0, i.e.,

x̃δ
γ (y) := δ -arg min

x∈X

{
Lγ(x,y) := f (x)+yT (Ax−b)+(γ/2)‖Ax−b‖2

2
}
, (54)

in the following sense:
Lγ(x̃δ

γ (y),y)−Lγ(x̃?γ(y),y)≤ γδ
2/2, (55)

where x̃?γ(y) is an exact solution of (19).
The condition x̃δ

γ (y) ∈X is reasonable in practice since the feasible set X can be assumed to be “simple”
so that the computation of the projection onto X can be carried out exactly. In addition, there exist several
convex optimization algorithms (e.g., Nesterov’s accelerated algorithms [48]) for computing x̃δ

γ (y) that satisfy
(55).

By the definition of Lγ , we can easily show that

Lγ(x̃δ
γ (y),y)−Lγ(x̃?γ(y),y)≥ (γ/2)‖A(x̃δ

γ (y)− x̃?γ(y))‖2
2,

which leads to ‖A(x̃δ
γ (y)− x̃?γ(y))‖2 ≤ δ . Now, if we define ∇g̃δ

γ (y) := Ax̃δ
γ (y)−b an approximation for the

gradient ∇g̃γ(y), then (55) and the last inequality implies

‖∇g̃δ
γ (y)−∇g̃γ(y)‖2 ≤ δ . (56)

In addition, we also denote by g̃δ
γ (y) := L̃γ(x̃δ

γ (y),y) as an approximation to g̃γ(y).
Instead of using the true solution x?γ(y) in the schemes (2P1D) and (1P2D), we use the approximate solu-

tions x̃δ
γ (y) to obtain the following inexact iterative schemes:



(i2P1D)

x̂k := (1− τk)x̄k + τkx̃δk
γk (ȳ

k),

ŷk := β
−1
k+1(Ax̂k−b),

x̄k+1 := p̃roxδk
A f (x̂

k, ŷk;βk+1),

ȳk+1 := (1− τk)ȳk + τkŷk.



(i1P2D)

ȳ?k := β
−1
k (Ax̄k−b),

ŷk := (1− τk)ȳk + τkȳ?k ,
x̄k+1 := (1−τk)x̄k+τkx̃δk

γk(ŷ
k),

ȳk+1 := ŷk+γk
(
Ax̃δk

γk(ŷ
k)−b

)
.

(57)

Here, the inexact proximal operator p̃roxδ

A f is defined as:

p̃roxδ

A f (x̄, ŷ;β) := δ -argmin
x∈X

{
Hβ (x; ŷ, x̄) := f (x)+ŷT A(x−x̄)+

L̄g

2β
‖A(x−x̄)‖2

2

}
, (58)

where A and δ ≥ 0 are given and the inexactness is also defined as in (55).
The starting point w̄0 := (x̄0, ȳ0) ∈W can be computed from one of the following formulations:{

x̄0 := x̃δ0
γ0 (0

m),

ȳ0 := β
−1
0

(
Ax̄0−b

)
,

or

{
ȳ0 := β

−1
0 (Axc−b) ,

x̄0 := p̃roxδ0
A f (xc, ȳ0;β0).

(59)

The following theorem shows the convergence of the inexact variant of Algorithm 1 using scheme (57),
called (i1P2D), whose proof can be found in the appendix. Analogously, we can also prove the same result as
in Theorem 5.1 for the (i2P1D) scheme but we omit the laborious details.

19

Theorem 5.1 Let
{
(x̄k, ȳk)

}
k≥0 be the sequence generated by Algorithm 1 using (i1P2D) in (57) and the first

initial point (x̄0, ȳ0) in (59). Then, if γ0 = L̄g̃ = 1, ck := 0 and qkδk ≤ qk−1δk−1 for all k ≥ 0 and qk :=
(1− τk)τk‖ȳk−ȳ?k‖2 +(DA

X +1)/2 then:{
‖Ax̄k−b‖2 ≤ 4

(k+1)2

(
2DY ? +

√
14q0δ0
(k+1)2

)
,

− (1/2)‖Ax̄k−b‖2
2−DY ?‖Ax̄k−b‖2 ≤ f (x̄k)− f ? ≤ 7q0δ0.

(60)

As a consequence, if δ0 = O
(

q0
k2

)
, then the worst-case analytical complexity of Algorithm 1 to achieve an

ε-primal solution x̄k of (1) in the sense of Definition 2.1 is O
(
ε−1/2

)
.

Theorem 5.1 shows that the primal feasibility gap ‖Ax̄k−b‖2 converges to 0+ at the rate O(1/k2), while
the objective residual

∣∣ f (x̄k)− f ?
∣∣ depends on the numerical accuracy δ0 of (54) at the initial iteration k = 0. If

δ0 is not sufficiently small, we only obtain a sub-optimal solution of (1). Practically, we can solve (54) at k = 0
with relatively high accuracy and use a warm-start strategy to significantly reduce the computational burden of
the subsequent iterations.

6 Explicit connections to existing methods
To better differentiate our contributions, it is important to make explicit comparisons of Algorithm 1 with
the dual fast gradient methods, alternating direction methods of multipliers (ADMM) and proximal-based
decomposition methods here.

6.1 Connections to the fast gradient methods
Dual fast gradient methods were studied in, e.g., [5, 44, 45, 59]. The main idea is to use either the strong
convexity of the objective [5, 59] or smoothing technique via prox-functions [44] or augmented Lagrangian
function [45], which leads to the Lipschitz continuity of the gradient of the dual function. Then, Nesterov’s
fast gradient method [48] is applied to solve the smoothed dual problem.

In this paper, we also smooth the dual function by using either augmented Lagrangian function or Bregman
distances to obtain a smoothed dual function with Lipschitz continuous gradient. In order to obtain both primal
objective residual and primal feasibility gap simultaneously, we exploit the concepts of excessive gap technique
introduced by Nesterov [49] and Auslander’s gap function [1] to build a primal-dual sequence

{
(x̄k, ȳk)

}
k≥0

that converges to the primal-dual optimal solution (x?,y?) of (1). In [44, 59] the authors only proved the
convergence results in terms of the dual objective values g, which is different from Theorem 4.1, where we
both have the convergence rate guarantee both on the primal objective residual and the primal feasibility gap.
In [45] the authors characterized the convergence rate of an inexact augmented Lagrangian method both in the
primal objective values and the primal feasibility gaps. However, the approach is directly based on Nesterov’s
accelerated scheme for the dual problem and the convergence results are presented in an ergodic sense. In [5]
the authors considered a special case of (1), where the objective function is strongly convex as in Corollary 5.1.
They also characterized the feasibility gap. However, the convergence rate of this quantity drops to O(1/k)
instead of the better O(1/k2) rate established by our Corollary 5.1.

We close this discussion by showing that our results in Corollary 5.1 can be applied to non-strongly convex
problems of the form (1). We process this procedure as follows. Assume that f of (1) is not strongly convex,
we consider the function fσ (x) := f (x)+(σ f /2)‖x−xc‖2

2, where σ f > 0 and xc ∈X . Then, the function fσ

is strongly convex with the parameter σ f > 0. Next, we apply either (2P1Dσ) or (1P2Dσ) to solve (1) with f
is substituted by fσ . In this case, Corollary 5.1 is still valid. Moreover, we have fσ (x̄k) = f (x̄k)+(σ f /2)‖x̄k−
xc‖2

2 and f ?σ = f ?+(σ f /2)‖x?−xc‖2
2, which imply

| f (x̄k)− f ?| ≤ | fσ (x̄k)− f ?σ |+2σ f DI
X ,

20

where DI
X := maxx∈X (1/2)‖x− xc‖2

2. Combining this estimate and Corollary 5.1 we obtain | f (x̄k)− f ?| ≤
4‖A‖22

σ f (k+2)2 D2
Y ? +2σ f DI

X . Hence, if we choose σ f :=
√

2‖A‖2DY ?

(k+2)
√

DI
X

then we obtain the worst-case analytical com-

plexity of this algorithm as

| f (x̄k)− f ?| ≤
2
√

2‖A‖2DY ?(DI
X)1/2

(k+2)
and ‖Ax̄k−b‖2 ≤

2
√

2‖A‖2(DI
X)1/2

(k+2)
.

Comparing this complexity and Theorem 4.1, we conclude that depending on the values of D?
Y and DI

X we
can use choose an appropriate variant of Algorithm 1 for solving the given problem. However, note that we do
not generally have access to DY ? , hence we can instead use the standard (1P2D) or (2D1P) schemes which do
not require the knowledge of the smoothing parameter.

6.2 Connection to ADMMs
Several algorithms based on method of multipliers such as alternating minimization algorithm (AMA) [69],
alternating direction method of multipliers (ADMM) [11] and alternating linearization methods (ALM) [30]
have been developed in the literature. Such methods aim at solving instances of (1) when f and X are
separable with p = 2. In this case, the primal step is computed by solving two subproblems w.r.t. x[1] and x[2]
alternatively.

Let f (x) := f1(x1)+ f2(x2) and X :=X1×X2. The standard ADMM algorithm [69] can be presented as
follows: 

xk+1
1 := arg min

x1∈X1

{
f1(x1)+

ηk

2
‖A1x1+A2xk

2−b+η
−1
k yk‖2

2

}
,

xk+1
2 := arg min

x2∈X2

{
f2(x2)+

ηk

2
‖A1xk+1

1 +A2x2−b+η
−1
k yk‖2

2

}
,

yk+1 := yk +ηk(A1xk+1
1 +A2xk+1

2 −b),

(61)

where ηk > 0 is a penalty parameter. ADMM works very well in practice and has been widely used in many
disciplines. When fi is tractably proximal and AT

i Ai is diagonalizable, the solutions xi can be computed
efficiently (i = 1,2). In the opposite case, computing xk+1

1 and xk+1
2 may require an iterative algorithm.

Let us modify the (1P2D) scheme by using the primal step as in (61) to obtain:

ŷk := (1− τk)ȳk + τkβ
−1
k (Ax̄k−b),

xk+1
1 := arg min

x1∈X1

{
f k
1 (x1) +

ρk

2
‖A1x1+A2xk

2−b+ρ
−1
k yk‖2

2

}
,

xk+1
2 := arg min

x2∈X2

{
f2(x2)+

ηk

2
‖A1xk+1

1 +A2x2−b+η
−1
k yk‖2

2

}
,

x̄k+1 := (1− τk)x̄k + τkxk+1,

ȳk+1 := ŷk +ηk(A1xk+1
1 +A2xk+1

2 −b),

(62)

where f k
1 (·) := f1(·)+ (γk+1/2)‖A1(x1− x̄c

1)‖2 for a fixed x̄c
1 ∈X1. It is trivial that if τk = 0, γk+1 = 0 and

ρk = ηk, then (62) coincides with the standard ADMM scheme (61).
As indicated in [66], the parameters τk, γk, βk, ρk and ηk are updated by:

τk := 3
k+4 , γk := 2γ0

k+2 , βk := 9(k+3)
γ0(k+1)(k+7) ,

ρk := 3γ0
(k+3)(k+4) , ηk := γ0

k+3 ,
(63)

where γ0 > 0 is chosen arbitrarily to trade off the primal objective residual | f (x̄k)− f ?| and the primal feasibility
gap ‖Ax̄k−b‖. The starting point w̄0 := [x̄0, ȳ0] can be computed from the steps 2, 3 and 5 of (62) by choosing
ŷ0 = 0m.

The following corollary shows the convergence of the PADMM scheme (62)-(63), whose proof can be
found in [66].

21

Corollary 6.1 Let
{
(x̄k, ȳk)

}
k≥0 be a sequence generated by Algorithm 1 using the ADMM scheme (62)-(63).

If γ0 := 3, then: 
∣∣ f (x̄k)− f ∗

∣∣ ≤ 6Dmax
k+2 ,

‖Ax̄k−b‖2 ≤
6
[
D∗Y +

√
D1

X1
+4DA

X

]
k+2 .

(64)

where D1
X1

:= (1/2)max
{
‖A1(x1− x̄c

1)‖2
2 : x1 ∈X1

}
, DA

X := (1/2)max
{
‖Ax−b‖2 : x ∈X

}
, and Dmax :=

max
{

D1
X1

+ 3DA
X ,DY ∗(D∗Y +

√
D1

X1
+4DA

X)
}

. As a consequence, the worst-case complexity of Algorithm

1 to achieve an ε-primal-dual solution (x̄k, ȳk) is O
(
ε−1
)
.

If f1 and f2 has a tractable proximal operator proxλ f then instead of solving two minimization problems in
(61), we can linearize the quadratic term to obtain a preconditioning ADMM (PADMM) as considered in [15].
In this case, the primal step (61) becomes

xk+1
1 := arg min

x1∈X1

{
f1(x1)+

κk

2α1k
‖x1− (gk

1 +κ
−1
k (AT

1 yk)‖2
2

}
,

xk+1
2 := arg min

x2∈X2

{
f2(x2)+

ηk

2α2k
‖x2− (gk

2 +η
−1
k (AT

2 yk))‖2
2

}
,

(65)

where κk := γk+1+ρk. gk
1 := xk

1−α1kAT
1 (A1xk

1+A2xk
2−b)−α0kAT

1 A1(xk
1− x̄c

1), gk
2 := xk

2−α2kAT
2 (A1xk+1

1 +
A2xk

2−b), and step size α1k, α0k and α2k are chosen from gradient methods [72].
In [37, 38] the authors proved the convergence of the standard ADMM algorithm at the rate of O(1/k) but

in the sense of Auslender’s gap function and requires the boundedness of both the primal and dual feasible
sets. In [57] the authors considered other variant of ADMM, which requires the Lipschitz gradient assumption
and still obtained the O(1/k) convergence rate both on the objective values f (xk)− f ∗ and the feasibility gap.
Other variants of ADMM can be found, e.g., in [23, 56, 71] and the references quoted therein, which were
applied to stochastic cases or using different set of assumptions.

6.3 Connections to proximal-based decomposition method
If we set xk

c ≡ x̄k−1 for k ≥ 1 in our (1P2D) scheme, then the resulting scheme closely relates to the proximal-
based decomposition method (PBDM) studied in [20, 64]. Indeed, the main steps of PBDM can be expressed
as follows: 

ŷk := ȳk + γ
−1
k (Ax̄k−b),

xk+1
1 := arg min

x1∈X1

{
f1(x1)+(ŷk)T A1x1 +(γk/2)‖x1−xk

1‖2
2

}
,

xk+1
2 := arg min

x2∈X2

{
f2(x2)+(ŷk)T A2x2 +(γk/2)‖x2−xk

2‖2
2

}
,

ȳk+1 := ȳk + γ
−1
k (A1xk+1

1 +A2xk+1
2 −b).

(66)

Clearly, this method looks very similar to (1P2D), where it has two dual steps and one primal step. Here, (66)
uses only one parameter γk, db(x, x̂) := 1

2‖x− x̂‖2
2 the Euclidian distance and S≡ I. In [64] the authors prove the

convergence of the scheme (66) in a joint criterion f (x̃k)− f ?+r‖Ax̃k−b‖2≤ 1
k+1

[
c1 + c2 max‖y‖≤r ‖y−y0‖2

2
]
,

where x̃k := 1
k ∑

k−1
j=0 x j+1 and c1, c2 and r are given constants. This result is very similar to the ones in [37, 38]

for ADMM, which combines the primal objective residual and the primal feasibility gap. However, since (1)
is constrained, f (xk)− f ? may take an arbitrarily negative value. Hence, the joint criterion does not imply the
approximation of the primal objective residual and the primal feasibility gap separately. Moreover, as indicated
in [31], convergence guarantee in a joint criterion is not sufficient to ensure that primal-dual methods work well
in practice. It is important to control algorithmic parameters to trade-off between the objective residual and the
feasibility of the problem. In our case, we prove a separated criterion on the objective residual and the primal
feasibility, which allows one to control the parameters in order to trade-off these quantities. At the same time,
our methods still exploit p-decomposability with parallel updates in the primal steps (17) and (34).

