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Abstract—Chip designers place on-chip thermal sensors to measure local temperatures, thus preventing thermal runaway situations

in many-core processing architectures. However, the quality of the thermal reconstruction is directly dependent on the number of

placed sensors, which should be minimized, while guaranteeing full detection of all the worst case temperature gradient. In this

paper, we present an entire framework for the thermal management of complex many-core architectures, such that we can precisely

recover the thermal distribution from a minimal number of sensors. The proposed sensor placement algorithm is guaranteed to

reduce the impact of noisy measurements on the reconstructed thermal distribution. We achieve significant improvements compared

to the state of the art, in terms of both computational complexity and reconstruction precision. For example, if we consider a 64 cores

systems-on-chip with 64 noisy sensors (s2 ¼ 4), we achieve an average reconstruction error of 1:5
�
C, that is less than half of what

previous state-of-the-art methods achieve. We also study the practical limits of the proposed method and show that we do not need

realistic workloads to learn the model and efficiently place the sensors. In fact, we show that the reconstruction error is not

significantly increased if we randomly generate the power-traces of the components or if we have just a part of the correct workload.

Index Terms—Sensor placement, thermal management, thermal monitoring

Ç

1 INTRODUCTION

TECHNOLOGICAL advancements of the lithographic pro-
cess steadily increase the amount of components that

can be placed on a single die. If we assume that the power
consumed by these components does not decreases signifi-
cantly with the technological progress [1], we have an
increase of the power density, and subsequently, of the pro-
duced heat.

Many-core system-on-chip (SoC) have their performance
limited by such increased heat density. More precisely, unfa-
vorable thermal patterns increase the overall failure rate of
the system [2], reduce performance [3], significantly increase
leakage power consumption and cooling costs [2], [4].

In the past, passive thermal management schemes were
used to limit the problems induced by thermal phenomena.
For example, designers would organize the floorplan by
placing the highest power density components closer to the
heat sink [5]. However, in recent architectures such compo-
nents are not easily identifiable since they depend on the
workload execution patterns and, unfortunately, these pat-
terns are not fully known at design time. Furthermore, these
issues are amplified in many-core designs, where thermal

hot-spots are generated without a clear spatio-temporal pat-
tern due to the dynamic task set execution nature, based on
external service requests, as well as the dynamic assignment
to cores by the many-core OS [4], [6]. An example of these
architecture and their critical thermal behavior is shown in
Fig. 1, where you can observe the layout of a 64-cores archi-
tecture designed by STM [7], [8] and an example of its ther-
mal distribution at run-time. Note how the cores are not
anymore regularly organized and how they tend to spread
non-uniformly. Such irregularity is forced by the complex
constraints imposed during the floorplanning optimization
and generates irregular thermal distributions with possibly
many unpredictable hot-spots.

Thermal sensors have been already included into SoC
designs [7], however their position have only been manu-
ally tuned because the knowledge of the temperature in a
couple of locations was, until now, sufficient. Nowadays,
it has become necessary to precisely measure the tem-
perature distribution of the entire die and optimize the
workload of the different components to maximize the
performance while avoiding hotspots or large gradients
of temperature.

At the same time, each temperature sensor has a signifi-
cant impact in terms of occupied area and consumed power,
therefore wewould like to place as few sensors as possible. It
is not yet clear how to optimize their placement to maximize
the collected information about the thermal distribution. In
fact, such aspects are quite complex and recently received
significant attention [9], [10], [11], [12], [13], [14], [15].

In this paper, we consider the following two sub-
problems as core to design an efficient thermal monitor-
ing system:

� Thermal distribution reconstruction. Given the temper-
ature measured with L sensors at known locations,
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how do we precisely estimate the temperature distri-
bution of the whole die?

� Sensor placement optimization. Given a fixed amount
of sensors, where do we place them so that we maxi-
mize the precision of the reconstructed thermal
distributions?

Then, we propose to base the solutions of the aforemen-

tioned two sub-problems on the use of a linear low-dimen-

sional subspace to represent the thermal distributions. Such

models are interesting because they are sufficiently precise

while being extremely simple, thus requiring limited compu-

tational resources.

Linear models have been already considered in the past
for thermal monitoring applications [9], [14], but many ques-
tions have been raised regarding their practical feasibility.

First, such models must be optimized and they require a
set of thermal distributions representing the operations of
the SoC under all the possible workloads. It is clear that
such data is hard to gather at the design phase; that is when
we would like to optimize the sensors locations. More
precisely, we need to know three main inputs to simulate
the thermal distributions: the floorplan, the workload of
the SoC, and the power traces of the components under
such workload. In this paper, we show that it is not neces-
sary to have an exact description of the typical workload at
design-time to reconstruct precisely the thermal distribution
at run-time. In fact, we show that it is possible to optimize
the model and place the sensors using a randomly gener-
ated workload without having significant losses in terms of
reconstruction error.

Second, the performance of linear models depends
strongly on the locations of the sensors. In fact, the noise
corrupting the collected measurements can be dramatically
amplified if the sensors are misplaced. We propose to opti-
mize the sensor placement using FrameSense, a greedy
algorithm based on a theoretical framework that we recently
proposed [16]. Under some mild assumptions regarding
the linear model, we can guarantee that the proposed algo-
rithm is near-optimal in terms of reconstruction error and
increases the noise stability of the framework. Moreover,
such theoretical framework has already shown appealing
performance in other domains, such as adaptive sensor
scheduling [17].

The proposed framework improves significantly the
monitoring performance over the state of the art. For exam-
ple, consider the 64-cores architecture shown in Fig. 1a and
typical scenario of one temperature sensor per core cor-
rupted by a noise with variance s2 ¼ 4, we can improve the

reconstruction error from � 3
�
C to less than 1:4

�
C. Even if

we increase the amount of temperature sensors by
50 percent, that is from 64 to 96, the previous methods [11],
[15] can only reach an average reconstruction error of

� 2:4
�
C, while our method can go down to almost 1

�
C.

