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Abstract— We present a data-driven method for designing
parallel compliance. Designing such compliance helps the sys-
tem to improve energy efficiency, mainly by reducing negative
work. The core idea is to design a controller first and then find
springs working in parallel with each actuator such that force-
displacement graph is lined up around displacement axis. By
doing so, we simply shape the natural dynamics for performing
the task efficiently. Maximum torque reduction for actuators
is a byproduct of this design method. The method can be
used in different cyclic robotic application, especially in legged
locomotion systems. In this paper, we design a spinal compliance
for a bounding quadruped robot in Webots. The results show
that the power consumption and the maximum torque are
reduced significantly.

I. INTRODUCTION

From control point of view, stability, energy efficiency, and
high velocity are the most desired characteristics and ultimate
goals in robotic systems. Robustness and adaptability are
penultimate; especially when robots deal with uncertainties
and work in unstructured environments. From design point of
view, compliance is one of the most important and easy to
use objects in our toolbox, and its potential role to attain
mentioned characteristics is indisputable. Here are some
instances: in a linear system, spring constant can relocate
poles of the system and subsequently affect stability. Shaping
the compliance to store energy and release it in a desired
manner can lead to energy efficiency [1]. In SLIP model,
average forward velocity can be controlled by leg compliance
[2]. However, optimal compliance to reach each of these
characteristics are either unknown or intractable to find.

Compliance is a passive element, thus it directly affects the
passive/natural dynamics. Consistency of natural dynamics
with the task can, at least, lead to energy efficiency ([3]
and [4]). Therefore, changing dynamics toward the desired
one is a reasonable methodology. We call this methodol-
ogy “dynamics shaping”. Dynamics shaping toward task-
consistency, like morphological evolution in animals, leads to
an intelligent design (see [5] and [6]). Simplicity in control
system is one of the most important properties in intelligent
design. Likewise, parallel compliance as a passive element
in a robotic system does not impose any control complexity.
Adaptability and robustness are byproducts of such simplic-
ity; see [7] and [8]. Studying the natural dynamics of robotic
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system is a vital step in this methodology; see [9] for natural
dynamics in walking.

Actuators along with external forces are energy consump-
tion sources in a robotic system. Using compliance for each
actuator in order to reduce the total energy consumption is a
systematic approach. However, configuration of compliance
in connection with actuator should be specified. Parallel and
series compliance are two major design configurations. More
complex configurations such as antagonistic mechanisms can
be imagined as well (see 2.5.1 in [10]). Having compliance
in series with actuator needs a mass in between. This extra
mass adds complexity to the system dynamics ([11]). This
problem does not exist in parallel compliance. Moreover,
additive property of compliance and actuator forces make
this configuration much easier to optimize. Assuming cyclic
tasks, here we focus on fully passive and fixed parallel
compliance to avoid complexities involved in using adaptable
compliant actuators for shaping dynamics [10].

Compliance is specified by its force-displacement profile.
Satisfying passivity, this profile can have any shape; linear
or nonlinear. Realization limitation may impose other con-
straints like monotony on compliance profile ([12]). In [1],
we show that nonlinearity in compliance profile gives us a
flexibility in energy store-release shape of compliance, and
subsequently improves energy efficiency of the system. In
this work, our design methodology, based on the natural
dynamics, results in a nonlinear parallel compliance.

In classical robotics, because of the tracking precision im-
portance, stiffness is preferred over compliance. On the other
hand, in legged locomotion, compliance is highly preferable.
In both bipedal and quadrupedal systems, leg compliance
can absorb ground impacts and help to use the energy for
stable locomotion ([13]). In bipedal robots, adding parallel
compliance to knee joints can result in energy efficiency
([14]). Recent researches show that compliance in spinal joint
of a quadruped can lead to better behavior ([1], [15], and
[16]). It is worth mentioning that in soft robotics, softness is
preferred over rigidity and compliance. Soft robotics, next
to rigid and compliant robotics, are considerable eras in
robotics.

Task is the center point in robotics system. Body is
designed based on the task, and control tries to fulfill the task.
In legged locomotion, performing a gait, such as walking
or running, can be considered as the task. Main property of
tasks, in legged locomotion, is periodicity. Repetitive motion
of joints simplify all the analysis to one cycle. We will use
this property to construct our method.
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In this research, we focus on parallel compliance design
that leads to improving energy efficiency. In [10], for variable
compliance system, a strategy is proposed to tune compliance
based on trajectory and torque as follows:

K(t) =
dT (t)

dθ(t)
(1)

This strategy cannot be applied to a non-variable compliance.
It is also speculated that “...A good stiffness seemed to be the
slope of the first order linear regression line of the torque-
angle curve.”. We will show that linear regression can be
a good starting point for design; nevertheless, it does not
result in optimum compliance. We will present a data-driven
optimal compliance profile design for cyclic tasks based on
force-displacement behavior.