22

7 Implementation enhancements
We discuss in this section how to enhance the practical performance of Algorithm 1. We observe that at least
three steps in Algorithm 1 can be modified to enhance its practical performance: the choice of xk

c, the update
rule for parameters as well as the parallel and distributed implementation choices.

7.1 The choice of proximal-point xk
c and Bregman distances

In (2P1D) and (1P2D), we can adaptively choose the center point xk
c of the Bregman distance at each iteration.

We propose two options:

• Proximal-point: We can choose xk
c := x?γk−1

(ŷk−1) for k ≥ 1 in (17). This makes Algorithm 1 similar to
the proximal-based decomposition algorithm in [20], which employs the proximal term db(·, x̂?k−1) with
the Bregman distance db.

• ADMM variant: If we choose db to be the Euclidean distance, S and xc such that db(Sx,Sxc) :=
(1/2)

[
‖A1x1 + A2(x?γk−1

(ȳk−1))2 − b‖2
2 + ‖A1(x?γk

(ȳk))1 + A2x2 − b‖2
2
]
, then (1P2D) becomes a new

variant of ADMM as discussed in (62). However, the convergence guarantee of this variant as well as
the case where the center point xk

c changes remains unknown.

• Preconditioned ADMM variant: We can choose xk
c := (gk

1,g
k
2), where gk

1 and gk
2 are given in (64). The

step-size α1k and α2k can be taken as α1k := ‖A1‖−2
2 and α2k := ‖A2‖−2

2 or computed from the exact
line-search rule. In this case, (1P2D) becomes a new variant of the preconditioned ADMM algorithm in
[15].

In addition to the choice of xk
c, we can also choose an appropriate prox-function bX for the feasible set

X in order to define the Bregman distance db. For instance, if X is a standard simplex, i.e., X :=
{

x ∈
Rn
+ : ∑

n
j=1 x j = 1

}
, then the entropy prox-function bX (x) := xT ln(x)+n becomes an appropriate choice.

7.2 Guidance on tuning the parameters
Since Algorithm 1 generates a sequence

{
w̄k
}

k≥0 that decreases the smoothed gap function Gγkβk
(w̄k) as

required in Definition 3.2. The actual decrease on the objective residual is f (x̄k)− f ? ≤ γk(DS
X −Ψk/γk). In

practice, Dk := DS
X −Ψk/γk can be dramatically smaller than DS

X in the early iterations. This implies that
increasing γk in the early iterations might improve practical performance.

Our strategy is based on the following observations. If γk increases, then τk also increases. Consequently,
βk decreases. Since βk measures the primal feasibility gap Fk := ‖Ax̄k − b‖2 due to Lemma 3.3, we only
increase γk if the feasibility gap Fk is relatively high. For instance, in the case xk

c := (gk
1,g

k
2), we can compute

the dual feasibility gap as Hk := γk‖AT
1 A2((x̂?k+1)2− (x̂?k)2)‖. Then, if Fk ≥ sHk for some s > 0, we increase

γk+1 := (1− cτk)γk for some c < 0. In our implementation, we suggest the value c = 1.05τ
−1
k as a default

option.
We can also decrease the parameter γk in (1P2D) by γk+1 :=(1−ckτk)γk, where ck := db(Sx?γk

(ŷk),Sxc)/DS
X ∈

[0,1] after updating the vector (x̄k+1, ȳk+1) in (1P2D) if we know a priori an upper bound estimate for DS
X .

7.3 Parallel and distributed implementation
Suppose that f and X are both separable as defined in (3), where each objective component fi and feasible
set Xi correspond to the subsystem i (i = 1, . . . , p) of a large-scale network represented by a graph as illus-
trated in Figure 1. The variable xi represents the unknown parameters of the subsystem i, and xi ∈Xi is its
local constraint. Each subsystem i communicates with its neighbors j by asking the information from them via

23

1 2

3

4

7

5

6

a12

a23

a34

a45

a56

a16

a15

a17 a27

a47

Figure 1: A graph representing the structure of problem (1) in a separable case.

communication links (i, j). Let ai j be the information the subsystem i requests from its neighbor j extracted
from the neighbor’s variable x j. In this case, the information requested from all neighbors needs to be con-
strained by bi, which leads to ∑ j∈Ni ai jx j = bi, where Ni denotes all the neighbors of the subsystem i, for
i = 1, . . . , p. We note that each subsystem i can have more than one links, the number of links leads to the num-
ber of coupling constraints. To this end, one can reformulate a convex optimization problem over this network
into a constrained problem of the form (1) with separable objective, coupling constraints and separable local
constraints.

Now, we assume that each Xi engages to a Bregman distance dXi with the convexity parameter σi > 0.
We also choose either S := ‖A‖2I, S := diag(A1, · · · ,Ap) or S := diag(‖A1‖2I1, . . . ,‖Ap‖2Ip). In this case,
the Bregman distance of X becomes dX (x,xc) := ∑

p
i=1 dXi(xi,xic), where the strong convexity parameter of

dX is σd := min1≤i≤p σi. The main step of Algorithm 1 is Step 5, where we need to perform the primal dual
scheme (2P1D) or (1P2D). We show how to implement these steps in a parallel and distributed manner based
on the graph structure shown in Figure 1.

Computation: The primal step in (2P1D) or (1P2D) requires to solve (17) and (34). By the separability of
f and X , (17) can be solved in parallel. More precisely, each subsystem i needs to estimate its local variable
xk

i independently by solving a subproblem of the form:

xk
i := arg min

xi∈Xi

{
fi(xi)+(yk)T Aixi + γdXi(xi,xk

ic)
}
, i = 1, . . . , p,

where yk is a local copy of the Lagrange multiplier at the iteration k for the subsystem i.
The dual step is updated as yk+1 := yk + ρk(Axk − b), where ρk > 0 is a given step size. Here, each

subsystem i updates its local copy of the multiplier

yk+1
i := yk

i +ρk
(

∑
j∈Ni

ai jxi j−bi
)
, i = 1 . . . , p,

and sends this sub-vector to its neighbors to compute AT
i yk+1 for the next iteration.

Communication: At each iteration k, each subsystem i requests the information from its neighbors to form
the feasibility gap ∑ j∈Ni ai jxi j − bi and then updates yk+1

i . This multiplier sub-vector is then sent to the
subsystem’s neighbors.

Memory storage: Along with the local variable xi and the feasible set Xi, each subsystem i needs to store a
copy of the dual variable yk and a part of coefficient matrix A that represents the links to its neighbors, i.e., ai j
for j ∈Ni.

24

Consensus and asynchronous operation: Note that our feasibility guarantees can be used to show the “con-
sensus” of the distributed system with a corresponding rate when the communication graph is known [12].
Intriguingly, given that algorithms are tolerant to approximate proximal operators, we might expect them to
also tolerate small levels of asynchronousity. Theoretical characterization of this important variant is left for
future work.

7.4 Extension to inequality constraints
The theory presented in the previous sections can be extended to solve convex optimization problems with
linear inequality constraints of the form:

f ? := min
x∈Rn
{ f (x) : Ax≤ b, x ∈X } , (67)

where f , X , A and b are defined as in (1).
A simple way to process (67) is using a slack variable s ∈ Rm

+ such that Ax+ s = b and z = (x,s) as the
new variable. Then we can transform (67) into (1) with respect to the new variable z.

We can also process (67) by modifying the dual steps for updating ŷk, y∗
βk
(x̄k) and ȳk+1 in both schemes

(2P1D) and (1P2D). More precisely, we update these vectors as follows:

ŷk :=
[
β
−1
k+1(Ax̄k−b)

]
+
, y∗

βk
(x̄k) :=

[
β
−1
k (Ax̄k−b)

]
+
,

and
ȳk+1 =

[
ŷk +(γk+1/L̄g)

(
Ax?γk+1

(ŷk)−b
)]

+
,

where [·]+ := max{0, ·}. Indeed, the conclusion of Theorem 4.1 remains valid for this new variant for solving
(67).

8 Numerical illustrations
In this section, we present numerical simulations on several well-studied applications from machine learn-
ing, signal and image processing, and compressive sensing. The numerical simulations are performed using
MATLAB R2012b, running on a Mac OS. i7 with 2.6Ghz and 16Gb RAM. We choose the Euclidean distance
db(x,xc) := (1/2)‖x−xc‖2 in all test cases. We terminate Algorithm 1 if both primal feasibility gap

F r
k := ‖Ax̄k−b‖2/max{1,‖b‖2} ≤ ε f , and ‖x̄k+1− x̄k‖2/max

{
1,‖x̄k‖2

}
≤ εx,

for given default tolerances ε f = 10−6 and εx = 10−6 unless stated otherwise.

8.1 Actual performance vs. theoretical bounds
We demonstrate the empirical performance of the four variants of Algorithm 1 with respect to its theoretical
bounds via a basic non-overlapping sparse-group basis pursuit problem:

min
x∈[l,u]⊆Rn

ng

∑
i=1

wi‖xgi‖2, s.t. Ax = b, (68)

where [l,u] is a box constraint, and gi and wi’s are the group indices and weights, respectively.
In this test, we choose xc = 0 ∈ [l,u] and db(x,xc) := (1/2)‖x−xc‖2. We then evaluate DX numerically,

given X := [l,u]. We estimate DY ? and f ? by solving (68) with an interior-point solver (SDPT3) [65] up to

25

accuracy 10−8. In the (2P1D) scheme, we set γ0 = β0 =
√

L̄g, while, in the (1P2D) scheme, we set γ0 := 2
√

2‖A‖
K+1

with K := 104 and generate the theoretical bounds defined in Theorem 4.1.
We test the performance of the four variants using a synthetic sparse recovery problem, where n = 1024,

m = bn/3c= 341, ng = bn/8c= 128, and x\ is a bng/8c-sparse vector. We set l := min(x\) and u := max(x\).
Matrix A are generated randomly from the iid standard Gaussian distribution and b := Ax\. The group indices
gi is also generated randomly for i = 1, · · · ,ng.

Bregman smoothing case: Figure 3 shows the empirical performance of two variants: (2P1D) and (1P2D)
of Algorithm 1, where theoretical bounds are computed from Theorem 4.1. The basic algorithm refers to the

0 2000 4000 6000 8000 10000

10
−5

10
0

10
5

ite rat i ons

|f
(x

k
)
−

f
∗
|
in

lo
g
-s
c
a
le

Theore t i c al bound
Basi c 2P1D al gor i thm

2P1D al gor i thm

0 2000 4000 6000 8000 10000

10
−10

10
−5

10
0

10
5

ite rat i ons

‖
A
x

k
−

b
‖
in

lo
g
-s
c
a
le

Theore t i c al bound
Basi c 2P1D al gor i thm

2P1D al gor i thm

0 2000 4000 6000 8000 10000

10
−5

10
0

10
5

ite rat i ons

|f
(x

k
)
−

f
∗
|
in

lo
g
-s
c
a
le

Theore t i c al bound
Basi c 1P2D al gor i thm

1P2D al gor i thm

0 2000 4000 6000 8000 10000

10
−10

10
−5

10
0

10
5

i te rat i ons

‖
A
x

k
−

b
‖
in

lo
g
-s
c
a
le

Theore t i c al bound
Basi c 1P2D al gor i thm

1P2D al gor i thm

Figure 2: Actual performance vs. theoretical bounds of Algorithm 1 using Bregman smoother.

case where xc is fixed and the parameters are not tuned. Hence, the iterations of the basic (1P2D) use only 1
proximal calculation and applies A and AT once each, and the iterations of the basic (2P1D) use 2 proximal
calculations and applies A twice and AT once. In contrast, (2P1D) and (1P2D) variants whose iterations
require one more application of AT for adaptive parameter updates.

It is clear from Figure 3 that the empirical performance of the basic variants roughly follows the O(1/k)
convergence rate both in terms of objective residual | f (x̄k)− f ?| and the feasibility gap ‖Ax̄k−b‖2. The devi-
ations from the bound are due to the increasing sparsity of the iterates, which improves empirical convergence.
With a kick-factor of ck =−0.02/τk and adaptive proximal-center xk

c enhancements as suggested in Section 7,
the tuned (2P1D) and (1P2D) variants significantly outperform theoretical predictions. Indeed, they approach
the optimal solution up to 10−13 accuracy, i.e. ‖x̄k−x?‖ ≤ 10−13 after only a few hundreds of iterations.

Augmented Lagrangian smoothing case: Similarly, Figure 3 illustrates the actual performance vs. the the-
oretical bounds O(1/k2) by using augmented Lagrangian smoothing techniques. Here, we solve the subprob-
lems (19) and (58) by using FISTA [4]. Since, we can not exactly estimate the true solution of the subproblems
(19) and (58), we solve these problems up to at least the accuracy δ 2

0 = 10−8 as suggested by Theorem 4.1.

26

0 2000 4000 6000 8000 10000
10

−10

10
−5

10
0

10
5

ite rat i ons

|f
(
x

k
)
−

f
∗
|
in

lo
g
-s
c
a
le

Theore t i c al bound
Basi c 2P1D al gor i thm

2P1D al gor i thm

0 2000 4000 6000 8000 10000
10

−15

10
−10

10
−5

10
0

10
5

ite rat i ons

‖
A

x
k
−

b
‖
in

lo
g
-s
c
a
le

Theore t i c al bound
Basi c 2P1D al gor i thm

2P1D al gor i thm

0 2000 4000 6000 8000 10000
10

−10

10
−8

10
−6

10
−4

10
−2

10
0

10
2

i te rat i ons

|f
(
x

k
)
−

f
∗
|
in

lo
g
-s
c
a
le

Theore t i c al bound
Basi c 1P2D al gor i thm

1P2D al gor i thm

0 2000 4000 6000 8000 10000
10

−15

10
−10

10
−5

10
0

10
5

ite rat i ons

‖
A

x
k
−

b
‖
in

lo
g
-s
c
a
le

Theore t i c al bound
Basi c 1P2D al gor i thm

1P2D al gor i thm

Figure 3: Actual performance vs. theoretical bounds of Algorithm 1 for augmented Lagrangian smoother.

In this case, the theoretical bounds and the actual performance of the basis variants are very close to each
other both in terms of the objective residual | f (x̄k)− f ?| as well as the primal feasibility gap ‖Ax̄k−b‖2. When
the parameter γk is updated, the algorithms exhibit a better performance.

Strongly convex case: We demonstrate the theoretical bounds for the strongly convex case via the elastic
net:

min
x

{
‖x‖1 +(σ/2)‖x‖2

2
}

s.t. Ax = b, (69)

where σ > 0 is a given constant, and other parameters are selected as in (68). The data of this test is also
generated randomly as for (68), where n := 2000, m = 700 and x\ is 100-sparse.

We test Algorithm 1 using both (2P1Dσ) and (1P2Dσ) to solve (69) with σ := 0.1. The results are plotted
in Figure 4 for both | f (x̄k)− f ?| and ‖Ax̄k − b‖2, respectively after K := 104 iterations. The configuration
of the basic variants are as before whereas the enhanced versions use a backtracking linesearch procedure to
determine an approximation Lk for the Lipschitz constant Lg

f . The iterates converge better than the theoretical
rate (see the appendix).

We obtain the final relative errors (| f (x̄k)− f ?|/| f ?|,‖Ax̄k−b‖2/‖b‖2) for both cases are (4.0376,2.8294)×
10−6 and (4.0744,2.9064)×10−6, respectively. These values are (0.8900,0.6237)×10−6 and (1.0462,0.7400)×
10−6, respectively, in the line-search variants, which are approximately 4 times smaller than in the basic ones.
The relative recovery error ‖x̄k− x?‖2/‖x?‖2 is also 3.228× 10−7 and 3.753× 10−7, respectively. We also
observe that after 642 (reps., 691) iterations, both algorithms reach the accuracy ‖x̄k−x?‖2 ≤ 10−2, and after
2034 (resp., 2193) iterations, which corresponds to an approximate relative error of 10−3.