The remainder of the paper is organized as follows: in
Section 2 we describe previous approaches and state-of-the-
art methods for the recovery of the thermal distribution of
SoC designs. We state and provide a solution to the problem
of thermal reconstruction and the relative sensor placement
in Section 3.1. We conclude with a thorough z comparative
analysis of the performance of the proposed methods in
Section 4 by means of extensive numerical simulations.

2 BACKGROUND AND RELATED WORK

The thermal distribution of a SoC can be estimated using
three different strategies:

� Solution of the direct problem, given the heat sources
and the physical model of the temperature diffusion
process.

� Solution of an optimization problem, given the value
of the temperature in some locations and some a-pri-
ori model for the thermal distributions.

� Empirical approaches, where the thermal distribu-
tion is estimated by means of external devices, such
as infrared cameras.

The first approach requires the knowledge of the heat
sources, that can be ascribed to the knowledge of the
detailed power consumption of the different components.
Often, performance counters [18], [19] are used to estimate
the power traces at run-time. However, the estimation of
the thermal distributions from the power traces is a compu-
tationally expensive task, requiring the complex thermal
models characterizing the thermal dissipation of the SoC.
Recently, [20] proposed to reduce the complexity of these
methods by using directly the performance counter to esti-
mate the temperature, without the intermediate step repre-
sented by the power traces.

On the other hand, the optimization problems are gener-
ally ill-posed. In fact, it is impossible to solve the inverse
problem from few, spatially localized, noisy measurements
without some a-priori constraints on the thermal map, such
as limited bandwidth [9]. The performance is significantly
impacted by the small number of available sensors and the

Fig. 1. (a) The layout of the considered 64 cores processor designed by
STM, where each color represents a different core connected to its own
L1 cache. The white part contains components with a limited thermal
impact. (b) An example of a thermal distribution of such a processor,
where the colormap spans the temperature between 65�C (dark blue)
and 90�C (red).
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structure we consider for the thermal map, i.e. the a-priori
information. Nowroz et al. [11] proposed a low-pass
approximation strategy to reduce the number of sensors
that are placed using an energy-based algorithm. This sensor
allocation algorithm has been improved by Reda et al. [12]
using a heuristic iterative approach to approximate an NP-
hard problem. The authors in [21] proposed a grid-based
uniform sensor placement followed by interpolation to
approximate the temperature. These works estimated
entire thermal maps, but the precision of the estimates is
limited by the sub- optimality of the chosen models for the
thermal distribution.

Other works have notable performance but are not
focused on the estimation of the entire thermal map.
Namely, the approach in [22] employs the correlation in
power distribution to estimate the expected value of temper-
ature at different locations of the chip using a dynamically
tuned Kalman filter. The problem of noisy measurements
has also been already considered; for example, a method
based on the correlation between the different sensor has
been presented in [23].

Recently, different researchers studied the estimation of
the entire thermal map based on the temperature correla-
tion between different locations [14], [15]. First, we have
proposed in [14] an approach where we approximate the
data with a low dimensional linear model based on such
correlations. Such method brought an intuitive interpreta-
tion of the sensor placement problem together with appeal-
ing performance. However, we have showed in [16] that
the sensor placement algorithms can be further improved.
Contemporaneously, Zhou et al. proposed a reconstruction
algorithm and an optimization of the sensor placement
based on information theory [15]. Their reconstruction
algorithm is substantially equivalent to the one proposed
in [14], without the low-dimensional approximation. Such
difference, as we will see in the numerical experiments, has

a significant impact on the stability w.r.t. the noise affecting
the measurements.

The methods based on external cameras [12], [24], [25],
[26], [27] are generally considered to be the most precise
ones. However, the increased precision comes at the cost of
practical considerations. In fact, such methods cannot be
used for run-time operations and are generally studied for
two different purposes: the calibration of the on-chip tem-
perature sensors [27] or the study of the thermal behavior of
prototypes at design phase [12], [24], [25], [26].

We underline the existence of hybrid methods, mixing
techniques taken by the different methods. For example,
the authors of [13], [22] propose to use the information
coming from the thermal sensors together with the perfor-
mance counters to estimate the thermal distribution. This
approach reduces the computational complexity of the
methods solely based on performance counters and
mitigates the effects of the noise corrupting the thermal
sensors. The fusion and the integration of the two data
sources to obtain the thermal distributions is usually
accomplished by a Kalman filter. Such implementations
have shown the ability to track precisely the temperature
profile at the cost of the computational complexity, which
is significantly higher than standard approaches.

3 A NEAR-OPTIMAL THERMAL MONITORING

FRAMEWORK

In this paper, we propose a framework for the problem of
thermal monitoring of a many-core SoC. We assume to
know the floorplan of the SoC and the time-varying power
consumption of the components when handling some
expected workload. The proposed framework is divided in
two parts: design-time and run-time algorithms. We give a
visual description of the framework in Fig. 2. At design-
time, we have three main phases:

Fig. 2. Flow of the proposed framework, where data structures and algorithms are depicted with white and gray blocks, respectively. Note that the
flow is divided in two parts: one for the design of the system and one for the run-time operations. The inputs to the systems are the floorplan of the
SoC and the expected workload, while the outputs are a training set F of thermal distributions ff, the linear modelCC obtained from the training set F ,

the sensor placement L and the estimated thermal distribution bff.
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� Thermal simulation, where we generate a set F of
thermal distributions representing the thermal
behavior of the considered SoC.

� Model learning, where we learn the structure of the
thermal distribution from the given set F . We call
the model CC and it has a fundamental role both for
the reconstruction of thermal distribution and the
optimization of the sensor placement.

� Sensor placement optimization, where we choose the
optimal sensor positions L according to the modelCC.