We will use the proposed method for a simple mass-spring
system and a 2-DOF manipulator as two basic systems. And
finally, we try to design parallel compliance for a spinal joint
of a quadruped in Webots environment.

II. PROPOSED METHOD

In this section, we discuss how parallel compliance affects
control effort and how this can help us to design proper
compliance.

A. Control Effort and Parallel Compliance

Consider a joint in a manipulator performing a periodic
task. This task is defined by a set of trajectories for joints.
Independent-joint control is depicted in Fig. 1. In this figure,
G(s) is a model for robotic joint, mapping from force to
position. Controller and actuator are represented by C(s).
xd is the reference trajectory, and effects of other joints are
represented by D(t) which is assumed to be periodic as well.

Having a perfect controller, we can ensure perfect tracking
(x = xd). In the first case (Fig. 1.a) applied force (Fg1) to
plant (G(s)) is equal to actuator force and force applied by
other joints (Fc1 + D(t)). Now consider the second case,
where a parallel compliance is added to the joint (Fig. 1.b).
As long as it is a passive subsystem, K(x) can have any
profile for force-displacement. Again, with the assumption
of perfect tracking (x = xd). Applied force in second case
(Fg2) is:

Fg2(t) = Fc2(t) +D(t)− Fspr(x(t)) (2)

Perfect trajectory tracking implies that applied forces are
equal (Fg1 = Fg2). Threfore

Fc2(t) = Fc1(t) + Fspr(x(t)) (3)

Eq. 3 says that behavior of the system (Fc2) with a particular
parallel compliance (K(x)), can be simply calculated using
Fc1. Having Eq. 3 and a cost function, we are able to develop
several numerical methods to optimize K(x) for a given task.
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1

Fig. 1: A general independent-joint control system in two situations, (a)
without and (b) with parallel compliance. K(x) represents parallel stiffness.
Effects of other joints are represented by D(t) assuming to be periodic and
equal in both cases.

B. Absolute Work as a Cost Function

Springs are passive elements that can store and release
energy. Tuning their compliance, they can reduce actuator
effort and improve energy efficiency. However, this is really
important how to define the cost function based on the
actuator effort. First we consider actuator work. Given the
fact that most of robotic tasks are periodic, work, in one
cycle, can be defined as:

W =

∮
Fdx (4)

Considering force-displacement graph, this integral is equal
to enclosed area. Defining work in this way means that actu-
ators can absorb negative work (when Fdx is negative) and
reuse the absorbed energy later. Most of robotic actuators,
such as electrical motors, cannot recycle negative work, and
decelerating is costly as accelerating. Interestingly, parallel
compliance does not have any effect on this index. Therefore,
a more meaningful way to define the cost function in our
study is to punish negative work. Thus, we consider absolute
work as:

W
′

=

∮
|Fdx| (5)

We will use this index as a cost function throughout this
paper. The same cost function is used in [14] to optimize
the knee compliance of bipedal robot. Other cost functions,
such as torque square ([17]), are also used for compliance
design. Nevertheless, unlike them, minimization of our cost
function results in both negative and positive work reduction.

C. Numerical optimization

In order to setup a numerical optimization, we need to
parameterize spring profile. Before that, we should choose a
class for this profile. First class, with minimum parameters,
is the linear spring (spring constant and rest length as param-
eters). Increasing complexity, we encounter polynomials and
piecewise linear cases. Note that passivity condition should
be hold for all these cases.
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Fig. 2: a: Calculating work from force-displacement graph.
b: Effect of adding parallel compliance. Green-dotted graph shows the
negative profile of the proper compliance. Black-solid and black-dashed
graphs show force-displacement behavior before and after adding such
compliance.

Using Eq. 5 as the cost function, and spring parameters
as inputs for optimization, and taking advantage of Eq. 3,
without running the system, we can use myriad of numerical
and general optimization methods (such as genetic algorithm)
to find the fittest parallel compliance. However, by delving
into basic concept of parallel compliance and pondering
upon force-displacement graphs, we can do better than just
numerical optimization. We call it direct method.

D. Direct Method

Considering Fig. 2a as a typical example for force-
displacement graphs for system depicted in Fig. 1.a. Calcu-
lating work is possible by calculating and integrating partial
work on an element ∆x around x0. Work for this element is

∆W
′
1 = (|fuc1|+|fdc1|)|∆x| (6)

Using Eq. 3, we can calculate this partial work for system
with parallel compliance (Fig. 1.b) as follows:

∆W
′
2 = (|fuc1 + Fspr(x0)|+|fdc1 + Fspr(x0)|)|∆x| (7)

Our goal is to minimize this partial work using Fspr(x0). It
is easy to show that any choice that satisfies the following
inequalities is an answer to this partial optimization.