We also compute the practical values of
{
‖x̄k−x?‖2

}
k≥0 and its theoretical bound shown in Corollary

5.1 for (69). The convergence of
{
‖x̄k−x?‖2

}
k≥0 and its theoretical bound is plotted in Figure 5 for both

algorithms: (1P2Dσ) and (2P1Dσ), and their line-search variants, respectively.
We can see that the theoretical bound given by Corollary 5.1 is far from the actual performance. This is

clearly observed due to a rough estimation of the upper bound. The line-search variants takes less iterations

27

0 2000 4000 6000 8000 10000

10
−4

10
−2

10
0

10
2

10
4

ite rat i ons

|f
(
x

k
)
−

f
∗
|
in

lo
g
-s
c
a
le

Theore t i c al bound
Basi c 2P1D al gor i thm

2P1D al gor i thm

0 2000 4000 6000 8000 10000
10

−4

10
−2

10
0

10
2

10
4

ite rat i ons

‖
A

x
k
−

b
‖
in

lo
g
-s
c
a
le

Theore t i c al bound
Basi c 2P1D al gor i thm

2P1D al gor i thm

0 2000 4000 6000 8000 10000

10
−4

10
−2

10
0

10
2

10
4

ite rat i ons

|f
(
x

k
)
−

f
∗
|
in

lo
g
-s
c
a
le

Theore t i c al bound
Basi c 1P2D al gor i thm

1P2D al gor i thm

0 2000 4000 6000 8000 10000
10

−4

10
−2

10
0

10
2

10
4

ite rat i ons

‖
A

x
k
−

b
‖
in

lo
g
-s
c
a
le

Theore t i c al bound
Basi c 1P2D al gor i thm

1P2D al gor i thm

Figure 4: Actual performance vs. theoretical bounds for strongly convex case.

0 2000 4000 6000 8000 10000
10

−6

10
−4

10
−2

10
0

10
2

10
4

ite rat i ons

‖
x

k
−

x
∗
‖
2
in

lo
g
-s
c
a
le

Theore t i c al bound

Basi c 2P1D al gor i thm

2P1D al gor i thm

0 2000 4000 6000 8000 10000
10

−6

10
−4

10
−2

10
0

10
2

10
4

ite rat i ons

‖
x

k
−

x
∗
‖
2
in

lo
g
-s
c
a
le

Theore t i c al bound

Basi c 1P2D al gor i thm

1P2D al gor i thm

Figure 5: Actual performance vs. theoretical bound for strongly convex case (iterative sequence).

than the basic ones, but require additional computations for the line-search procedure, which makes them in
the end slower.

A new variant of preconditioned ADMM: Finally, we verify the theoretical justification of the new PADMM
variant given in (65). The same test can be done for the new ADMM variant.

We use again the group basis pursuit problem (68) by reformulating it into the following form:

min
x∈[l,u]⊆Rn

ng

∑
i=1

wi‖xgi‖2 +δ{0m}(r), s.t. Ax+ r = b, r ∈ [r, r̄], (70)

where δS is the indicator function of the set S , r and r̄ is computed from the bounds l and u of x via the
relation r =−Ax−b.

We test the new variant of preconditioned ADMM (PADMM) and compare it with the tuned version,
where we adaptively update the parameter γk using the strategy in Section 7. In the basis PADMM variant, we

28

fix γ0 := 2
√

2‖A‖2/(K + 1), where K = 104.By using the same data as in the previous cases, we obtain the
performance of this variant as shown in Figure 6.

0 2000 4000 6000 8000 10000
10

−10

10
−5

10
0

10
5

10
10

iterati ons

|f
(
x

k
)
−

f
∗
|
in

lo
g
-s
c
a
le

0 2000 4000 6000 8000 10000
10

−15

10
−10

10
−5

10
0

10
5

ite rati ons

‖
A
x

k
−

b
‖
in

lo
g
-s
c
a
le

Theore t i cal bound
Basi c PADMM
Tuned PADMM

Theore t i cal bound
Basi c PADMM
Tuned PADMM

Figure 6: Actual performance vs. theoretical bound for PADMM.

As we can observe from Figure 6 that, the basis PADMM variant relatively follows the curvature of the
theoretical bounds, while the tuned variant reaches very high accuracy solution after few hundreds of iterations.
This behavior is similar to the (1P2D) variant using Bregman smoother tested above.

8.2 Performance robustness.
We demonstrate the performance robustness of our tuned (1P2D) variant by applying it to the following image
deconvolution problem:

min
x:0≤x≤255

(1/2)‖B(x)−b‖2
2 +λ‖x‖TV, (71)

where b is a given blurry image with a known blur kernel B, and ‖ · ‖TV is the isotropic total variation norm
and λ > 0 is a regularization parameter.

As opposed to directly using the TV-norm proximal map, we simply use the linear mapping D of its norm
operator ‖x‖TV = ‖Dx‖1 and introduce a slack variable r = Dx to split (71) into x and r variables with ad-
ditional linear coupling constraint r−Dx = 0. Hence, we can reformulate (71) into (1), where r ∈ R :=
{r̂ | r̂ = Dx,0≤ x≤ 255} is also bounded.

We apply the (1P2D) variant of Algorithm 1 to solve the resulting problem and compare it with the ADMM
solver implemented in [16] since both algorithms have similar complexity per iteration. We choose the center
point as suggested in our practical enhancement guidelines, which leads to a new variant of the standard
ADMM method. We test two cases: without and with tuning based on our guidance. We choose the initial
regularization parameters ρ0 the same as the recent exact ADMM solver suggests [16].

Surprisingly, if we assume periodic boundary conditions for the TV-norm, then ADMM can efficiently
obtain accurate solutions to the subproblems in computing xk

1 and xk
2. The key idea is that the operator DT D+

BT B is diagonalizable by the Fourier transform. Hence, the complexity per iteration in exact ADMM and
(1P2D) is approximately the same. Note however that our algorithm does not require periodic boundary
conditions to solve this class of problems, which may not be valid in other applications

Figure 7 illustrates the performance of (1P2D) and the ADMM code [16] with different values of parameter
γ (resp., ρ in the ADMM solver). Our test is based on the camera man image, with the regularization λ = 0.01
as done in [16]. The suggested value for ρ is ρ = 2 in [16]. The exact ADMM code [16] also uses a specific
update rule for the penalty parameter, which is different from ours. Figure 7 shows the convergence of three
algorithms wrt. three values of γ (respectively, ρ) after 100 iterations. We can see that ADMM decreases
quickly first but then does not move, while (1P2D) continues to descend on the objective function.

29

0 20 40 60 80 100
10

−6

10
−4

10
−2

#ite rat i ons (ρ k = γ k = 0 .5)(
f
(
x̄
k
)
−

f
∗
)
/
f

∗
-
in

lo
g
-
s
c
a
le

0 20 40 60 80 100
10

−6

10
−4

10
−2

#ite rat i ons (ρ k = γ k = 2)
0 20 40 60 80 100

10
−6

10
−4

10
−2

#ite rat i ons (ρ k = γ k = 10)

basi c 1P2D
tuned 1P2D
ADMM

 PSNR

basic 1P2D = 23.8625

tuned 1P2D = 23.5989

ADMM = 23.7789

 PSNR

basic 1P2D = 23.8276

tuned 1P2D = 23.8276

ADMM = 23.7166

 PSNR

basic 1P2D = 23.8289

tuned 1P2D = 23.8218

ADMM = 23.7701

Figure 7: The performance of the augmented Lagrangian methods under different penalty parameters.

We note that the ADMM solver is sensitive to the choice of ρ . For any value of ρ , if we run up to 200
iterations then the exact ADMM algorithm diverges, which is due to their aggressive update rule on the penalty
parameter.

8.3 Inexact computations.
In this test, we study the empirical impact of inexact proximal operator calculations to the performance of Al-
gorithm 1. Again, we choose the (1P2D) variant, which has similar complexity per iteration as preconditioned
ADMM [15]. For this, we use a Schatten norm based regularizer on a Poisson likelihood data model:

min
x∈X

(B(x))T 1−
m

∑
i=1

ci log((B(x))i +b)+λ‖x‖S, (72)

where X := Rn
+, c is a given photon count vector in Zm, b is the background intensity, λ > 0 is a chosen

regularization parameter, and B is a blur kernel. This likelihood model is quite common in scientific imaging
problems.

The work in [40] proposed a norm based on exploiting self-similarities within the images via ‖x‖S :=
‖mat(H (x))‖?, which is the Schatten-norm of a matrix mat(H (x)) for a suitably chosen linear operator H .
Since the proximal operator regarding the second term f2(x) := λ‖x‖S +δX (x), where δX is the indicator of
X , does not have a closed form, we need to iteratively compute it.

The resulting inexact computation affects the performance of optimization algorithms. Here, we compare
our new PADMM variant of Algorithm 1 (called tuned 1P2D) with PADMM and PADMM based on our tuning
strategy in the enhancement paragraph as well as the exact ADMM solver provided by [40]. Here, the ADMM
solver exploits boundary conditions and Fourier transform to invert I +BT B for solving its subproblems.
When b is zero (i.e., there is no background), then the logarithmic term pose computational problems since
its gradient is no longer Lipschitz. Fortunately, the proximal operator of the log function can be efficiently
calculated.

We test these algorithms on the Clown image where we take the regularization parameter λ = 0.055 sug-
gested in [40]. We use the Denoise solver in [40] to approximately compute the prox-operator of f2 with inner
iterations nProx= 5,10,50, where we can warm start each iteration using each algorithms current estimate.
The exact ADMM solver is already implemented with penalty parameter updates.

Figure 8 illustrates that our tuned (1P2D) solver and PADMM are quite robust to inexact prox calculations
and outperform exact ADMM for a range of nProx values. Against intuition, we observe that PADMM exhibits
numerical instability when nProx is highest. Overall, our algorithm provides the best time to reach an ε-solution
since doubling nProx roughly doubles the overall time. For instance, nProx= 5 and 200 iterations roughly takes
the same time as nProx = 10 and 100 iterations, where our algorithm provides the best accuracy.

30

0 50 100 150 200
10

−8

10
−6

10
−4

10
−2

#ite rat i ons (#Prox = 5)(
f
(
x
k
)
−

f
∗
)
/
|f

∗
|-
in

lo
g
-s
c
a
le

0 50 100 150 200
10

−8

10
−6

10
−4

10
−2

#ite rat i ons (#Prox = 10)

0 50 100 150 200
10

−8

10
−6

10
−4

10
−2

#ite rat i ons (#Prox = 50)

ADMM
tuned 1P2D
PADMM
tuned PADMM

Figure 8: The performance of four algorithms on the Clown image [40].

In this setting, our solver and PADMM do not require periodic boundary conditions. When this assumption
is removed, the subproblem are no longer dominated by just prox calculations. Then, we expect our algorithm
obtain better timing performance due to its parallel updates.

8.4 Additional comparisons with state-of-the-art.
We compare our algorithms with existing state-of-the-art Matlab codes for solving five well-studied problems:
standard basis pursuit, group-sparse basis pursuit, robust PCA, square-root LASSO and support vector ma-
chines with the Hinge loss. While there are several software packages that can be used to solve these problems,
we only select few of representatives which we find as the most efficient methods for corresponding problems.

8.4.1 Standard basis pursuit.

We consider the standard basis pursuit problem arising from compressive sensing [25]:

min
x∈Rn
‖x‖1 s.t. Ax = b, (73)

where A ∈ Rm×n and b ∈ Rm.
In this example, we compare our algorithms with YALL1 [72] and SPGL1 [8] which are well-known solvers

for the basis pursuit problem. We use the data from the benchmark collection Sparco [9]. For YALL1 and
SPGL1, we use the default settings and all the algorithms are terminated with the accuracy 10−6. Within our
methods, we run three algorithms: (1P2D) via Bregman distance smoothing, inexact 1P2D(1) (with only one
FISTA iteration) and inexact 1P2D(5) (with 5 FISTA iterations) via augmented Lagrangian smoothing. The
two last algorithms are inexact variants of Algorithm 1 using the augmented Lagrangian smoother. Table 3
shows the problems selected from the Sparco test collection [8] that we use for our test.

The numerical results and performance information are reported in Table 4 for 10 problems from Table 3.
Our algorithms and YALL1 are still superior to SPGL1 both in terms of number of iterations, matrix-vector
multiplications and CPU time, while producing very similar final objective value f (xk) and the feasibility gap
‖Axk−b‖2. YALL1 performs quite well compared to our methods in terms of timing. However, it fails for the
last two problems (i.e., blurrycam and bluspike) due to their parameter update rules.

We also note that within s := 1 to 5 FISTA iterations, the inexact (1P1D(s)) algorithms still perform well
and produce more accurate solutions when the inner iteration number is increasing.

8.4.2 Sparse-group basis pursuit.

We consider again the sparse-group basis pursuit problem (68). In this case, we compare our algorithms and
the group YALL1 solver [72], which we find one of the most efficient algorithm for solving (68). A further

31

Table 3: The Sparco test problems used

Problems ID m n ‖b‖2 Operators
gcosspike 5 300 2048 8.1e+1 Gaussian ensemble, DCT
p3poly 6 600 2560 2.2e+0 Gaussian ensemble, wavelet
sgnspike 7 600 2560 2.2e+0 Gaussian ensemble
zsgnspike 8 600 2560 2.9e+0 Gaussian ensemble
gausspike 11 256 1024 8.7e+1 Gaussian ensemble
srcsep1 401 29166 57344 2.2e+1 windowed DCT
srcsep2 402 29166 86016 2.3e+1 windowed DCT
phantom1 501 629 4096 1.1e+1 restricted FPT, wavelet
blurrycam 701 65536 65536 1.3e+2 blurring, wavelet
blurspike 702 16384 16384 2.2e+0 blurring

comparison with SPGL1 can be found in [72].
One of the most common ways to compare the performance of different algorithms is using performance

profile concept [24]. In this example, we benchmark seven algorithms with performance profiles.
Recall that a performance profile is built based on a set S of ns algorithms (solvers) and a collection P of

np problems. Suppose that we build a profile based on computational time (but the same concept can be used
for different measurements). We denote by

Tp,s := computational time required to solve problem p by solver s.

We compare the performance of algorithm s on problem p with the best performance of any algorithm on this
problem. That is, we compute the performance ratio rp,s := Tp,s

min{Tp,ŝ | ŝ∈S } . Now, let

ρ̃s(τ̃) := (1/np)size
{

p ∈P | rp,s ≤ τ̃
}

for τ̃ ∈ R+.

The function ρ̃s : R→ [0,1] is the probability for solver s that a performance ratio is within a factor τ̃ of the
best possible ratio. We use the term “performance profile” for the distribution function ρ̃s of a performance
metric. We plotted the performance profiles in log-scale, i.e.

ρs(τ) := (1/np)size
{

p ∈P | log2(rp,s)≤ τ := log2 τ̃
}
.

The data of this test is generated as follows. The problem size is set to n := s× 5120, m := bn/3c and
ng := bm/4c for s := 1, · · · ,20. Matrix A is drawn randomly from standard Gaussian distribution with 50%
correlated columns. Vector b := Ax?+σ , where x? is a given test vector generated also randomly with the
standard Gaussian distribution, and σ is a Gaussian noise.

Figure 9 shows the performance profile of 7 algorithms: 6 variants of Algorithm 1 and group YALL1 [72]
in terms of iteration numbers, computational time (in second), the number of nonzero groups and the relative
recovery errors ‖xk−x?‖2/‖x?‖2. These performance profiles are built from 37 problems for size [m,n,ng] =
[1706,5120,427] to [8533,25600,2133] without additive Gaussian noise. The y-axis of these figures shows the
problem ratio ρs(τ). If the problem ratio ρs(τ) is closer to 1, then the corresponding algorithm has a better
performance. The x-axis shows how many times (2τ) one algorithm is better than the others in log2-scale.