The thermal simulation part is not covered in this paper,
since it is possible to choose different algorithms and meth-
ods depending on the SoC architecture. In our case, we use
3D-ICE [28], a flexible fast compact transient thermal model
for the thermal simulations of SoCs. This thermal simulator
consider both the dynamic and static power consumptions.
The static power is modeled in the system as a additive per-
centage of the dynamic power, that is mostly consumed in
those units that are not active.

At run-time, the system is extremely simple: we collect
the measurements from the sensors and, knowing the linear
model and the sensors positions, we estimate the thermal
distribution using an optimal least square estimator. Note
that we propose the algorithm for the reconstruction but we
do not study the details of its implementation, that should
be adjusted according to each specific architecture.

Inwhat follows,we describe each part of the framework in
terms ofmathematical abstraction and algorithmic solutions.

3.1 Sensing and Recovery of Thermal Distributions

We start the description of the proposed framework from
the run-time phase. More precisely, we mathematically state
the concept of temperature sensing and the recovery of the
thermal distribution using the sensed data.

Consider a given SoC die and its thermal distribution
fðxxÞ at a given time, where xx indicates the multi-dimen-
sional spatial location. While fðxxÞ is a continuous spatial
function, we consider it to be discretized and vectorized as

a vector ff 2 RN , where N represents the desired resolution.
Note that the vectorization of the thermal distribution does
not induce any loss of information.

We denote the set indicating the L < N sensor positions

as L and we define the measured temperatures as ffL 2 RL.
Note that the subscript L indicates that we kept only the ele-
ments of ff indexed by the elements of L.

The problem of recovering a complex information, such
as the thermal distribution ff , from a limited number of
measurements ffL, must rely on some hidden structure
available in the thermal distribution. In fact, without a struc-
ture we would face an undetermined problem and it would
be impossible to uniquely recover the data ff from the meas-
urements ffL.

While there exists many strategies to model data struc-
tures, the thermal monitoring scenario constraints the choice
to models allowing a fast, efficient and reliable recon-
struction. In this work, we consider a linear subspace
model, such as the one in [14]. More precisely, given a

K-dimensional linear model defined by a matrixCC 2 RN�K ,
we model the temperature distributions as,

ff ¼ CCaa; (1)

where aa 2 RK is the K-dimensional parametrization of CC.
In other words, if the model CC is sufficiently precise for the
thermal distributions, then aa is a compact representation of
ff . Namely, knowing aa is equivalent to know the tempera-
ture distribution ff .

When we consider a set of measurements ffL we obtain
the following pruned linear system,

ffL ¼ CCLaa; (2)

where CCL 2 RL�K is the collection of L rows of CC indexed
by L. We note that if L � K and if rank ðCCLÞ ¼ K, we can
uniquely reconstruct ff from the measured data ffL as

bff ¼ CCCCLþðffL þ vvÞ; (3)

where bff is the estimated thermal distribution, vv represents

the noise in the measurements and CCLþ is the Moore-Pen-
rose pseudoinverse, defined for a generic matrix AA as

AAþ ¼ ðAA�AAÞ�1AA�;

where AA� is the conjugate-transpose of AA. Note that we are
using a least-square estimator that minimizes the large devi-
ations, such as hot-spots.

Algorithm 1. Thermal Distribution Estimator

Require: Linear model CC, Sensor locations L, thermal distribu-
tion mean m.

Ensure: Estimated thermal distribution bff .
1: Collect the sensor measurements ffL.
2: Estimate thermal distribution: bff ¼ CCCCLþðffL � mLÞ þ m.

The pseudo code of the thermal distribution estimator is
given in Algorithm 1, where we note the extreme simplicity
of the operations.

Such an estimator is optimal if the noise vv satisfies cer-
tain statistical conditions, such as being i.i.d. Gaussian. The
performance of such an estimator depends mostly on two
aspects: the quality of the linear model and the optimization
of the sensor locations L.

More precisely, the following two questions must be
answered to validate and strengthen the proposed
framework:

� How can we design a reliable and precise modelCC?
� How do we choose the optimal sensor placement L?

In what follows, we discuss and answer these two questions.

3.2 Training the Linear Model for Thermal
Distributions

Assume that we are given a representative set ofM possible

thermal maps F ¼ fffigMi¼1 and we would like to find a
model CC that can precisely represent such a dataset with
K-dimensional parameter aa. In theory, the set F should rep-
resent all the possible thermal distributions that the SoC
could produce during operations. While this assumption is
necessary in theory, we will show in the numerical experi-
ments that we can relax it significantly.

Given the model CC 2 RN�K and a thermal distribution ff ,

we obtain the approximated thermal distribution ef by the
following projection onto the model,
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eff ¼ CCCCþff: (4)

Then, we evaluate the quality of the model by measuring
the the approximation error �, that is defined as

� ¼ EFkff � effk2; (5)

where the subscript F indicates that the expectation is taken
over all the training set F .

In what follows, we propose to learn the model CC from
the principal component analysis (PCA) of the temperature
distributions. Note that we considered also other models,
such as the one based on non-negative matrix factorization,
but their performance were not sufficiently interesting to be
included in this paper.

3.2.1 Principal Component Analysis

Given F , the PCA generates the model CC formed by a set of
K orthonormal vectors, known as principal components. The
PCA is defined so that the first principal component corre-
sponds to the direction of the largest variance (i.e. represent-
ing as much of the variability in the data as possible), and
each successive component has the highest variance in the
subspace orthogonal to one spanned by the preceding com-
ponents. Therefore, the PCA finds an orthonormal basis
that spans the K dimensional subspace containing the larg-
est amount of information on F (in the MSE sense). In other
words, the PCA generates the optimal K-dimensional sub-
space that minimizes the approximation error of the given
training set F .

The solution of the PCA can be analytically computed as
the K eigenvectors corresponding to the K largest eigenval-
ues of the correlation matrix Sff ¼ E½ffff�	. Consequently,
most of the technical difficulties of PCA relate to the estima-
tion of Sff , in particular when the data is incomplete or
noisy.