We can observe from the performance profiles in Figure 9 for the noiseless case that: The (1P2D) variant is
the best one in terms of computational time while produces relatively good results (number of nonzero groups,
solution recovery errors) compared to the rest. The inexact (2P1D) variant with 5 FISTA iterations gives the
best results (number of nonzero groups, solution recovery errors) but is slow due to two primal steps. While the
computational time of our algorithms slightly increases with respect to the problem size, it increases linearly in

32

Table 4: Comparison of the five algorithms: (1P2D), 1P2D(1), 1P2D(5), YALL1 and SPGL1.

1P2D 1P2D(1) 1P2D(5) YALL1 SPGL1 1P2D 1P2D(1) 1P2D(5) YALL1 SPGL1
Problems #Iterations CPU time [s]
gcosspike 330 275 274 208 1026 0.87 0.74 2.16 0.62 2.53
p3poly 306 100 98 252 1775 14.32 4.81 16.11 13.34 67.10
sgnspike 346 157 156 178 291 0.96 0.50 1.48 0.61 1.01
zsgnspike 331 307 307 152 320 1.59 1.53 4.65 0.91 1.87
gausspike 368 320 319 170 516 0.31 0.29 0.67 0.19 0.52
srcsep1 380 331 330 426 1580 22.65 19.44 67.88 36.95 119.60
srcsep2 376 326 325 334 1310 34.64 29.73 102.88 58.19 155.12
phantom1 291 285 285 166 712 1.16 1.02 2.70 0.50 2.42
blurrycam 1042 3496 569 failed 3629 23.48 72.97 39.08 failed 152.96
blurspike 1255 4191 797 failed 2159 5.83 18.86 10.14 failed 17.16
Problems #Ax #AT y
gcosspike 332 552 1600 312 1815 331 276 1325 416 1028
p3poly 308 202 590 378 3279 307 101 491 504 1777
sgnspike 348 316 902 267 482 347 158 745 178 293
zsgnspike 333 616 1766 228 557 332 308 1458 152 322
gausspike 370 642 1840 255 858 369 321 1520 340 518
srcsep1 382 664 1962 639 2639 381 332 1631 852 1582
srcsep2 378 654 1922 501 2122 377 327 1596 668 1312
phantom1 293 572 1687 249 1014 292 286 1401 166 599
blurrycam 1044 6994 3420 failed 6800 1043 3497 2850 failed 3631
blurspike 1257 8384 4180 failed 4127 1256 4192 3382 failed 2161
Problems The objective value f (xk) ‖Axk−b‖2/‖b‖2×105

gcosspike 181.484 183.050 181.481 181.483 181.482 0.096 0.087 0.091 3.479 0.187
p3poly 1748.023 1838.254 1747.982 1747.954 1748.363 0.079 0.079 0.082 1.374 0.001
sgnspike 20.620 20.620 20.619 20.621 20.620 0.211 0.090 0.090 1.324 9.963
zsgnspike 28.927 28.927 28.927 28.928 28.927 0.349 0.093 0.092 1.598 7.169
gausspike 24.041 24.041 24.041 24.041 24.041 0.152 0.093 0.092 1.628 0.112
srcsep1 1057.583 1059.361 1057.228 1057.974 1058.821 0.123 0.093 0.091 0.954 0.647
srcsep2 1093.134 1094.450 1092.807 1097.060 1093.961 0.118 0.092 0.094 1.050 0.446
phantom1 202.697 202.828 202.696 202.856 202.783 0.572 0.085 0.085 1.148 2.412
blurrycam 10276.681 10276.682 10276.691 failed 10276.717 0.125 0.099 0.097 failed 0.075
blurspike 576.482 576.482 576.482 failed 576.474 0.125 0.100 0.100 failed 9.067

group YALL1 due to the solution of linear systems. The inexact (2P1D) is more robust to the FISTA iterations
than the inexact (1P2D) one.

Figure 10 presents the performance profiles when we add 5% Gaussian noise to the model. The perfor-
mance of our algorithms basically remains the same as in the noiseless case, while the number of nonzero
groups in group YALL1 is increasing significantly compared to ours. If we increase the noise level up to 10%,
group YALL1 starts oscillating and cannot converge to the solution with the desired accuracy. This happens
due to the effect of the fixed penalty parameter in group YALL1. We note that if we update this parameter, the
linear system in group YALL1 needs to be resolved, which slows down significantly the performance of the
algorithm except some tricks are exploited.

33

0 0.5 1 1.5 2 2.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Not more than 2τ -t ime s worse than the be st one

P
r
o
b
le

m
s
r
a
t
io

Total numbe r of i te rat i ons

1P2D
2P1D

inexac t-1P2D(2)

i nexac t-2P1D(2)

i nexac t-1P2D(5)

i nexac t-2P1D(5)

group-YALL1

0 0.5 1 1.5 2 2.5 3
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Not more than 2τ -t ime s worse than the be st one

P
r
o
b
le

m
s
r
a
t
io

Total c omputat i onal t ime (i n se cond)

0 0.5 1 1.5 2 2.5
0

0.2

0.4

0.6

0.8

1

Not more than 2τ -t ime s worse than the be st one

P
r
o
b
le

m
s
r
a
t
io

The non-z e ro groups

0 2 4 6 8 10 12 14 16
0

0.2

0.4

0.6

0.8

1

Not more than 2τ -t ime s worse than the be st one

P
r
o
b
le
m
s
r
a
t
io

Re c ove ry e rrors

Figure 9: The performance profiles of 7 algorithms on synthetic data without noise

8.4.3 Robust principle component analysis.

We consider the following robust principle component analysis (RPCA) problem:

min
X,Y∈Rm×n

{λ‖vec(X)‖1 +‖Y‖? : X+Y = M} , (74)

where M ∈ Rm×n is a given matrix, ‖ · ‖? is the nuclear norm and λ > 0 is a regularization parameter. As
suggested in [14], we can choose λ := c√

m to get a perfect recovery (i.e., with high probability), where c > 0
is a scaling constant.

In this example, we demonstrate our (1P2D) algorithm on the video clip taken from a surveillance camera in
a subway station, which is available at http://perception.i2r.a-star.edu.sg/bk_model/bk_index.
html. We crop 200 gray frames from this video clip and preprocess it to obtain a 20′800× 200 matrix as an
input M. By tuning the regularization parameter λ , we pick the best possible value λ := 0.01. We run our
(1P2D) algorithm and compare it with three other open-source codes: exact ADMM, inexact ADMM [41] and
TFOCS [6]. All the algorithms are terminated with the same accuracy 10−3.

The results and performance of these algorithms are reported in Table 5, where #svd is the number of
SVDs required by the algorithms, F(Xk,Yk) := λ‖vec(X)‖1 + ‖Y‖?. We can see from Table 5, (1P2D)
requires fewest SVD operations and has similar computational time as inexact ADMM, while reaches a better
objective value F(Xk,Yk) and the relative feasibility gap. The exact ADMM produces a better solution in terms
of quality (lower relative feasibility gap) but requires too many SVDs.

The frame 25 of this video is plotted in Figure 11, which illustrates how the output of the algorithms can be
presented in object separation context. We can see from this plot that the objects (humans) can be considered

34

http://perception.i2r.a-star.edu.sg/bk_model/bk_index.html
http://perception.i2r.a-star.edu.sg/bk_model/bk_index.html

0 0.5 1 1.5 2 2.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Not more than 2τ -t ime s worse than the be st one

P
r
o
b
le

m
s
r
a
t
io

Total numbe r of i te rat i ons

1P2D
2P1D

inexac t-1P2D(2)

i nexac t-2P1D(2)

i nexac t-1P2D(5)

i nexac t-2P1D(5)

group-YALL1

0 0.5 1 1.5 2 2.5 3
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Not more than 2τ -t ime s worse than the be st one

P
r
o
b
le

m
s
r
a
t
io

Total c omputat i onal t ime (i n se cond)

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

0.2

0.4

0.6

0.8

1

Not more than 2τ -t ime s worse than the be st one

P
r
o
b
le

m
s
r
a
t
io

The non-z e ro groups

0 1 2 3 4 5 6
0

0.2

0.4

0.6

0.8

1

Not more than 2τ -t ime s worse than the be st one

P
r
o
b
le

m
s
r
a
t
io

Re c ove ry e rrors

Figure 10: The performance profiles of 7 algorithms on synthetic data with 5% Gaussian noise

Table 5: The results and performance of four algorithms on the real-world data

Algorithms #iterations #svd F(Xk,Yk) ‖Xk+Yk−M‖F
‖M‖F

Time[s]
(1P2D) 13 14 547845.12485 0.0004029 10.53
exactADMM 4 662 548333.09286 0.0000676 458.75
inexactADMM 19 19 548551.75715 0.0004988 9.33
TFOCS 38 122 566257.63794 0.0008508 111.89

as sparse representation and are separated from the background. As can be observed from the second column
in Figure 11, (1P2D) and ADMMs give a better low-rank image estimate as compared to TFOCS.

8.4.4 Square-root LASSO.

Since the (1P2D) variant of Algorithm 1 has similar cost-per-iteration as ADMM, we compare this algorithm
with the state-of-the-art solvers such as TFOCS, ADMM and PADMM.

For this purpose, we choose the square-root LASSO problem:

min
x∈Rn
‖Ax−b‖2+λ‖x‖1, (75)

where A ∈ Rm×n, b ∈ Rm are given and λ > 0 is a regularization term. By introducing a new variable r =

35

1
P
2
D

50 100 150

20

40

60

80

100

120

I
n
e
x
a
c
t
A
D
M
M

E
x
a
c
t
A
D
M
M

O r i ginal Frame

T
F
O
C
S

Low-rank part L
k Sparse part S

k

Figure 11: The results of four algorithms on the frame 25 of the video clip

Ax−b, (75) can be reformulated in the form of (1):

min
x∈Rn,r∈Rm

λ‖x‖1 +‖r‖2, s.t. Ax−b− r = 0. (76)

As shown in [7] that the regularization parameter λ can be set at λ = cΦ−1(1−0.5α/n) for given c > 1 and
α ∈ (0,1). The suggested values for c and α are 1.1 and 0.05, respectively. By choosing this value of λ , we
can probably recover x with probability 1−α = 0.95.

We mimic the basis pursuit problem before and generate 5 problems of size (m,n,s) = i(350,1000,100),
where i = 1, . . . ,5 and s is the sparsity. We generate the matrix A randomly from Gaussian distribution with 0.5
correlated columns. Vector b is generated as b :=Ax?+n, and n is Gaussian noise with distribution N (0,0.1).

We tune all the augmented Lagrangian algorithms: (1P2D), the preconditioning ADMM (PADMM) and
the exact ADMM (ADMM). In these algorithms, we use the same strategy to tune the smoothness parameter

36

γk and the penalty parameter ρk, as we observe this works best for three algorithms. The center point xk
c

in Algorithm 1 is chosen as discussed in the enhancement paragraph. In stark contrast to the ADMM and
PADMM, our subproblems with respect to x and r are solved in parallel. Note that the ADMM requires one
matrix inversion I+AT A.

A Monte Carlo run of size 10 shows that our algorithm is not only more accurate but is also faster (cf., Table
6). We count the number of matrix-vector multiplications both in Ax and AT x since these are more expensive

Table 6: Performance comparison of Algorithm 1, PADMM, ADMM, and TFOCS.

Size # Iterations
m n s (1P2D) PADMM ADMM TFOCS

350 1000 100 1331 1592 3665 5000
700 2000 200 1311 1398 2861 5000

1050 3000 300 1307 1335 2797 5000
1400 4000 400 1318 1330 2631 5000
1750 5000 500 1316 1322 2594 5000

Size #Ax/#AT y
m n s (1P2D) PADMM ADMM TFOCS

350 1000 100 1332/ 2661 1593/ 3184 3666/ 7330 15996/ 5523
700 2000 200 1312/ 2621 1399/ 2796 2862/ 5720 16005/ 5548

1050 3000 300 1308/ 2613 1336/ 2670 2798/ 5593 15989/ 5826
1400 4000 400 1319/ 2635 1331/ 2659 2632/ 5260 16018/ 5801
1750 5000 500 1317/ 2630 1323/ 2644 2595/ 5187 16022/ 5790

Size Objective values f (x̄k)
m n s (1P2D) PADMM ADMM TFOCS

350 1000 100 31.424461 31.424537 31.424762 32.652869
700 2000 200 74.917422 74.917552 74.919787 77.039976

1050 3000 300 120.904351 120.904523 120.909089 123.684820
1400 4000 400 150.458042 150.458275 150.465146 156.510366
1750 5000 500 192.030170 192.030441 192.040217 201.906842

Size Recovery errors ‖x̄k−x?‖/‖x?‖
m n s (1P2D) PDMM ADMM TFOCS

350 1000 100 0.15120 0.15122 0.15180 0.14713
700 2000 200 0.04689 0.04689 0.04707 0.04447

1050 3000 300 0.03165 0.03166 0.03181 0.02947
1400 4000 400 0.03013 0.03014 0.03025 0.04040
1750 5000 500 0.03802 0.03803 0.03824 0.04973

than the prox operators. Since the iterative vector x is sparse, the multiplication AT y is more expensive. As
we can see through this example that ADMM requires more iterations than Algorithm 1 and PADMM while
produces lower accurate solutions. At the same time, TFOCS is slowest and least accurate while sometimes
obtaining better estimation error.

8.4.5 Binary linear support vector machine.

This example is concerned the following binary linear support vector machine problem of the Hinge loss
function:

min
x∈Rn

{
F(x) :=

m

∑
j=1

` j(y j,wT
j x−b j)+g(x)

}
, (77)

37

where ` j(s,τ) is the Hinge loss function given by ` j(s,τ) := max{0,1− sτ} = [1− sτ]+, w j is the column
of a given matrix W ∈ Rm×n, b ∈ Rn is the bias vector, y ∈ {−1,+1}m is a classifier vector g is a given
regularization function, e.g., g(x) := λ

2 ‖x‖
2
2 for `2-regularizer or g(x) := λ‖x‖1 for `1-regularizer (λ > 0 is a

regularization parameter).
By introducing a slack variable r = Wx−b, we can write (77) in terms of (1) as

min
x∈Rn,r∈Rm

{
∑

m
j=1 ` j(y j,r j)+g(x)

}
s.t. Wx− r = b,

(78)

Now, we can apply the (1P2D) variant to solve this resulting problem. We test this algorithm on (78) and
compare it with LibSVM [19]. We select only two problems from the LibSVM data set available at http:
//www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/ for our test. The first problem is a1a, which
has size p = 119 features and N = 1605 data points, while the second problem is news20, which has size
p = 1355191 features and N = 19996 data points.

We compare two algorithms in terms of the final objective values F(xk), the classification accuracy caλ :=
1−N−1

∑
N
j=1
[
sign(Wxk− r) 6= y)

]
and the computational time. The results of our test are reported in Table 7.

Table 7: The results of two algorithms on two real-world data problems

Problem The parameter values
λ−1 10−3 111.1 222.2 333.3 444.4 555.6 666.7 777.8 888.9 103

The accuracy of problem a1a

(1P2D) 0.7539 0.8717 0.8717 0.8710 0.8710 0.8710 0.8710 0.8710 0.8710 0.8710
LibSVM 0.7539 0.8692 0.8698 0.8698 0.8698 0.8698 0.8698 0.8698 0.8679 0.8698

The CPU time [in second] of problem a1a

(1P2D) 4.4045 4.3769 4.4246 4.4941 4.6238 4.5175 4.4836 4.4719 4.7179 4.8097
LibSVM 0.2549 2.1909 4.3884 5.8583 8.3662 11.2350 11.7036 12.9832 17.1424 17.4362

The accuracy of problem news20

(1P2D) 0.5001 0.9987 0.9987 0.9987 0.9987 0.9987 0.9987 0.9987 0.9987 0.9987
LibSVM 0.5001 0.9987 0.9987 0.9987 0.9987 0.9988 0.9988 0.9988 0.9988 0.9988

The CPU time [in second] of problem news20

(1P2D) 762.31 1023.22 994.64 1043.06 984.24 989.70 1064.33 1073.94 984.47 1018.35
LibSVM 890.26 1440.28 1449.23 1439.77 1434.27 1518.56 1560.38 1557.48 1535.19 1530.71

As can be seen from these results that both solvers give relatively the same objective values, the accu-
racy for these two problems, while the computational of (1P2D) is much lower than LibSVM. We note that
LibSVM was implemented in C++ while (1P2D) is simply a Matlab code. LibSVM becomes slower when the
parameter λ getting smaller due to the active-set strategy. The (1P2D) algorithm is almost independent of the
regularization parameter λ , which is different from active-set methods. In addition, the performance of (1P2D)
can be improved by taking account its parallelization ability, which has not been exploited yet in our Matlab
implementation.

To immediately see the performance without looking at the numbers in Table 7, we plot the results in
Figures 12 and 13 for two separate problems, respectively.

38

http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/
http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/

2 4 6 8 10
0

1

2

3

4

5

6
x 10

8 The ob je c t i ve value s

Paramete r hori zon (λ− 1)

T
h
e
o
b
je
c
t
iv

e
v
a
lu

e
s
F
(
x

k
)

1P2D
LibSVM

2 4 6 8 10
0.75

0.8

0.85

0.9

The c lassificati on accuracy (caλ)

Paramete r hori zon (λ− 1)
T
h
e
c
la
s
s
ifi

c
a
t
io
n
a
c
c
u
r
a
c
y

1P2D
LibSVM

2 4 6 8 10
0

5

10

15

20

The CPU time [in se cond]

Paramete r hori zon (λ− 1)

T
h
e
C
P
U

t
im

e
[i
n
s
e
c
o
n
d
]

1P2D
LibSVM

Figure 12: The results of two algorithms on the small a1a problem

2 4 6 8 10
0

1

2

3

4

5

6
x 10

7 The ob je c t i ve value s

Paramete r hori zon (λ− 1)

T
h
e
o
b
je
c
t
iv

e
v
a
lu

e
s
F
(
x

k
)

1P2D
LibSVM

2 4 6 8 10
0.5

0.6

0.7

0.8

0.9

1

The c l assificati on accuracy (caλ)

Paramete r hori zon (λ− 1)

T
h
e
c
la
s
s
ifi

c
a
t
io
n
a
c
c
u
r
a
c
y

1P2D
LibSVM

2 4 6 8 10
600

800

1000

1200

1400

1600

The CPU time [in se cond]

Paramete r hori zon (λ− 1)

T
h
e
C
P
U

T
im

e
[i
n
s
e
c
o
n
d
]

1P2D
LibSVM

Figure 13: The results of two algorithms on the large-scale news20 problem

9 Conclusions
We introduce a model-based excessive gap (MEG) technique for constructing and analyzing first-order meth-
ods that numerically approximate an optimal solution of (1). Thanks to a combination of smoothing strategies
and MEG, we introduce, to the best of our knowledge, the first algorithmic schemes for (1) that theoreti-
cally obtain optimal convergence rates directly without averaging the iterates and that seamlessly handle the
p-decomposability structure. Surprisingly, our analysis techniques enable inexact characterizations, which
is important for the augmented Lagrangian versions with lower-iteration counts. We expect a deeper under-
standing of MEG and different smoothing strategies to help us in tailoring adaptive update strategies for our
schemes (as well as several other connected and well-known schemes) in order to further improve the empirical
performance.

Acknowledgments
This work is supported in part by the European Commission under the grants MIRG-268398 and ERC Future
Proof, and by the Swiss Science Foundation under the grants SNF 200021-132548, SNF 200021-146750 and
SNF CRSII2-147633.

39

A The proofs of technical statements
This appendix provides the technical proofs of Lemmas and Theorems introduced in the main text.

A.1 The proof of Lemma 3.3: Bounds on the objective residual and feasibility gap.
By induction, it follows from Definition 3.2 that Gk(w̄k) ≤ ωkG0(w̄0)−Ψk, where ωk := ∏

k−1
j=0(1− τ j) and

Ψk :=Ψ0+∑
k−1
j=1 ∏

j−1
l=0 (1−τl)Ψ j. Using the definition (25) of Gk and the definition (17) of gγ , we can reexpress

Gk as Gk(w̄k) = f (x̄k)−gγk(ȳ
k)+(1/(2βk))‖Ax̄k−b‖2

2. This expression leads to

f (x̄k)−gγk(ȳ
k)≤ ωkG0(w̄0)−Ψk− (1/(2βk))‖Ax̄k−b‖2

2, (79)

which is indeed (79).
Now, we notice that under Assumption A.1, the solution set Y ? of the dual problem (11) is also nonempty

and bounded. Moreover, the strong duality holds, i.e., f ? = g?. Any point (x?,y?)∈X ?×Y ? is a primal-dual
solution to (1)-(11), and is also a saddle point of L , i.e., L (x?,y)≤L (x?,y?)≤L (x,y?) for all x ∈X and
y ∈ Rm. These inequalities lead to the following estimate

f (x)−g(y)≥ f (x)− f ? ≥−‖y?‖2‖Ax−b‖2, ∀x ∈X , y ∈ Rm, (80)

which is exactly (80). Now, we combine (18), (79) and (80) to get the following:

−‖y?‖2‖Ax̄k−b‖2 ≤ f (x̄k)− f ? ≤ f (x̄k)−g(ȳk)≤ Sk− (1/(2βk))‖Ax̄k−b‖2
2 ≤ Sk, (81)

where Sk := ωkG0(w̄0)+ γkDS
X −Ψk. This bound is exactly (31).

Finally, we prove (32). Let t := ‖Ax̄k−b‖2. It follows from (81) that −‖y?‖2t ≤ Sk− (1/(2βk))t2. This

inequation of t leads to t ≤ βk

[
‖y?‖2 +

√
‖y?‖2

2 +2β
−1
k Sk

]
provided βk‖y?‖2

2 + 2Sk ≥ 0. This estimate is
indeed (32). �

A.2 Convergence analysis: The proof of Theorem 4.1.
Our proof of Theorem 4.1 takes the following outline:

1. We prove two key lemmas: Lemma 4.1 and Lemma 4.2. These lemmas provide conditions to update the
step-size τk.

2. We show how to find starting points for Algorithm 1 using Lemma 4.3.

3. We provide an update rule for the step-size parameter τk in Lemma 4.4 based on the conditions of
Lemmas 4.1 and 4.2.

4. We combine the above results to finalize the proof of Theorem 4.1.

A.2.1 The proof of Lemma 4.1: The condition for selecting step-size τk in (2P1D).

Let us denote by dk(w) := γkdb(Sx,Sxc)+(βk/2)‖y‖2
2 and x̄?k := x?γk

(ȳk). If we define

Hk(w) := f (x̄k)− f (x)+F(w̄k)T (w̄k−w)−dk(w), (82)

the objective function in (25), then by the definition of Gk+1 and W := X ×Rm, we have

Gk+1(w̄k+1) := max
w∈W

Hk+1(w). (83)

40

The proof is divided in the following steps:
Step 1: Splitting Hk and Hk+1. Using the definition of F in (15), we can write F(w̄k)T (w̄k −w) = (Ax̄k −
b)T y− (Ax−b)T ȳk. Plugging this expression into (82) we obtain

Hk(w) := f (x̄k)− f (x)+(Ax̄k−b)T y− (Ax−b)T ȳk−dk(w). (84)

Similarly to (84), we also have Hk+1(w) = f (x̄k+1)− f (x) + (Ax̄k+1 − b)T y− (Ax− b)T ȳk+1. Using this
expression and ȳk+1 = (1− τk)ȳk + τkŷk in (2P1D) we get

Hk+1(w) = f (x̄k+1)− f (x)+(Ax̄k+1−b)T y− (1−τk)(Ax−b)T ȳk−τk(Ax−b)T ŷk−dk+1(w).

By adding and then subtracting (1− τk)[f (x̄k)− f (x)] into this inequality, we obtain

Hk+1(w) = (1− τk)
[

f (x̄k− f (x)− (Ax−b)T ȳk]+(Ax̄k+1−b)T y− τk(Ax−b)T ŷk

+ f (x̄k+1)− (1− τk) f (x̄k)− τk f (x)−dk+1(w). (85)

Step 2: Estimating a lower bound for Gk. By using the definition (17) of gγ , we have

f (x)+(Ax−b)T ȳk + γkdb(Sx,Sxc)≥ gγk(ȳ
k)+ γkdb(Sx,Sx?γk

(ȳk)).

Using this inequality and max
y∈Rm

{
(Ax̄k−b)T y− (β/2)‖y‖2

2

}
= (1/(2β))‖Ax̄k−b‖2

2, we can show that

Gk(w̄k) :=max
w∈W

{
f (x̄k)− f (x)−(Ax−b)Tȳk−γkdb(Sx,Sxc)+(Ax̄k−b)Ty−(βk/2)‖y‖2

2

}
≥ f (x̄k)− f (x)− (Ax−b)T ȳk− γkdb(Sx,Sxc)+(1/(2βk))‖Ax̄k−b‖2

2 + γkdb(Sx,Sx̄?k). (86)

From the second line ŷk := β
−1
k+1(Ax̂k−b) of (2P1D), we also have the following equality

‖Ax̄k−b‖2
2 = ‖Ax̂k−b‖2

2 +2(Ax̂k−b)T A(x̄k− x̂k)+‖A(x̂k− x̄k)‖2
2

= ‖Ax̂k−b‖2
2 +2βk+1(ŷk)T A(x̄k− x̂k)+‖A(x̂k− x̄k)‖2

2. (87)

Since βk+1 = (1− τk)βk due to (36), substituting (87) into (86) we obtain

f (x̄k)− f (x)−(Ax−b)Tȳk−γkdb(Sx,Sxc)≤Gk(w̄k)−(1/(2βk+1))‖Ax̂k−b‖2
2−(ŷk)TA(x̄k−x̂k) (88)

−γkdb(Sx,Sx̄?k)−(1/(2βk+1))
[
‖A(x̄k−x̂k)‖2

2−τk‖Ax̄k−b‖2
2
]
.

Step 3: Estimating an upper bound for Hk+1. First, from the update rule (36), we have γk+1 = (1− ckτk)γk ≥
(1− τk)γk for any ck ≤ 1 and βk+1 = (1− τk)βk. Hence, we can show that

dk+1(w) = γk+1db(Sx,Sxc)+(βk+1/2)‖y‖2
2 ≥ (1−τk)γkdb(Sx,Sxc)+(βk+1/2)‖y‖2

2. (89)

Second, by using ŷk := β
−1
k+1(Ax̂k−b) in (2P1D), we also have the following equality

(Ax−b)T ŷk = (ŷk)T A(x̂k−b)+(ŷk)T A(x− x̂k) = (1/βk+1)‖Ax̂k−b‖2
2 +(ŷk)T A(x− x̂k). (90)

41

Third, substituting (89), (88) and (90) into (85), we can upperbound the estimate Hk+1 as

Hk+1(w)
(89)
≤ (1− τk)

[
f (x̄k)− f (x)− (Ax−b)T ȳk− γkdb(Sx,Sxc)

]
+(Ax̄k+1−b)T y− (βk+1/2)‖y‖2

2

− τk(Ax−b)T ŷk + f (x̄k+1)− (1− τk) f (x̄k)− τk f (x)
(88)+(90)
≤ (1− τk)Gk(w̄k)+(Ax̄k+1−b)T y− (βk+1/2)‖y‖2

2 +
[

f (x̄k+1)− (1− τk) f (x̄k)− τk f (x)
]

− (1− τk)

2βk+1

[
‖Ax̂k−b‖2

2 +‖A(x̄k− x̂k)‖2
2− τk‖Ax̄k−b‖2

2
]
− (1− τk)(ŷk)T A(x̄k− x̂k)

− τk
[
(1/βk+1)‖Ax̂k−b‖2

2− (ŷk)T A(x− x̂k)
]
− (1− τk)γkdb(Sx,Sx̄?k)

= (1− τk)Gk(w̄k)+
[

f (x̄k+1)− (1− τk) f (x̄k)− τk f (x)
]
+(Ax̄k+1−b)T y− (βk+1/2)‖y‖2

2

+(ŷk)T A
[
(1− τk)x̄k + τkx− x̂k]− (1/(2βk+1))‖Ax̂k−b‖2

2− (1− τk)γkdb(Sx,Sx̄?k)

− (1/(2βk+1))
[
(1−τk)‖A(x̄k−x̂k)‖2

2−(1−τk)τk‖Ax̄k−b‖2
2+τk‖Ax̂k−b‖2

2

]
. (91)

Step 4: Refining the upper bound of Hk+1. Let u := (1− τk)x̄k + τkx ∈X and

T[3] := (1/(2βk+1))
[
(1− τk)‖A(x̄k− x̂k)‖2

2− (1− τk)τk‖Ax̄k−b‖2
2 + τk‖Ax̂k−b‖2

2
]
. (92)

First, by the convexity of f we have f (u) ≤ (1− τk) f (x̄)+ τk f (x). Second, from the first line of (2P1D) we
have u− x̂k = τk(x− x̄?k). Third, by the strong convexity of db and the condition (37), we can estimate

(1− τk)γkdb(Sx,Sx̄?k)≥ L̄g
β
−1
k+1τ

2
k db(Su,Sx̄?k)≥ (L̄g/2)β−1

k+1τ
2
k ‖S(x− x̄?k‖2

2 ≥ (L̄g/2)β−1
k+1‖S(u− x̂k)‖2

2.

Finally, substituting these expressions into (91) we obtain

Hk+1(w)≤ (1− τk)Gk(w̄k)+ f (x̄k+1)− f (u)+(Ax̄k+1−b)T y− (βk+1/2)‖y‖2
2

− (ŷk)T A(u− x̂k)− (L̄g/2)β−1
k+1‖S(u− x̂k)‖2

2− (1/(2βk+1))‖Ax̂k−b‖2
2−T[3]. (93)

Step 5: Final touches on the upper bound of Hk+1. By the third line of (2P1D), we have x̄k+1 := proxS f (x̂k, ŷk;βk+1).
If we define Hβk+1

(u) := f (u)+(ŷk)T A(u− x̂k)+(L̄g/(2βk+1))‖S(u− x̂k)‖2
2, then, by (34), we have

Hβk+1
(u)≥Hβk+1

(x̄k+1), ∀u ∈X . (94)

On the other hand, since max
y∈Rm

{
(Ax̄k+1−b)T y− (βk+1/2)‖y‖2

2
}
= (1/(2βk+1))‖Ax̄k+1−b‖2

2, one has

(Ax̄k+1−b)T y− (βk+1/2)‖y‖2
2 ≤ (1/(2βk+1))‖Ax̄k+1−b‖2

2, ∀y ∈ Rm. (95)

Substituting (95) and (94) into (93) we get

Hk+1(w)≤ (1− τk)Gk(w̄k)+ f (x̄k+1)− f (x̄k+1)− (1/(2βk+1))‖Ax̂k−b‖2
2

− (ŷk)T A(x̄k+1− x̂k)− (L̄g/(2βk+1))‖S(x̄k+1− x̂k)‖2
2 +(1/(2βk+1))‖Ax̄k+1−b‖2

2−T[3]. (96)

By the condition (35) with x̂ = x̂k, x = x̄k+1 and ŷk := β
−1
k+1(Ax̂k−b), we have

(2βk+1)
−1‖Ax̂k−b‖2

2 +(ŷk)T A(x̄k+1−x̂k)+(2βk+1)
−1L̄g‖S(x̄k+1−x̂k)‖2

2 ≥ (2βk+1)
−1‖Ax̄k+1−b‖2

2. (97)

Substituting this inequality into (96) we finally get

Hk+1(w)≤ (1− τk)Gk(w̄k)−T[3]. (98)

42

Step 6: We simplify T[3] and prove (27). From the definition (92) of T[3], we can estimate

T[3] := (2βk+1)
−1[(1− τk)‖A(x̄k− x̂k)‖2

2− τk(1− τk)‖Ax̄k−b‖2
2 + τk‖Ax̂k−b‖2

2
]

= (2βk+1)
−1‖(Ax̂k−b)− (1− τk)(Ax̄k−b)‖2

2
(2P1D)(line 1)

= (2βk+1)
−1

τ
2
k ‖Ax̄?k−b‖2

2. (99)

Substituting (99) into (98) and taking the maximization over W we obtain

Gk+1(w̄k+1) = max
w∈W

Hk+1(w)≤ (1− τk)Gk(w̄k)− (τ2
k /(2βk+1))‖Ax̄?k−b‖2

2,

which is indeed (27). �

A.2.2 The proof of Lemma 4.2: The condition for selecting step-size τk in (1P2D).