PCA has been already proposed to model thermal distri-
butions and showed promising results [14]. In fact, if the
thermal distributions of F are well approximated by a K
dimensional subspace, then the PCA generates the optimal
modelCC.

In certain scenarios, characterized by a limited amount of
available resources, we may prefer other methods. For
example, certain architectures cannot afford the memory
load to store the matrix CC. Prior works [11], [9] proposed to
use models based on the discrete cosine transform (DCT).
Such models have a clear advantage in terms of memory
used, since they do not require to storeCC in the system.

Unfortunately, the DCT based models do not outperform
the PCA model as we do not design entirely CC. Moreover, it
is not possible to exploit all the traditional computational
advantages of DCT transforms. In fact, while we can com-
pute efficiently the DCT transform, once we select some
rows to represent the sensors measurements we destroy the
structure of the DCT transform and loose any computa-
tional advantage.

A comparison of the reconstruction performance
between PCA and DCT is proposed in Section 4 and it
shows that PCA is always the best choice unless there
exist stringent limits on the memory available for run-
time operations. Therefore, we assume to use the PCA for

the linear model training and we show its pseudo-code in
Algorithm 2.

Algorithm 2. Linear Model Training

Require: Training set F .
Ensure: Linear modelCC, thermal distribution mean m.
1: Compute the mean: m ¼ EF ½ff	.
2: Compute the covariance matrix: Sff ¼ EF½ffff�	.
3: Compute the firstK eigenvectors of Sff .
4: FormCC by using the eigenvectors as its columns.

3.3 Optimization of the Sensor Placement

As explained in Section 3.3, the reconstruction of thermal
distributions relates to precisely estimating bff from possibly
noisy measurements ffL.

In a typical scenario, we are given a number of sensors L
and a set P of P possible locations, that is a subset of the
area of the SoC. Moreover, assume that either we have or
can find an optimized linear model CC for the thermal distri-
butions F , as described in Section 3.2. Then, we would like
to find the sensor placement L that minimizes the recon-
struction error � of the thermal distributions,

� ¼ Ekff � bffk22: (6)

The reconstruction error depends mostly on the eigenval-
ues �i of the matrix CC�

LCCL, see Appendix 1 for a formal
proof. If the model CC is sufficiently precise, the reconstruc-
tion error can be approximated as

� ¼ Ekff � bffk22 � s2
XK
i¼1

1

�i
: (7)

Then, the sensor placement problem can be stated as
follows.

Problem 1 (Sensor placement problem). Given a linear model

CC 2 RN�K for a thermal distribution ff 2 RN and a number of
sensors L, find the sensor placement L (jLj ¼ L) that mini-

mizes the reconstruction error kff � bffk22. Namely, we aim at
solving the following optimization problem,

argmax
A

XK
i¼1

1

�i

s:t: jAj ¼ L

A 
 P ;

(8)

where �i are the eigenvalues of the operatorCCA�CCA.

Problem 1 can be recast as an instance of a classic combi-
natorial problem, the subset selection, that has been proven
to be NP-hard [29]. Therefore, unless P ¼ NP, there exists
no algorithm that finds the optimal solution to all the instan-
ces of Problem 1 in polynomial time with respect to the size
of the input. In fact, the only way to find the optimal solu-

tion is to test all the P
L

� �
possible placements, an unfeasible

approach for most of the scenarios.
Significant research efforts have been directed towards the

design of an efficient algorithm with polynomial complexity
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that can find a sensor placement minimizing the reconstruc-
tion error. Note that such problem is common to many disci-
plines, thermal management of SoCs just being one of them.
Such algorithms can be usually divided in three categories:
greedy algorithms, heuristics-based algorithms, and convex
relaxations. The reader can find a detailed review of sensor
placement algorithms for generic linear inverse problems in
[16]. For the specific case of thermal management, early
efforts focused on the localization of hotspots, which are
localized peaks of temperature. However, such techniques
are bound to fail as technology progresses, since the number
and the unpredictability of hotspots are increasing. Recently,
researchers refocused their efforts on studying methods to
estimate the entire thermal distribution from the few col-
lected measurements. Such methods are similar in terms of
scope and approach to the ones designed for generic linear
problems [16].

In this work, we propose to use FrameSense, a greedy
sensor placement algorithm based on the theoretical results
we described in [16]. Such an algorithm has significant
advantages over the state of the art: it has theoretical guar-
antees and among the lowest computational complexities.
The pseudo code of FrameSense is given in Algorithm 3.
Note that, it is the only algorithm in the literature that has
guaranteed performances in terms of MSE.

Algorithm 3. FrameSense (Sensor Placement Algorithm)

Require: Linear ModelCC, number of sensors L.
Ensure: Sensor locations L.
1: Initialize the set of locations, L ¼ ;.
2: Initialize the set of available locations, N ¼ f1; . . . ; Ng.
3: Find the first two rows to eliminate, S ¼ argmaxi;j2N j hci;

cjij2.
4: Update the available locations, L ¼ N n S.
5: while jSj < N � L do
6: Find the optimal row, i� ¼ argmini2LF S [ ið Þ.
7: Update the set of removed locations, S ¼ S [ i�.
8: Update the available locations, L ¼ L n i�.
9: end while

4 NUMERICAL EXPERIMENTS ON A 64 CORES SOC

4.1 The Experimental Setup

We test the proposed models with a real high-end many-
core architecture designed for signal processing and data-
intensive embedded applications that has been already
taped out. This architecture hosts 64 cores designed for
multiple program multiple data parallel computing. The cores
are grouped in four clusters with independent power and
clock domains and connected with a fully asynchronous
network-on-chip, see Fig. 1a. The chip is implemented with
STM 28 nm CMOS technology [30] and has a power density
of 55W=cm2.