Let us denote by ȳ?k := y?
βk
(x̄k), x̄?k := x?γk+1

(ȳk) and x̂?k := x?γk+1
(ŷk).

Step 1: Estimate Gk. By using Hk as in the proof of Lemma 4.1[(85)], we have

Gk(w̄k) = max
w∈W

{
f (x̄k)− f (x)+(Ax̄k−b)T y− (Ax−b)T ȳk−dk(w)

}
≥ f (x̄k)+max

x∈X

{
− f (x)− (Ax−b)T ȳk− γkdb(Sx,xc)

}
+ max

y∈Rm

{
(Ax̄k−b)T y− βk

2
‖y‖2

2
}
. (100)

Now, since sT y− (β/2)‖y‖2
2 = (1/(2β))‖s‖2

2− (β/2)‖y− (1/β)s‖2
2 for all y,s ∈ Rm, we have

(Ax̄k−b)T y− (βk/2)‖y‖2
2 +(β/2)‖y−ȳ?k‖2

2 ≤ max
y∈Rm

{
(Ax̄k−b)Ty− (βk/2)‖y‖2

2

}
.

Substituting this estimate into (100) we get

Gk(w̄k)≥ f (x̄k)+max
x∈X

{
− f (x)− (Ax−b)T ȳk− γkdb(Sx,xc)

}
+(Ax̄k−b)T y− (βk/2)‖y‖2

2 +(β/2)‖y−ȳ?k‖2
2. (101)

Step 2: Properties of gγ . Let ϕγ(y) := max
x∈X

{
− f (x)− (Ax−b)T ȳk− γdb(Sx,Sxc)

}
. It is clear that ϕγk(y) ≡

−gγk(y), which is convex and smooth. Hence, by Definition 3.1, we have
ϕγ(y) ≥ ϕγ(ŷ)+∇ϕγ(ŷ)T (y− ŷ),
ϕγ(y) ≤ ϕγ(ŷ)+∇ϕγ(ŷ)T (y− ŷ)+(Lg

γ/2)‖y− ŷ‖2
2, ∀y, ŷ ∈ Rm,

ϕγ̄(y) ≥ ϕγ(y)+(γ− γ̄)db(Sx?γ(y),Sxc), ∀ γ̄,γ > 0.
(102)

Here the first inequality follows from the convexity of ϕγ , while the second follows from the Lipschitz con-
tinuity of ∇ϕγ . We prove the third inequality. The function s(x,γ) := − f (x)− yT (Ax− b)− γdb(Sx,Sxc)
is concave with respect to x and linear with respect to γ . It is clear that ϕγ(y) = maxx∈X {s(x,γ)}, which is
convex with respect to γ [13]. Moreover, its derivative with respect to γ is given by−db(Sx?γ(y),Sxc)≥ 0. This
function is nonincreasing, which leads to the first inequality of (102).
Step 3: A refinement of Gk. By the definition of x̂?k and ∇ϕγk+1(ŷ

k) = b−Ax̂?k , we can express

− f (x̂?k)− (Ax̂?k−b)T y =− f (x̂?k)− (Ax̂?k−b)T ŷk− (Ax̂?k−b)T (y− ŷk)

= ϕγk+1(ŷ
k)+∇ϕγk+1(ŷ

k)T (y− ŷk)+ γk+1db(Sx̂?k ,Sxc). (103)

43

Multiplying (101) by 1− τk and then using the definition of ϕγ , we have

(1− τk)Gk(w̄k) = (1− τk)
[
ϕγk(ȳ

k)+ f (x̄k)+(Ax̄k−b)T y+
βk

2
‖y− ȳ?k‖2

2−
βk

2
‖y‖2

2

]
. (104)

Using the third inequality of (103) with γ̄ = γk and γ = γk+1 = (1− ckτk)γk and (103) into (104) we obtain

(1−τk)Gk(w̄k)≥(1−τk)
[
ϕγk+1(ȳ

k)+ f (x̄k)+(Ax̄k−b)T y+
βk

2
‖y−ȳ?k‖2

2−
βk

2
‖y‖2

2− τkckγkdb(Sx̄?k ,Sxc)
]

+τk

[
f (x̂?k)+(Ax̂?k−b)Ty+ϕγk+1(ŷ

k)+∇ϕγk+1(ŷ
k)T(y−ŷk)+γk+1db(Sx̂?k ,Sxc)

]
. (105)

Now, using the first line of (103), we have ϕγk+1(ȳ
k) ≥ ϕγk+1(ŷ

k)+∇ϕγk+1(ŷ
k)T (ȳk− ŷk). On the other hand,

by the convexity of f and the second line of (1P2D), we easily get f (x̄k+1) = f ((1− τk)x̄k + τkx̂?k) ≤ (1−
τk) f (x̄k)+ τk f (x̂?k). Using these inequalities and x̄k+1 = (1− τk)x̄k + τkx̂?k into (105) we can further estimate

(1− τk)Gk(w̄k)≥ ϕγk+1(ŷ
k)+∇ϕγk+1(ŷ

k)T [(1− τk)(ȳk + τky− ŷk]+ f (x̄k+1)+(Ax̄k+1−b)T y

+
(1− τk)βk

2
[
‖y− ȳ?k‖2

2−‖y‖2
2
]
+ τkγk+1db(Sx̂k

?,Sxc)− (1−τk)τkckγkdb(Sx̄?k ,Sxc). (106)

Step 4: We prove (27). Let v := (1− τk)ȳk + τky ∈ Rm. Using the first line of (1P2D), we can show that
v− ŷk := τk(y− ȳ?k). Substituting v into (106) and taking the maximization over Rm, we get

(1− τk)Gk(w̄k)≥ max
v∈Rm

{
ϕγk+1(ŷ

k)+∇ϕγk+1(ŷ
k)T (v− ŷk)+(βk+1/τ

2
k)‖v− ŷk‖2

2

}
+ f (x̄k+1)+(Ax̄k+1−b)T y− (βk+1/2)‖y‖2

2 +T[4], (107)

where T[4] := τk(1− τk)γk
[
db(Sx̂k

?,Sxc)− ckdb(Sx̄?k ,Sxc)
]
.

From the condition βk+1γk+1 ≥ L̄gτ2
k in (38), we have βk+1τ

−2
k ≥ L̄gγ

−1
k+1 = Lg

γk+1 . Using this inequality, the
second line of (1P2D) and the second inequality of (102) with γ = γk+1, ŷ = ŷk and y = ȳk+1, we can further
refine (107) as

(1−τk)Gk(w̄k)≥ϕγk+1(ȳ
k+1)+ f (x̄k+1)+(Ax̄k+1−b)T y− (βk+1/2)‖y‖2

2 +T[4]

≥ f (x̄k+1)− f (x)+(Ax̄k+1−b)T y− (Ax−b)T ȳk+1−dk+1(w)+T[4] (108)

= Hk+1(w)+T[4].

Since the left-hand side of (108) is constant, by maximizing over w ∈W the right-hand side of this inequality,
we finally get Gk+1(w̄k+1)≤ (1− τk)Gk(w̄k)−T[4], which is indeed (27). �

A.2.3 The proof of Lemma 4.3: Finding starting points for Algorithm 1.

From the definition of Hk in the proof of Lemma 4.1[(85)] and the definition of gγ , we can show that

G0(w̄0) = max
w∈W

{
f (x̄0)− f (x)− (Ax−b)T ȳ0 +(Ax̄0−b)T y−d0(w)

}
= max

y∈Rm

{
f (x̄0)+(Ax̄0−b)T y− β0

2
‖y‖2

2

}
− min

x∈X

{
f (x)+(Ax−b)T ȳ0 + γ0db(Sx,Sxc)

}
= max

y∈Rm

{
f (x̄0)+(Ax̄0−b)T y− β0

2
‖y‖2

2−gγ0(ȳ
0)
}
. (109)

44

By the definition of x̄0 and yc := 0m, we have gγ0(y
c) = f (x̄0)+ γ0db(Sx̄0,Sxc). By Definition 3.1, ∇gγ(·)

is L̄g/γ0-Lipschitz continuous, by [48, Theorem 2.1.5], we have gγ0(ȳ
0) ≥ gγ0(y

c) +∇gγ0(y
c)T (ȳ0 − yc)−

L̄g

2γ0
‖ȳ0− yc‖2

2. Moreover, ∇gγ0(y
c) = Ax̄0−b for ȳ0 = (1/β0)

(
Ax̄0−b

)
. Hence, gγ0(ȳ

0) ≥ f (x̄0)+ (Ax̄0−
b)T ȳ0− L̄g

2γ0β 2
0
‖Ax̄0−b‖2

2. Using this inequality into (109), we can further estimate

G0(w̄0)≤ max
y∈Rm

{
(Ax̄0−b)T y− β0

2
‖y‖2

2 +
L̄g

2γ0β 2
0
‖Ax̄0−b‖2

2− γ0db(Sx̄0,Sxc)
}

≤− 1
2β0

(
2− L̄g

β0γ0

)
‖Ax̄0−b‖2

2− γ0db(Sx̄0,Sxc),

which leads to G0(w̄0) ≤ −γ0db(Sx̄0,Sxc) provided that β0γ0 ≥ L̄g. The statement (40) of Lemma 4.3 can be
proved similarly. �

A.2.4 The proof of Lemma 4.4: Update rule for step-size parameter τk.

For any ck+1 ≤ 1 and ak ≥ 0, we have 1+ck+1 +2ak ≤ 1+ck+1 +
√

4a2
k +(1− ck+1)2 ≤ 2ak +1−ck+1 +1+

ck+1 = 2ak +2. From (41), we can easily show that ak +(ck+1 +1)/2≤ ak+1 ≤ ak +1. By induction, we can
derive from this estimate that

a0 + k/2+(1/2)
k

∑
i=1

ci ≤ ak ≤ a0 + k.

On the other hand, from (41) we have a0 :=
(√

(1+ c0)2 +4(1− c0)+1+c0
)
/2. Combining two last expres-

sions and sk := ∑
k
i=1 ci, we obtain (43). The estimate (44) follows from the relation βk+1γk+1 = L̄gτ2

k = L̄ga−2
k

and (43).
Now, let us consider the case ck = 0 for all k ≥ 0. Then, the update rule for γk becomes γk+1 := γk = γ0 =

L̄g/β0 for all k ≥ 0. Moreover, we have a0 = (1+
√

5)/2. Then the first line of (45) follows directly from (44)
and 1 < a0 < 2.

If ck = 1 for all k ≥ 0 then a0 = 2 and τ0 = 0.5. Moreover, we have (1− τk+1)
2τ2

k = τ2
k+1, which leads

to (1− τk+1) = τk+1/τk. Therefore, βk+1 = β0 ∏
k
i=0(1− τi) = β0(1− τ0)∏

k
i=1

τi
τi−1

= β0(1− τ0)
τk
τ0

= β0a−1
k .

Moreover, from (43) we have k+ 2 = k+ a0 ≤ ak ≤ k+ a0 = k+ 2. Combining the last inequality and this
equality we obtain the second line of (45). �

A.2.5 The full-proof of Theorem 4.1.

Under Assumption A.1, by the well-known properties of augmented Lagrangian function Lγ , see, e.g. [10],
we have

Lγ(x?,y)≤Lγ(x?,y?)≡L (x?,y?) = f ? = g? ≤Lγ(x,y?)

for all x ∈X ,y ∈ Rm, (x?,y?) ∈W ? and γ > 0. This expression leads to

g̃γ(y)≤ f (x)+(Ax−b)T y?+(γ/2)‖Ax−b‖2
2 ≤ f (x)+‖y?‖2‖Ax−b‖2 +(γ/2)‖Ax−b‖2

2.

Hence, for any y? ∈ Y ?, we obtain

f (x)− g̃γ(y)≥ f (x)− f ? ≥−‖y?‖2‖Ax−b‖2− (γ/2)‖Ax−b‖2
2, ∀x ∈X ,y ∈ dom

(
gγ

)
. (110)

Let t := ‖Ax̄k−b‖2. By combining (110) and (79) we obtain (1−γkβk)
βk

t2−2‖y?‖2t−2(ωkG0(w̄0)−Ψk) ≤ 0.
Since γkβk ≤ L̄gτ2

k−1 < L̄g ≡ 1, we can show that

‖Ax̄k−b‖2 ≤
(

βk

1−βkγk

)[
‖y?‖2 +

(
‖y?‖2

2 +
2(ωkG0(w̄0)−Ψk)(1−βkγk)

βk

)1/2]
. (111)

45

To prove (46), we note that by setting ck := 0 for all k≥ 0 in Lemma 4.4, we can derive βk
1−γkβk

≤ 4
√

L̄g

k2−4 ≤
4

(k+1)2

for k ≥ 0. In addition, ωkG0(w̄0)−Ψk ≤ 0 due to Lemma 4.3. Using these estimates into (111), we obtain
‖Ax̄k−b‖2 ≤

8D?
Y

(k+1)2 , which is the first inequality of (46).

From (79) and (110) we have f (x̄k)− f ?≤ f (x)− g̃γk(ȳ
k)≤ 0. This inequality and (110) implies the second

inequality of (46).

Next, we prove (47). By Lemma 3.3 we have ‖Ax̄k−b‖2 ≤ βk‖y?‖+
√

β 2
k ‖y?‖2 +2βkγkDk ≤ 2βkD?

Y +√
2γkβkDI

X , where y? is one minimum norm element of Y ?. By Lemma 4.4, we have βkγk =
L̄g

(k+1)2 and

βk =
√

L̄g

k+1 . Combines these equalities, we obtain the first inequality in (47). The second inequality of (47)

follows from Lemma 3.3 and βk =
√

L̄g

k+1 .
To prove (48), we first see from Lemma 4.3 and Theorem 4.2 that the sequence

{
(x̄k, ȳk)

}
generated by

Algorithm 1 maintains the condition (27). By Lemma 3.3 and Lemma 4.4 we have

‖Ax̄k−b‖2 ≤
8L̄g

γ0(k+1)2 ‖y
?‖+

√
8L̄gDk

(k+1)
.

By the definition of DY ? and the choice of γ0, we obtain from this inequality the first estimate of (48). The
second estimate of (48) immediately follows from (33) and the choice of γ0. �

A.3 The proof of Corollary 5.1: Strong convexity case.
For simplicity of presentation, we divide this proof into few steps.
Step 1: The proof of Corollary 5.1 for the (1P2Ds) scheme. The proof of the two first estimates in Corollary

5.1 for (1P2Ds) can be done similarly to [68, Theorem 4], where we can show that −
4Lg

f
(k+2)2 (D?

Y)2 ≤ f (x̄k)−

g(ȳk) ≤ 0 and ‖Ax̄k−b‖2 ≤
4Lg

f
(k+2)2 D?