The power traces of the SoC components are generated
by running benchmarks on an instruction-level architectural
simulator equipped with an accurate and detailed power
model. Such power traces are generated with a time resolu-
tion of 1 ms and are successively used to generate a set of
thermal distribution representing the temperature of the
SoC at run-time. As a thermal simulator, we chose 3D-ICE

[28], that is based on a transient and compact thermal model,
and we tuned it for the STM technology [7], [8].

To insure that the thermal distributions match correctly
the layout of the many-core architecture, the floorplan
that maps the power consumption of the hardware units
(cores, memories, interconnects, etc.) to the surface of the
silicon die has been extracted by processing the post syn-
thesis layout.

Moreover, to compute precise and realistic temperatures,
we initially implemented amodel of the chip on a commercial
computational fluid dynamics program, named ANSYS CFX
[31]. The purpose of this setup is to extract the correct values
for the boundary conditions of the heat dissipation in a steady
state worst case simulation. Once the heat transfer coeffi-
cients are obtained, the silicon die is modeled in 3D-ICE to
perform the transient thermal simulations. Note that the ther-
mal properties of materials as well as geometries of the pack-
age are taken from [32]. In this paper, we did not consider
intra and inter-die variations due to process variations [33],
[34]. Nonetheless, it is possible to extend our results in this
direction given the existence of an accuratemodel [34].

While we analyzed thermal distributions originated by
several workloads, in this paper we discuss the results
for three fundamental ones. Such workloads are designed
to represent exhaustively the thermal scenarios that can be
expected by such a 64-cores SoC. We did not consider the
standard SPEC benchmarks for two reasons:

� the considered architecture is not able to execute it
entirely,

� it is more interesting to use workloads representing
different phases, such as parallel or sequential com-
putation, to study the thermal behavior of a many-
core architecture.

The characteristics of the three datasets are summarized
in Table 1 and described more in details in what follows.

The first benchmark is a parallel 64 � 64 matrix-matrix
multiplication that distributes the load evenly among the 64
available processing units. The multiplication is repeated to
generate a load of 75 ms during which a uniform and con-
stant heat flux is produced as in the typical scenario of an
extremely parallel application.

The second benchmark is a two-phases sorting algorithm
run on a vector storing 16K float values. In the first phase,
individual cores are activated in sequence to sort their corre-
sponding sixteenth part of the input using the insertion sort
algorithm. Then, in the second phase, the cores run in paral-
lel to merge the ordered sub-vectors to get the final output,
as in the merge sort algorithm. The number of active cores in
this latter phase is halved at every iteration. The whole
application is repeated on different input vectors to gener-
ate a trace of 150 ms reproducing the scenario of a parallel
application with data dependencies.

The third dataset is generated by means of Poisson
processes (� ¼ 60, Tmax ¼ 6) bounded by the idle and
maximum power consumptions of cores, memories and
other hardware modules in the chip. Such a workload,
while being synthetic and randomly generated, has a sig-
nificant role since we show the possibility to use it to
train the model and optimize the sensor placement suc-
cessfully for the real data.
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The obtained thermal distributions are further processed
for Matlab. Given the symmetry of the architecture, all the
numerical simulations consider each cluster of 16 cores
independently. Note that such strategy does not imply any
loss of detail or precision.

4.2 Performance Comparison between the Different
Approximation Models

In this section, we compare the performance of the linear
model based on PCA proposed in Section 3.2 against
the model based on the DCT transform on the three
dataset representing the different workloads described in
Section 4.1. For the DCT model, we considered an opti-
mized version of the model proposed in [11], where the
components of the model are chosen by assuming a generic
low-pass profile without studying the distribution of the
specific architecture. More precisely, we select the compo-
nents of the DCT transform showing the average largest
coefficients over the thermal distributions belonging to the
chosen training set.

For each dataset, we measure the approximation error ��
given by each model for an increasing number of parame-
ters, K ¼ f4; 6; 8; 10; 12; 14; 16g. The results are given in
Fig. 3. We note two main facts:

� The performance achieved by the PCA is signifi-
cantly better (� 10 dB) than the one of the DCT
model. This is expected since the PCA generates an
optimized model, while the DCT-based model sim-
ply selectsK columns out of a given set.

� The performance gap between PCA and DCT
increases with K, meaning that PCA better exploits
the increase of degrees of freedom.

With this numerical experiment, we tested the capabil-
ity of the proposed techniques to capture a precise low-
dimensional linear model CC from a training set F . Note
that the approximation error is just one of the aspects that
defines the performance of a thermal monitoring system,
but it is often the critical one to have a precise thermal
reconstruction.

4.3 Learning Individual Models for Temperature
Distributions

When learning the model CC for a certain SoC under a
given workload, it is fundamental to understand how dif-
ficult it is to learn CC reliably when a part of the training
set is not available. In other words, we would like to eval-
uate the error caused by the use of incomplete training
set F .

Consider a training set F of M thermal maps and define
A 
 F a subset of bdMc randomly selected thermal distribu-
tions. Note that, the parameter d 2 ½0; 1	 represents the per-
centage of thermal maps that we use for training. Then, we
useA to train the linear model and we measure the approxi-
mation error on the entire dataset F . Note that when d ¼ 0 it
is impossible to learn the model and it is easier for increas-
ing values of d.

For each dataset F , we fix K and test the performance of
the PCA for a varying value of d. We measure the perfor-
mance reduction as the ratio rðdÞ between the approxima-
tion error obtained while learning with the reduced training
set, denoted as �ðdÞ, and the approximation error with an
entire training set, denoted as �. More precisely, we define
such ration as

rðdÞ ¼ 10 log10
�

�ðdÞ : (9)

TABLE 1
Characteristics of the Considered Datasets for the Training of the Proposed Method and the Evaluation of Its Performance

Name of the dataset Content is parallel? is realistic? Resolution # of thermal maps

Dataset 0 Matrix multiplication @@@@@@@@ @@@@@@@@ 20� 28 3,000
Dataset 1 Merge-sort ‘ @@@@@@@@ 20� 28 3,000
Dataset 2 Random (@@@@@@@@) ‘ 20� 28 3,000

Fig. 3. Approximation errors as a function of the number of parameters K of the linear model CC for each dataset. The shaded area bounds the 5th
and the 95th percentile of the approximation error of the estimated thermal distributions for each dataset. First, note that PCA is always the optimal
model and the significant performance gap compared to the DCT one. This is not surprising since the DCT model has fewer degrees of freedom.
Second, we underline that the difficulty of learning the model depends on the complexity of the dataset. For example, Dataset 1 describes the thermal
distributions for a sorting algorithm that cannot be implemented in a parallel fashion. Such thermal distributions are extremely heterogeneous and
harder to represents with a linear model, leading to a higher approximation error compared to the other two datasets. Third, the variation for Dataset
2 is significantly higher due to the random nature of the workload.

RANIERI ET AL.: NEAR-OPTIMAL THERMAL MONITORING FRAMEWORK FOR MANY-CORE SYSTEMS-ON-CHIP 3203



When rðdÞ is close to one, the performance of the model is
not significantly impacted by the lack of data; the lower the
value, the higher the sensitivity of the model to the lack of
training data.

The results are given in Fig. 4, where we note that for
each dataset, a subset of 1 percent of randomly selected
thermal distributions is enough to have rðdÞ close to one.
Therefore, having a non-exhaustive dataset is in general not
critical to successfully learn the PCA model. In the next sec-
tion, we further strengthen our result by showing that ran-
dom power traces on a realistic floorplan are sufficient to
learn a reliable modelC.

4.4 Learning with RandomWorkloads

While designing an SoC and its thermal monitoring system,
we may not yet know the workload. It would be then
impossible to optimize the model and the sensor placement.
Here, we show that actually we do not need the power-
traces. In particular, we can use the randomly generated
ones while maintaining reasonably good performance.

In an ideal scenario, we know exactly the thermal distri-
butions set F generated by the expected workload. Assume
that bdMc thermal distributions of F are not known, where
d is defined as in Section 4.3. We replace the missing thermal
distributions with the ones obtained using random power
traces, such as the ones generated for the first dataset. We
would like to measure the loss of precision of the learned
model due to the increasing use of random data. Again, we
use the cost function defined in (9) and the results are given
in Fig. 5. While a certain loss of precision can be observed, it
is extremely limited. Moreover, if we consider to train the
model exclusively with the thermal distributions generated
by random power-traces, that is d ! 0, then the reconstruc-
tion error is of the same order of magnitude, that is
rðdÞ < 10. Our result indicates the possibility to learn the
model and place the sensors without knowing the expected
workload, it suffices to use a random one.

4.5 Reconstruction Error Comparison between
Different Approximation Models

The approximation error � defines the quality of the
model but it is not the only merit figure. Once we place
the sensors, the reconstruction error � may significantly
vary due to the conditioning of the inverse problem (2).
Therefore, we compare the different models described in
Section 3.2 according to their reconstruction error for dif-
ferent amounts of sensors.

We test each model for K ¼ f4; 6; 8; . . . ; 16g and L ¼
f4; 6; 8; . . . ; 16g. Note that if K decreases, it is easier to esti-
mate the parameters but then the approximation error
increases. On the other hand, if K increases it is harder to
estimate the parameters aa but the model CC is more precise.
The choice of the optimal K is not trivial and we perform a
search over the parameter space. More precisely, for each L
and each model, we measure the minimum reconstruction
error obtained w.r.t. the varying model complexityK.

The results are given in Fig. 6, where we note that the
PCA is the best model in terms of reconstruction error.
Moreover, the advantage of the PCA w.r.t. the DCT in terms
of approximation error is maintained in terms of reconstruc-
tion error. Therefore, according to our experiments, the PCA
is the technique generating the model with the best approxi-
mation and reconstruction error.

4.6 Performance Comparison between Sensor
Placement Algorithms

As we have already mentioned, there are many parameters
impacting the performance of a thermal monitoring system,
such as the number of parameters, the chosen model and
the reconstruction technique. Here, we would like to com-
pare the quality of different sensor placement algorithms
while maintaining all other parameters fixed.

Therefore, we choose as a linear model the one optimized
using the PCA. Then, we optimize the sensor placement

Fig. 4. Quality of the linear model learned by the PCA, when only a ran-
dom part of the training set is available. We measure the quality using
the cost function (9). Note that if rðdÞ ¼ 1, there is no loss of precision
and if rðdÞ < 10 the reconstruction errors have the same order of magni-
tude w.r.t. the model learned by an exact and complete dataset. These
results indicate that the quality of the model is not severely impacted by
imprecise or incomplete training sets A.

Fig. 5. Quality of the linear model learned by PCA, when only a random
part of the training set is exact, and the other one is produced by random
power traces. We measure the quality using the cost function (9). Note
that if rðdÞ ¼ 1, there is no loss of precision and if rðdÞ < 10 the recon-
struction errors have the same order of magnitude w.r.t. the model
learned by an exact and complete dataset. Even in the worst case sce-
nario, the approximation error is of the same order of magnitude w.r.t.
the optimal one.
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using a few algorithms from the literature and measure the
reconstruction error. For each algorithm, the reconstruction
error is computed for different errors of L and K, and for
each Lwe pick the minimum value achieved w.r.t. the num-
ber of parametersK.

We tested three algorithms:

� FrameSense, based on our theoretical results [16],
� a method based on the coherence of the measure-

ments, that we proposed in [14] for the thermal mon-
itoring problem,

� the information-theoretic approach described in [15],
that maximizes the information collected by the
sensors,

� the energy-center allocation method proposed in
[11], that places the sensors where the temporal
energy of the temperature distribution is higher.