Y . However, we have −‖y?‖‖Ax−b‖2 ≤ f (x)− f ? ≤ f (x)− g(y) for
x ∈X , y ∈ Rm and y? ∈ Y ? due to (80). The first inequality implies the second inequality of Corollary 5.1.
Step 2: The proof of Corollary 5.1 for the (2P1Ds) scheme. Next, we prove the first two estimates in Corollary
5.1 for the scheme (2P1Ds). Let ŷk := β

−1
k (Ax̂k−b). By applying the same argument as the proof of (93) in

Lemma 4.1 to the scheme (2P1Ds), we obtain

Hk+1(w)≤ (1− τk)Gk(w̄k)+ f (x̄k+1)− f (u)+(Ax̄k+1−b)T y− (βk/2)‖y‖2
2

− (ŷk)T A(u− x̂k)− (1/(2βk))‖Ax̂k−b‖2
2− ((1− τk)σ f /2)‖x−x∗(ȳk)‖2

2−T[3], (112)

where T[3] is defined by (92).
Let us assume that βk(1− τk)σ f ≥ ‖A‖2

2τ2
k . By using this relation, x−x?(ȳk) = τ

−1
k (u− x̂k) and (95), we

can further modify (112) as

Hk+1(w)≤ (1− τk)Gk(w̄k)+ f (x̄k+1)−
[

f (u)+(ŷk)T A(u− x̂k)+(‖A‖2
2/(2βk))‖u− x̂k‖2

2
]

+(1/(2βk))‖Ax̄k+1−b‖2
2− (1/(2βk))‖Ax̂k−b‖2

2−T[3]. (113)

Using the second line x̄k+1 = proxI f (x̂k, ŷk;βk) of (2P1Ds), we have

f (u)+(ŷk)T A(u− x̂k)+
‖A‖2

2
2βk
‖u− x̂k‖2

2 ≥ f (x̄k+1)+(ŷk)T A(x̄k+1− x̂k)+
‖A‖2

2
2βk
‖x̄k+1− x̂k‖2

2.

46

Substituting this inequality into (113) we reach

Hk+1(w)≤ (1−τk)Gk(w̄k)−(1/(2βk))‖Ax̂k−b‖2
2−(ŷk)T A(x̄k+1−x̂k)−(‖A‖2

2/(2βk))‖x̄k+1−x̂k‖2
2

+(1/(2βk))‖Ax̄k+1−b‖2
2−T[3]. (114)

Now, we use the expression (87) for x̄k := x̄k+1, we can estimate

(1/(2βk)‖Ax̄k+1−b‖2
2 ≤ (1/(2βk))‖Ax̂k−b‖2

2 +(ŷk)T A(x̄k+1− x̂k)+(‖A‖2
2/(2βk))‖x̄k+1− x̂k‖2

2.

Substituting this inequality into (114), we finally obtain

Hk+1(w)≤ (1− τk)Gk(w̄k)−T[3].

Since T[3] = (2βk+1)
−1τ2

k ‖Ax?(ȳ)−b‖2
2 due to (99), by maximizing the last inequality over w ∈W , we obtain

Gk+1(w̄k+1) ≤ (1− τk)Gk(w̄k)− (2βk+1)
−1τ2

k ‖Ax?(ȳ)− b‖2
2. This inequality shows that the condition (27)

satisfies with ψk := (2βk+1)
−1τ2

k ‖Ax?(ȳ)−b‖2
2 ≥ 0.

To complete the proof, we derive the condition on updating τk from (1−τk)σ f

τ2
k
≥ ‖A‖

2
2

βk
. Indeed, since βk+1 =

(1−τk)βk, we have (1−τk+1)σ f

τ2
k+1

≥ ‖A‖
2
2

βk+1
by induction. Combining the two last conditions with equality, we obtain

(1−τk+1)τ
2
k = τ2

k+1. This relation leads to τk+1 = τk
(√

τ2
k +4−τk

)
/2 as given in Corollary 5.1. Now, we use

the same argument as the proof of (1P2Ds) to obtain the worst-case bounds in Corollary 5.1.
Step 3: The proof for the bound on {x̄k} in Corollary 5.1. Finally, we prove the last estimate of (50). Indeed,
by the strong convexity of f , we have f (x̄k)− f ? ≥ ξ f (x?)T (x̄k−x?)+ σ f

2 ‖x̄
k−x?‖2

2, where ξ f (x?) ∈ ∂ f (x?)
is one subgradient of f at x?. On the other hand, since x? is the optimal solution of (1), using the optimality
condition of this problem, we have (ξ f (x?)+AT y?)T (x−x?) ≥ 0 for any x ∈X and y? ∈ Y ? and Ax? = b.
Using these expressions, we can show that

f (x̄k)− f ? ≥
σ f

2
‖x̄k−x?‖2

2− (Ax̄k−b)T y? ≥
σ f

2
‖x̄k−x?‖2

2−‖y?‖2‖Ax̄k−b‖2.

This estimate leads to ‖x̄k−x?‖2
2 ≤

2
σ f
[f (x̄k)− f ?]+ 2‖y?‖2

σ f
‖Ax̄k−b‖2 ≤

16Lg
f

σ f (k+2)2 (D?
Y)2, which is indeed the

third estimate in Corollary 5.1. �

A.4 The proof of Lemma 5.1: Dual function gγ is strongly convex
Let x?p,γ(y) be the solution of the minimization problem in (51). Since this problem is an unconstrained convex
minimization, we can write its optimality condition as

AT
p y+∇ fp(x?p,γ(y))+ γ∇dp(x?p,γ(y),x

c
p) = 0. (115)

Moreover, we have ∇gp
γ (y) := Apx?p,γ(y). Since ∇ fp is L fp -Lipschitz gradient and ∇dp(·,xc

p) is 1-Lipschitz
continuous, the function ψp(·) := ∇ fp(·) + γ∇dp(·,xc

p) is (L fp + γ)-Lipschitz continuous. Using Baillon-
Haddad’s theorem [2, Corollary 18.16], we obtain that ψp(·) is (L fp + γ)−1-co-coercive, i.e.,:

(ψp(xp)−ψp(x̂p))
T (xp− x̂p)≥ (L fp + γ)−1‖ψp(xp)−ψp(x̂p)‖2

2, ∀xp, x̂p ∈ Rnp . (116)

47

Now, let gp
γ be defined by (51), we estimate the term A := (∇gp

γ (y)−∇gp
γ (ŷ))T (y− ŷ) as follows:

(∇gp
γ (y)−∇gp

γ (ŷ))T (y− ŷ) = (Apx?p,γ(y)−Apx?p,γ(ŷ))T (y− ŷ)
= (y− ŷ)T Ap(x?p,γ(y)−x?p,γ(ŷ))
(115)
= −

(
ψp(x?p,γ(y))−ψp(x?p,γ(ŷ))

)T
(x?p,γ(y)−x?p,γ(ŷ))

(116)
≤ −(L fp + γ)−1‖ψp(x?p,γ(y))−ψp(x?p,γ(ŷ)‖2

2
(115)
= −(L fp + γ)−1‖AT

p (y− ŷ‖2
2

≤−(L fp + γ)−1λmin(AT
p Ap)‖y− ŷ‖2

2.

This inequality shows that gp
γ is strongly concave with the parameter σgp

γ
:= (L fp +γ)−1λmin(AT

p Ap)> 0. Since

gγ(·) = ∑
p−1
i=1 gi

γ(·)+gp
γ (·), it is also strongly convex with the same parameter σgp

γ
> 0. �

A.5 The proof of Corollary 5.2: The Lipschitz gradient case.
From Lemma 5.1, we note that ϕγ = −gγ satisfies ϕγ(y) ≥ ϕ(ŷ)+∇ϕγ(ŷ)T (y− ŷ)+ (σg/2)‖y− ŷ‖2

2, where
σg := (L fp + γ0)

−1λmin(AT
p Ap) ≤ (L fp + γk)

−1λmin(AT
p Ap) for all k ≥ 0 due to γk ≤ γ0. Using this inequality

instead of the second inequality of (102) and γk+1− γk =−τkγk+1, we obtain from (108) that

(1− τk)Gk(w̄k)≥ Hk+1(w)+ T̄[4], (117)

where

T̄[4] := (γk+1/2)
[
τk‖S(x̂?k−xc)‖2

2− (1− τk)τk‖S(x̄?k−xc)‖2
2 +σg(1− τk)‖S(x̄?k− x̂?k)‖2

2
]

≥ (σgγk+1/2)‖S(x̂?k−xc)− (1− τk)S(x̄?k−xc)‖2
2.

Here x̄?k := x?γk+1
(ȳk) and σg := min

{
σg,1

}
> 0. We note that T̄[4] ≥ 0, taking the maximization both sides

in (117) w.r.t. w ∈W , we obtain (1− τk)Gk(w̄k)≥ Gk+1(w̄k+1)+ψk, where ψk := (σgγk+1/2)‖S(x̂?k −xc)−
(1− τk)S(x̄?k−xc)‖2

2 ≥ 0. Finally, the proof of the estimates (53) in Corollary 5.2 can be done similarly as the
proof of Theorem 4.1(c). �

A.6 The proof of Theorem 5.1: Inexact augmented Lagrangian method
We divide the prove into few steps as follows.
Step 1: Approximate smoothed gap function. Let us define an approximate gap function Gδ

γβ
of the exact

smoothed gap function Gγβ in (25) as follows:

Gδ

γβ
(w̄) := δ - max

w∈W

{
f (x̄)− f (x)+F(w)T (w̄−w)−dγβ (w)

}
, (118)

where the approximation only involves in x in the sense of (58), i.e.:

Gγβ (w̄)≤ Gδ

γβ
(w̄)+(γ/2)δ 2. (119)

Step 2: The first estimate of Gk. Let ϕγ be defined by (102), x̂δ
k := xδ

γ (ŷk), ϕδ
γ (y) := − f (xδ

γ (y))− (Axδ
γ (y)−

b)T y− γdb(Sxδ
γ (y),Sxc) and ∇ϕδ

γ (y) := b−Axδ
γ (y). Then, by (58) we have

ϕγ(y)−ϕ
δ
γ (y)≤ γδ

2/2 and ‖∇ϕ
δ
γ (y)−∇ϕγ(y)‖2 ≤ δ . (120)

48

Since ϕγk(ȳ
k) ≥ ϕγk(ŷ

k) + ∇ϕγk(ŷ
k)T (ȳk − ŷk) and f (x̂δ

k) + (Ax̂δ
k − b)T y + (γk/2)‖Ax̂δ

k − b‖2
2 + ϕδ

γk
(ŷk) +

∇ϕδ
γk
(ŷk)T (y− ŷk) = 0, it follows from (104) and βk+1 = (1− τk)βk that

(1− τk)Gk(w̄k)≥ (1− τk)
[
ϕγk(ŷ

k)+∇ϕγk(ŷ
k)T (ȳk− ŷk)+ f (x̄k)+(Ax̄k−b)T y

]
+ τk

[
f (x̂δ

k)+(Ax̂δ
k −b)T y+ϕ

δ
γk
(ŷk)+∇ϕ

δ
γk
(ŷk)T (y− ŷk)

]
+(βk+1/2)‖y− ȳ?k‖2

2− (βk+1/2)‖y‖2
2 +(τkγk/2)‖Ax̂δ

k −b‖2
2.

Now, using (120), the third line x̄k+1 = (1− τk)x̄k + τkx̃δk
γk (ŷ

k) of (i1P2D), u := (1− τk)ȳk + τky and u− ŷk =
τk(y− ȳ?k) , we can further estimate

(1− τk)Gk(w̄k)≥ ϕ
δ
γk
(ŷk)+∇ϕ

δ
γk
(ŷk)T (u− ŷk)+

βk+1

2τ2
k
‖u− ŷk‖2

2 +
τkγk

2
‖Ax̂δ

k −b‖2
2 + f (x̄k+1)

+(1− τk)
[
∇ϕγk(ŷ

k)−∇ϕ
δ
γk
(ŷk)

]T
(ȳk− ŷk)+(Ax̄k+1−b)T y− βk+1

2
‖y‖2

2. (121)

Step 3: The second estimate of Gk. From the fourth line of (i1P2D) we have ϕδ
γk
(ŷk)+∇ϕδ

γk
(ŷk)T (u− ŷk)+

L̄g

2γk
‖u− ŷk‖2

2 ≥ ϕδ
γk
(ŷk)+∇ϕδ

γk
(ŷk)T (ȳk+1− ŷk)+ L̄g

2γk
‖ȳk+1− ŷk‖2

2. Using this inequality, L̄g = 1 and the con-
dition βk+1γk ≥ L̄gτ2

k = τ2
k we can show that

(1− τk)Gk(w̄k)≥ ϕ
δ
γk
(ŷk)+∇ϕ

δ
γk
(ŷk)T (ȳk+1− ŷk)+

L̄g

2γk
‖ȳk+1− ŷk‖2

2 + f (x̄k+1)+(Ax̄k+1−b)T y

− βk+1

2
‖y‖2

2 +
τkγk

2
‖Ax̂δ

k −b‖2
2 +(1− τk)

[
∇ϕγk(ŷ

k)−∇ϕ
δ
γk
(ŷk)

]T
(ȳk− ŷk). (122)

By using (120) and the first inequality of (102) we can write

T[4] := ϕ
δ
γk
(ŷk)+∇ϕ

δ
γk
(ŷk)T (ȳk+1− ŷk)+

L̄g

2γk
‖ȳk+1− ŷk‖2

2

≥ ϕγk(ŷ
k)+∇ϕγk(ŷ

k)T (ȳk+1− ŷk)+
L̄g

2γk
‖ȳk+1− ŷk‖2

2 +
[
∇ϕ

δ
γk
(ŷk)−∇ϕγk(ŷ

k)
]T
(ȳk+1− ŷk)− (γkδ

2/2)

≥ ϕγk(ȳ
k+1)+

[
∇ϕ

δ
γk
(ŷk)−∇ϕγk(ŷ

k)
]T
(ȳk+1− ŷk)− (γkδ

2/2). (123)

Substituting (123) into (122) and then using (120) and the definition of ϕγ(·) we get

(1− τk)Gk(w̄k)≥ ϕγk(ȳ
k+1)+ f (x̄k+1)+(Ax̄k+1−b)T y− (βk+1/2)‖y‖2

2

−δk‖(1−τk)ȳk+τkŷk− ȳk+1‖2 +
τkγk

2
‖Ax̂δk

k −b‖2
2−(γkδ

2
k /2)

≥ f (x̄k+1)− f (x)+(Ax̄k+1−b)T y− (Ax−b)T ȳk+1− (βk+1/2)‖y‖2
2− (γk/2)‖Ax−b‖2

2−T[5]

≥ Hk+1(w̄k+1)−T[5], (124)

provided that γk+1 ≥ γk, where T[5] := δk‖(1−τk)ȳk+τkŷk− ȳk+1‖2 +(γkδ 2
k)/2− (τkγk/2)‖Ax̂δk

k −b‖2
2.

Step 4: Simplify T[5] to obtain (27). Using the definition of ŷk and ȳk+1 we can further estimate T[5] as

T[5] := (1−τk)τkδk‖ȳk−ŷk‖2+(γkδ
2
k)/2+γkδk‖Ax̂δk

k −b‖2−(τkγk/2)‖Ax̂δk
k −b‖2

2. (125)

Taking the maximization of (124) over w ∈W we finally obtain

Gk+1(w̄k+1)≤ (1− τk)Gk(w̄k)−ψk, (126)

49

where ψk := (τkγ0/2)‖Ax̂δk
k −b‖2

2− (1−τk)τkδk‖ȳk−ȳ?k‖2− γ0δk‖Ax̂δk
k −b‖2− (γ0δ 2

k)/2.
Step 5: Prove (60). We note that ‖Ax̂δk

k −b‖2 ≤ DA
X and γ0 = L̄g = 1, which lead to ψk ≥ −qkδk, where

qk := (1− τk)τk‖ȳk−ȳ?k‖2 +(DA
X + 1)/2. In this case (126) leads to Gk+1(w̄k+1) ≤ (1− τk)Gk(w̄k)+ qkδk.