Note that these algorithms have been designed to optimize the

sensor placement for different scenarios and models. However,

the proposed experiment is interesting to compare these algo-

rithms when all other parameters are fixed.

The results for the three considered dataset are shown in
Fig. 7, where we note that FrameSense is significantly better
than the other algorithms for almost every L.

4.7 Performance Comparison between Thermal
Monitoring Techniques

In the previous experiment, we compared the perfor-
mance of the sensor placement algorithms when using
the linear model CC. As we previously mentioned, the
results are interesting and informative but they cannot
be considered as a global measure of the different sensor
placement algorithms because most of the algorithms are
designed to work jointly with a specific reconstruction
model, that may be significantly different from the con-
sidered linear one.

Therefore, we compare the following three thermal mon-
itoring techniques:

� our proposedmethod that is based on a linear model
optimized using the PCA and FrameSense as sensor
placement algorithm. This is an improved version
of the algorithm described in [14]; in particular,

FrameSense has been proved to be theoretically
near-optimal,

� the thermal monitoring approach based on spectral
methods described in [11], that uses a DCT-based
linear model and the energy-center algorithm previ-
ously described,

� the information-theoretic method proposed in [15],
that uses the correlation matrix Sff and an entropy-
based algorithm to recover the thermal distributions.

Each technique is composed by a sensor placement algorithm,

a model for the temperature distributions and a reconstruction

algorithm.

In this experiment, we vary the number of sensors S ¼
f4; 5; . . . ; 23; 24g and the number of parameters K ¼ f4;
5; . . . ; 23; 24g. We added some noise to the measured values
in the form of i.i.d. randomGaussian variables with variance

s2 ¼ 4 �C to simulate the presence of measurement errors.
Then, for each L we picked the minimum reconstruction
error achieved across all possible values ofK. The results are

Fig. 6. Reconstruction errors as a function of the number of sensors S of the linear model CC for each dataset using FrameSense as a sensor place-
ment algorithm. The shaded area bounds the 5th and the 95th percentile of the reconstruction error for the different models. First, note that the PCA
is always the optimal model and the significant performance gap compared to the DCT one. Such a gap is around or larger than 10 dB meaning that
the reconstruction error of the PCA model is at least one order of magnitude smaller than the one of the DCT model. Second, we underline how
homogeneous thermal distributions, such as the ones generated by the extremely parallel workload of Dataset 0, are easier to reconstruct.

Fig. 7. Comparison of the reconstruction error between different sensor
placement algorithms when C is optimized using the PCA. Note that the
number of parameters K is optimized by a local search independently
for each value of the number of sensors L. We underline how Frame-
Sense always generates a sensor placement that is either optimal or
close to the optimal value for every L.
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shown in Fig. 8 wherewe note that for a small number of sen-
sors, i.e. S < 10, the performance of our proposed method
and information-theoretic method are similar. However, the
gap between the two methods increases with K in favor of
FrameSense. Therefore, FrameSense with the PCA linear
model achieves the optimal performance. Note that the spec-
tral method is significantly worse than the other two meth-
ods, but this is not surprising given the use of a DCT basis,

that cannot be deeply optimized. A set of thermal maps
reconstructed by the different methods is given in Fig. 9,
where we considered S ¼ 24 sensors,K ¼ 8 parameters and

a noisewith variance s2 ¼ 4. Note how the proposedmethod
outperforms the others in terms of precision.

Another interesting aspect is the role of the low-
dimensional model CC as a regularization mitigating the
measurement noise. In fact, when using the PCA model and
FrameSense and if the number of sensors is sufficiently
high, the reconstructed thermal distributions have a lower
error level w.r.t. the noise in the measurements collected by
the sensors.

5 COMPARISON OF THE COMPUTATIONAL

COMPLEXITY

As a conclusive part of the numerical experiments, we
would like to analyze the computational complexity and the
memory cost of the different reconstruction methods. Note
that we do not analyze such costs for the sensor placement
algorithms because it is an off-line procedure and its costs
are generally not critical.

Fig. 8. Comparison of the reconstruction error between different thermal
monitoring techniques when noise is perturbing the measurements. We
considered an i.i.d. Gaussian noise with variance s2 ¼ 4

�
C, a reason-

able value according to the literature [23]. Note that our proposed
method based on the PCA model and FrameSense as a sensor place-
ment algorithm always achieves the lowest reconstruction error. For
example, if we consider S ¼ 16 sensors we reduce the reconstruction
error by 42 percent when compared to the spectral method. The
achieved error is even lower than the noise level, due to the regulariza-
tion induced by the low-dimensional subspaceCC.

Fig. 9. Example of reconstructed thermal distributions with the different techniques. We considered S ¼ 24 sensors, K ¼ 8 parameters and i.i.d
Gaussian noise with variance s2 ¼ 4. For each row, we picked the worst-case thermal distribution for each technique. The column represent the orig-
inal distribution, the noisy one and the three reconstruction with the different techniques, respectively. The colormap has been fixed and is the same
for each plot; dark blue is 35 �C, while red is 55 �C. First, the proposed method, that is shown in the third column, reconstructs a thermal distribution
that is always closer to the real one than the state of the art. Second, the spectral method tends to over-smooth the reconstructed thermal distribution
due to the low-pass assumption. Third, we note how the information-theoretic method is very sensitive to noise due to the lack of regularization. As a
concluding remark, the bordering effect that is often noticeable is due to the independent analysis of each cluster, as explained in Section 4.1.

TABLE 2
Computational Complexity and Memory Cost of the Thermal

Reconstruction Methods

Reconstruction method Memory cost Comp. complexity

FrameSense NL OðNLÞ
IT-based method [15] NL OðNLÞ
Spectral method1 [9] KL orNL OðNLÞ or OðN3Þ
1The two cost refer to two opposite reconstruction strategies. The first one
assumes that we store the estimation matrix given in (3); the second one
assumes that we store just he coefficients and compute the matrix CCCCLþ at
run-time.
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The analysis is summarized in Table 2. First, we note that
the only significant difference regards thememory cost of the
methods. In particular, the Spectral method does not need to
store an entire matrixCCL because the coefficients are usually
stored in the system. However, if we choose to not to store
the matrix but just the indexes of the sensor positions and
of the chosen components, we need to compute the matrix
multiplication (3) and the pseudo-inverse of CCL at run-time,
resulting in a significantly higher computational cost.

Therefore, the benefits of the DCT models are extremely
limited and we indicate the PCA model to be the optimal
one for the thermal monitoring applications.

These considerations are confirmed when we look at the
feasibility of a run-time implementation of the proposed
algorithms in the considered architecture. Let us consider
thermal maps with a resolution of 28� 20 measured by 16
sensors. Then, the execution of Algorithm 1 in the P2012
many-core platform only implies less than a 5 percent over-
head in the total execution time (in case of computing the
thermal profile in the range of 100 ms) just using one core in
P2012, thus a really negligible amount in the case of the
global execution in the P2012 platform containing four 16-
processor clusters [8].

As a conclusive remark, we underline that part of the
computational complexity of the thermal reconstruction can
be mitigated if we merge such operation within the work-
load optimization. We describe the details of such an idea in
Appendix B.

6 CONCLUSIONS

In this work, we proposed a framework to optimally recon-
struct thermal maps of many-core SoC using a small num-
ber of sensors. We defined an optimal approximation of
thermal maps to reduce the number of parameters to esti-
mate, without loosing precision. We reconstructed the ther-
mal maps using a least square approach and we exposed
the critical role of the sensor location for the quality of the
thermal monitoring. We concluded proposing a greedy sen-
sor allocation algorithm that minimizes the reconstruction
error by minimizing a proxy function, namely the frame
potential. The sensor placement algorithm improves the
coherence-based one we previously proposed [14] and is
inspired by the recent theoretical findings described in [16].

We compared the proposed method against two algo-
rithms among the state of the art, namely the information-
theoretic method [15] and the spectral method [11]. We
demonstrated the higher fidelity of our reconstruction using
a smaller number of sensors. We showed how the proposed
reconstruction algorithm is more stable w.r.t. the noise
introduced by the electronics or by sensor calibration inac-
curacies, thanks to the regularization imposed by the linear
modelCC.

Moreover, we investigated the challenges surrounding
the learning and the optimization of the linear model CC,
one of the main critical points of the framework. We showed
that a training set formed by an incomplete collection of
thermal distributions is enough to learn a precise model CC.
We remarked that even a training set generated by random
power traces leads to a reasonably good model. Note
that such discovery has a great potential, since it allows the

design of thermal monitoring systems without knowing
precisely the workload of the SoC.

APPENDIX

A. Reconstruction Error Characterization

Proposition 1. Consider a thermal map ff 2 RN , a given linear

model CC 2 RN�K and sensor placement L. Then, the recon-
structed thermal map is equal tobff ¼ CCCCLþðffL � ��LÞ þCCCCLþðvvL þ ��LÞ; (10)

where vvL is the measurement noise and ��L ¼ ffL � effL is the
approximation error due to the linear model CC. Assume that
vvL is modeled as a vector of i.i.d. Gaussian random variables

with variance s2 and that CCL has rank K, then we can bound
the reconstruction error as

kff � bffk22 � s2
XK
i¼1

1

�i
þ 1þ 1

�K

� �
k�k2; (11)

where �i is the ith eigenvalue of the operatorCCL�CCL.

Proof. First, we note that we have two independent compo-
nents in the error: the white noise generated during the
measurement of the temperature and the approximation
error due to the linear model CC. Given their indepen-
dence, we analyze them separately.

For the Gaussian part, we use a known result [16] to
obtain the first component of (11). For the approximation
error, we have to consider it twice. First, when we recon-
struct the thermal map, such an approximation error is
amplified by the projection onto spanðCCÞ. The worst case
scenario being the approximation error aligned with the
eigenvalue with �K , the smallest eigenvalue of ðCCL�CCLÞ.
Second, by assumption our reconstruction lies on the
subspace spanned by CC, therefore we must add ��, lead-

ing to the ð1þ 1
�K
Þ factor. tu

B. Parametric Control of the Temperature

The main possible drawback of a linear model based on the
PCA is the occupation in memory and its computational
cost. In fact, consider the N � L matrix QQ ¼ CCðCCLÞþ, then
we are supposed to store QQ and to compute a matrix-vector
multiplication with it to estimate the current thermal distri-
bution. Note that N can be quite a large number, being
the resolution of the estimated thermal distribution, and
the cost in terms of memory and computational power is
significant.

Such cost is unavoidable if our target is to actually esti-
mate the thermal distribution. However, in most of the
applications of thermal monitoring we aim at controlling of
the temperature. That is, we generally aim at solving a con-
trol problem similar to the following one,

max
w

P ðwwÞ
subject to ff � tmax

jDDffj � dmax;

where P ðwwÞ is a cost function representing the performance
of the system, ww is the optimized workload, ff is the
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temperature, tmax is the maximum allowed temperature and
jDDff j � dmax represents the maximum gradient allowed for
the thermal distribution. Note that there could be more
constraints and a different cost function, but such changes
would not invalidate the following observations.

Note that we can generalize the temperature constraints
as,

BBff � aa; (12)

where BB is a linear operator that generalizes the previous
constraints. Solving an optimization problem with the
constraint defined as (12) clearly requires the temperature
of the die, and therefore the computation and the storing of
the matrixCC.

However, the recovery of the coefficients aa is sufficient,
since we can rewrite the constraint as

CCaa � aa; (13)

where CC ¼ BBCC is a matrix containing both the low-dimen-
sional linear model and the constraint. If the solution of
the optimization problem is too expensive due to the size
of the constraints, we can reduce such cost by reducing their
dimensions at the cost of a reduced spatial resolution.
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