Therefore, if we choose δk so that qkδk ≤ qk−1δk−1. Then, by induction and ∏
k
i=0(1− τk) ≤ 4

(k+2)2 due to
Lemma 4.4, the last estimate leads to

Gk(w̄k)≤ ωkG0(w̄0)+q0δ0 +4
k−1

∑
j=1

q jδ j

(j+1)2 ≤ ωkG0(w̄0)+4q0δ0ζ (2). (127)

Here ζ (s) := ∑
∞
j=1 j−s is the zeta-function. We note that the starting point w̄0 is also computed up to the

accuracy δ0, i.e. G0(w̄0)≤ (γ0δ 2
0 /2) and ζ (2)< 1.64494. Plugging these into (127) we have Gk(w̄k)≤ 7q0δ0.

Combining this inequality and Lemma 3.3 we obtain the second estimate of (60). Finally, by using the bound
Gk(w̄k)≤ 7q0δ0, it follows from (111) that ‖Ax̄k−b‖2 ≤ 4

(k+1)2

[
2D?

Y +
√

14q0δ0
(k+1)2

]
, which is the first estimate

in (60). �

References
[1] A. Auslender. Optimisation: Méthodes Numériques. Masson, Paris, 1976.

[2] H.H. Bauschke and P. Combettes. Convex analysis and monotone operators theory in Hilbert spaces.
Springer-Verlag, 2011.

[3] A. Beck and D. Pan. On the solution of the GPS localization and circle fitting problems. SIAM J. Optim.,
22(1):108–134, 2012.

[4] A. Beck and M. Teboulle. A Fast Iterative Shrinkage-Thresholding Algorithm for Linear Inverse Prob-
lems. SIAM J. Imaging Sciences, 2(1):183–202, 2009.

[5] A. Beck and M. Teboulle. A fast dual proximal gradient algorithm for convex minimization and applica-
tions. Oper. Res. Letter, 42(1):1–6, 2014.

[6] S. Becker, J. Bobin, and E.J. Candès. NESTA: A fast and accurate first-order method for sparse recovery.
SIAM J. Imaging Science, 4(1):1–39, 2011.

[7] A. Belloni, V. Chernozhukov, and L. Wang. Square-root lasso: Pivotal recovery of sparse signals via
conic programming. Biometrika, 94(4):791–806, 2011.

[8] E. Van Den Berg and M. P. Friedlander. Probing the Pareto frontier for basic pursuit solutions. SIAM J.
Sci. Comput., 31(2):890–912, 2008.

[9] E. van den Berg, M. P. Friedlander, G. Hennenfent, F. Herrmann, R. Saab, and Ö. Yılmaz. Sparco:
A testing framework for sparse reconstruction. Tech. Report TR-2007-20, Dept. Computer Science,
University of British Columbia, Vancouver, October 2007.

[10] Dimitri P. Bertsekas. Constrained Optimization and Lagrange Multiplier Methods. Athena Scientific,
1996 (Optimization and Neural Computation Series).

[11] D.P. Bertsekas and J. N. Tsitsiklis. Parallel and distributed computation: Numerical methods. Prentice
Hall, 1989.

50

[12] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein. Distributed optimization and statistical learning
via the alternating direction method of multipliers. Foundations and Trends in Machine Learning, 3(1):1–
122, 2011.

[13] S. Boyd and L. Vandenberghe. Convex Optimization. University Press, Cambridge, 2004.

[14] E.J. Candés, X. Li, Y. Ma, and J. Wright. Robust principal component analysis? Journal of the ACM,
58(3):1–37, 2011.

[15] A. Chambolle and T. Pock. A first-order primal-dual algorithm for convex problems with applications to
imaging. Journal of Mathematical Imaging and Vision, 40(1):120–145, 2011.

[16] S. H. Chan, R. Khoshabeh, K.B. Gibson, P. E. Gill, and T.Q. Nguyen. An Augmented Lagrangian Method
for Total Variation Video Restoration. IEEE Trans. Image Processing, 20(11):3097–3111, 2011.

[17] V. Chandrasekaran, P.A. Parrilo, and A.S. Willsky. Latent variable graphical model selection via convex
optimization. The annals of Statistics, 40(4):1935–1967, 2012.

[18] V. Chandrasekaranm, B. Recht, P. A. Parrilo, and A. S. Willsky. The convex geometry of linear inverse
problems. Foundations of Computational Mathematics, 12(6):805–849, 2012.

[19] C.-C. Chang and C.-J. Lin. LIBSVM: a library for support vector machines. ACM Transactions on
Intelligent Systems and Technology, 2(27):1–27, 2011.

[20] G. Chen and M. Teboulle. A proximal-based decomposition method for convex minimization problems.
Math. Program., 64:81–101, 1994.

[21] P. L. Combettes and V. R. Wajs. Signal recovery by proximal forward-backward splitting. Multiscale
Model. Simul., 4:1168–1200, 2005.

[22] L. Condat. A primaldual splitting method for convex optimization involving Lipschitzian, proximable
and linear composite terms. J. Optim. Theory and Appl., xx:1–20, 2012.

[23] W. Deng and W. Yin. On the global and linear convergence of the generalized alternating direction method
of multipliers. Tech. Report No. TR12-14, Rice University CAAM, 2012.

[24] E.D. Dolan and J.J. Moré. Benchmarking optimization software with performance profiles. Math. Pro-
gram., 91:201–213, 2002.

[25] D.L. Donoho. Compressed sensing. IEEE Trans. on Information Theory, 25(4):1289–1306, 2006.

[26] J. Eckstein and D. Bertsekas. On the Douglas - Rachford splitting method and the proximal point algo-
rithm for maximal monotone operators. Math. Program., 55:293–318, 1992.

[27] J. E. Esser. Primal-dual algorithm for convex models and applications to image restoration, registration
and nonlocal inpainting. Phd. thesis, University of California, Los Angeles, Los Angeles, USA, 2010.

[28] F. Facchinei and J.-S. Pang. Finite-dimensional variational inequalities and complementarity problems,
vol. 1–2. Springer-Verlag, 2003.

[29] M. Fukushima. Equivalent differentiable optimization problems and descent methods for asymmetric
variational inequality problems. Math. Program., 53:99–110, 1992.

[30] D. Goldfarb and S. Ma. Fast alternating linearization methods of minimization of the sum of two convex
functions. Math. Program., Ser. A, pages 1–34, 2012.

51

[31] T. Goldstein, E. Esser, and R. Baraniuk. Adaptive Primal-Dual Hybrid Gradient Methods for Saddle Point
Problems. Tech. Report, 1–26, 2013 (http://arxiv.org/pdf/1305.0546v1.pdf).

[32] T. Goldstein, B. ODonoghue, and S. Setzer. Fast Alternating Direction Optimization Methods. Tech.
Report, Department of Mathematics, University of California, Los Angeles, USA, May 2012.

[33] M. Grant. Disciplined Convex Programming. PhD thesis, Stanford University, 2004.

[34] A. Hamdi. Decomposition for structured convex programs with smooth multiplier methods. Applied
Mathematics and Computation, 169:218–241, 2005.

[35] A. Hamdi. Two-level primal-dual proximal decomposition technique to solve large-scale optimization
problems. Appl. Math. Comput., 160:921–938, 2005.

[36] B. He and X. Yuan. Convergence analysis of primal-dual algorithms for saddle-point problem: from
contraction perspective. SIAM J. Imaging Sciences, 5:119–149, 2012.

[37] B. He and X. Yuan. On non-ergodic convergence rate of Douglas-Rachford alternating direction method
of multipliers. Tech. Report, Hong Kong Baptist University, pp. 1–9, 2012.

[38] B.S. He and X.M. Yuan. On the O(1/n) convergence rate of the Douglas-Rachford alternating direction
method. SIAM J. Numer. Anal., 50:700–709, 2012.

[39] G. Lan and R.D.C. Monteiro. Iteration-complexity of first-order augmented Lagrangian methods for
convex programming. Tech. Report, University of Florida, 2013.

[40] S. Lefkimmiatis and M. Unser. Poisson Image Reconstruction with Hessian Schatten-Norm Regulariza-
tion. EEE Trans. Image Processing, 22(11):4314–4327, 2013.

[41] Z. Lin, M. Chen, L. Wu, and Y. Ma. The Augmented Lagrange Multiplier Method for Exact Recovery of
Corrupted Low-Rank Matrices. UIUC Tech. Report, No. UILU-ENG-09-2215, 2009.

[42] S. Ma, L. Xue, and H. Zou. Alternating direction methods for latent variable gaussian graphical model
selection. Neural Computation, 25(8):2172–2198, 2013.

[43] M. B McCoy, V. Cevher, Q. Tran-Dinh, A. Asaei, and L. Baldassarre. Convexity in source separation:
Models, geometry, and algorithms. IEEE Signal Processing Magazine, 31(3):87–95, 2014.

[44] I. Necoara and J.A.K. Suykens. Applications of a smoothing technique to decomposition in convex
optimization. IEEE Trans. Automatic control, 53(11):2674–2679, 2008.

[45] V. Nedelcu, I. Necoara, and Q. Tran-Dinh. Computational Complexity of Inexact Gradient Augmented
Lagrangian Methods: Application to Constrained MPC. SIAM J. Optim. Control, (partially accepted),
2014.

[46] A. Nemirovski and M. J. Todd. Interior-point methods for optimization. Acta Numerica, 17(1):191–234,
2008.

[47] A. Nemirovskii. Prox-method with rate of convergence O(1/t) for variational inequalities with Lips-
chitz continuous monotone operators and smooth convex-concave saddle point problems. SIAM J. Op,
15(1):229–251, 2004.

[48] Y. Nesterov. Introductory lectures on convex optimization: A basic course, Vol. 87 of Applied Optimiza-
tion. Kluwer Academic Publishers, 2004.

52

http://arxiv.org/pdf/1305.0546v1.pdf

[49] Y. Nesterov. Excessive gap technique in nonsmooth convex minimization. SIAM J. Optimization,
16(1):235–249, 2005.

[50] Y. Nesterov. Smooth minimization of non-smooth functions. Math. Program., 103(1):127–152, 2005.

[51] Y. Nesterov. Dual extrapolation and its applications to solving variational inequalities and related prob-
lems. Math. Program., 109(2–3):319–344, 2007.

[52] Y. Nesterov. Barrier subgradient method. Math. Program., Ser. B, 127:31–56, 2011.

[53] Y. Nesterov. Gradient methods for minimizing composite objective function. Mathematical Program-
ming, 140(1):125–161, 2013.

[54] J. Nocedal and S.J. Wright. Numerical Optimization. Springer Series in Operations Research and Finan-
cial Engineering. Springer, 2 edition, 2006.

[55] B. O’Donoghue, G. Stathopoulos, and S. Boyd. A splitting method for optimal control. IEEE Transac-
tions on Control Systems Technology, 2012 (to appear).

[56] H. Ouyang, N. He, Long Q. Tran, and A. Gray. Stochastic alternating direction method of multipliers.
JMLR W&CP, 28:80–88, 2013.

[57] Y. Ouyang, Y. Chen, G. LanG. Lan., and E. JR. Pasiliao. An accelerated linearized alternating direction
method of multiplier. Tech, 2014.

[58] N. Parikh and S. Boyd. Proximal algorithms. Foundations and Trends in Optimization, 1(3):123–231,
2013.

[59] R. A. Polyak, J. Costa, and J. Neyshabouri. Dual fast projected gradient method for quadratic program-
ming. Optimization Letters, 7(4):631–645, 2013.

[60] R. T. Rockafellar. Convex Analysis, Vol. 28 of Princeton Mathematics Series. Princeton University Press,
1970.

[61] R. T. Rockafellar. Augmented Lagrangians and applications of the proximal point algorithm in convex
programming. Mathemathics of Operations Research, 1:97–116, 1976.

[62] R.T. Rockafellar. Monotone operators and the proximal point algorithm. SIAM J. Control and Optim.,
14:877–898, 1976.

[63] R.T. Rockafellar. Convexity and Duality in Optimization, chapter Monotropic Programming: A general-
ization of linear programming and network programming., pp. 10–036. Springer-Verlag, 1985.

[64] R. Shefi and M. Teboulle. Rate of Convergence Analysis of Decomposition Methods Based on the Prox-
imal Method of Multipliers for Convex Minimization. SIAM J. Optim., 24(1):269–297, 2014.

[65] K.-Ch. Toh, M.J. Todd, and R.H. Tütüncü. On the implementation and usage of SDPT3 – a Matlab soft-
ware package for semidefinite-quadratic-linear programming, Version 4.0. Tech. Report, NUS Singapore,
2010.

[66] Tran-Dinh, Q., and Cevher, V. Optimal rate and tuning-free alternating direction optimization methods.
Tech. Report. (LIONS, EPFL) (2015).

[67] Q. Tran-Dinh, A. Kyrillidis, and V. Cevher. Composite self-concordant minimization. Tech. Report.,
LIONS, EPFL, pages 1–42, 2013.

53

[68] Q. Tran-Dinh, C. Savorgnan, and M. Diehl. Combining Lagrangian decomposition and excessive gap
smoothing technique for solving large-scale separable convex optimization problems. Compt. Optim.
Appl., 55(1):75–111, 2013.

[69] P. Tseng. Applications of splitting algorithm to decomposition in convex programming and variational
inequalities. SIAM J. Control Optim., 29:119–138, 1991.

[70] M. J. Wainwright. Structured regularizers for high-dimensional problems: Statistical and computational
issues. nnual Review of Statistics and its Applications, 1:233–253, 2014.

[71] H. Wang and A. Banerjee. Bregman Alternating Direction Method of Multipliers. pp. 1–18, 2013 (http:
//arxiv.org/pdf/1306.3203v1.pdf).

[72] J. Yang and Y. Zhang. Alternating direction algorithms for `1 -problems in compressive sensing. SIAM
J. Scientific Computing, 33(1–2):250–278, 2011.

54

http://arxiv.org/pdf/1306.3203v1.pdf
http://arxiv.org/pdf/1306.3203v1.pdf

	Introduction
	Scalable numerical methods for (1) and their limitations
	Our contributions
	Related work
	Paper organization
	Preliminaries
	Basic notation
	Proximity functions and Bregman distances
	Primal-dual formulation
	Mixed-variational inequality formulation and gap function

	Primal-dual smoothing techniques
	Dual function is a smoothable function
	Smoothing via augmented Lagrangian
	Smoothing via Bregman distances

	Smoothed gap function

	The main algorithmic framework
	An iteration scheme with two primal steps
	An iteration scheme with two dual steps
	Finding a starting point
	Updating step-size parameter
	A primal-dual algorithmic template
	Convergence analysis

	Instances of Algorithm 1
	Strong convexity assumption
	Lipschitz gradient assumption
	Inexact solution of the augmented Lagrangian smoother

	Explicit connections to existing methods
	Connections to the fast gradient methods
	Connection to ADMMs
	Connections to proximal-based decomposition method

	Implementation enhancements
	The choice of proximal-point xkc and Bregman distances
	Guidance on tuning the parameters
	Parallel and distributed implementation
	Extension to inequality constraints

	Numerical illustrations
	Actual performance vs. theoretical bounds
	Performance robustness.
	Inexact computations.
	Additional comparisons with state-of-the-art.
	Standard basis pursuit.
	Sparse-group basis pursuit.
	Robust principle component analysis.
	Square-root LASSO.
	Binary linear support vector machine.

	Conclusions
	The proofs of technical statements
	The proof of Lemma 3.3: Bounds on the objective residual and feasibility gap.
	Convergence analysis: The proof of Theorem 4.1.
	The proof of Lemma 4.1: The condition for selecting step-size k in (2P1D).
	The proof of Lemma 4.2: The condition for selecting step-size k in (1P2D).
	The proof of Lemma 4.3: Finding starting points for Algorithm 1.
	The proof of Lemma 4.4: Update rule for step-size parameter k.
	The full-proof of Theorem 4.1.

	The proof of Corollary 5.1: Strong convexity case.
	The proof of Lemma 5.1: Dual function g is strongly convex
	The proof of Corollary 5.2: The Lipschitz gradient case.
	The proof of Theorem 5.1: Inexact augmented Lagrangian method