−fuc1 < Fspr(x0) < −fdc1 (8)

While there are infinite optimum points, a good choice can
be

Fspr(x0) = −f
u
c1 + fdc1

2
(9)

Having maximum distances from boundaries, and subse-
quently robustness is the first reason for this choice. Reduc-
ing maximum forces is the other. This flexibility in optimum
point can be used to satisfy other design constraints such as
passivity and monotony.

It is interesting to check what happens to force-
displacement graph after adding parallel compliance. Such
graphs, before and after adding parallel compliance are
depicted in Fig. 2b. It can be seen that graph is lined up
around horizontal axis (F = 0). Upper boundary of graph
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Fig. 3: Using proposed method to design a proper parallel compliance for
a mass-spring-damper system. In this System, m = 1kg, b = 0.1Nms−1.
For PID controller, kp = 50, ki = 1, and kd = 5.

(ẋ > 0) now has positive force and lower boundary of
graph (ẋ < 0) has negative force. This mean that force
and velocity have the same signs, thus negative work is
minimized.

III. SIMPLE EXAMPLE

Consider a simple mass-spring-damper system. The de-
fined task is to move the mass on a sinusoidal trajectory with
amplitude of 1m and frequency of 1rad/s. In Fig. 3, we see
the force-displacement graph when no parallel compliance
is present. Using the proposed method, it can be easily
concluded that a linear spring with 1N/m as constant (with
rest length of zero) is the optimal spring. Note that this result
is consistent with formula for natural frequency.

After adding parallel compliance, we see that force-
displacement graph is lined up around x-axis, and maximum
forces are reduced dramatically. Moreover, the area inside
the graphs indicate damper energy dissipation; the bigger
the damper constant, the larger the enclosed area.

It is interesting to note that, in this simple example,
natural dynamics of system has changed in a way to match
the task; we call this “dynamics shaping”. Other side of the
coin is to define the task in a way to exploit such natural
dynamics. In order to reach a new level of optimality,
these two approaches can be used to design body and task
simultaneously.

l1

l2

θ1

θ2

m1

m2

x

y

g

1

Fig. 4: 2-DOF planar manipulator (l1 = l2 = 1m, m1 = m2 = 1kg, and
g = 9.81).
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Fig. 5: Operational space control system. For gains, we have kp = 1000
and kv = 500. Applied torques are saturated to [−20N 20N ].
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Fig. 6: Effect of adding proper parallel compliance to torque-angle behavior
of joints. For the first and second, we designed the parallel compliance as
τs1 = 8θ31 + 5θ1 − 14 and τs2 = 3.2θ2 + 1.5.

IV. SIMULATIONS

In this section, we will use the proposed method to design
parallel compliance for a 2-DOF manipulator (in MAT-
LAB/Simulink [18]) and a quadruped robot with flexible
spine (in Webots [19]).

A. 2-DOF Planar Manipulator

In this section, we design compliance for a 2-DOF planar
manipulator; see Fig. 4. Drawing a circle in the operational
space using end-effector is the task. For controlling the end-
effector on the desired trajectory (operational space control),
we used inverse dynamics method and force-based control
(Jacobian transpose) as depicted in Fig. 5. For more detail on
operational control see [20] and [21]. In control schematic, J
is the Jacobian matrix, and M ,C, and G matrices are coming
from dynamical equations of motion as follow:

M(Θ)Θ̈ + C(Θ, Θ̇)Θ̇ +G(Θ) = τ (10)

Simulation results for the non-compliant case is illustrated
in Fig. 6. Energy consumption for this case can be found
in TABLE I. Using the proposed method for this robot,
springs’ profile are designed accordingly as shown in Fig. 6.
Power consumption for the compliant case can also be
found in TABLE I. Comparing rigid and compliant cases,
it can be seen that 75% improvement is achieved by adding
compliance. In Fig. 7, the end-effector’s trajectory for non-
compliant and compliant cases are illustrated against the
desired trajectory. In both cases the desired trajectory is
followed very well. However, a discrepancy in transition
behavior is visible. This is not expected since we use inverse
dynamics method. It means that we expect the same solution
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Fig. 7: Trajectory of the end-effector for non-compliant and compliant cases
vs. desired trajectory.
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Fig. 8: Performance improvement of compliant over non-compliant case for
different circle radius drawn by end-effector.

for the non-compliant and the compliant cases; both in
steady state and in transition phases. The answer for this
discrepancy lies in the motor torques saturation. Having a
saturation for applied torque allows us to observe some
of own system dynamics (natural dynamics). Here, better
dynamics of the compliant system leads to smaller motor
torques and a smoother transition behavior.

It is also interesting to check the robustness of designed
compliance to the circle radius drawn by the end-effector.
Parallel compliance is designed for radius of 0.5m. Effi-
ciency of the compliant robot over the non-compliant one
(in percentage) is plotted against circle radius in Fig. 8. The
parallel compliance designed for 0.5m can still drastically
improve performance of a wide range of radii. Nonetheless,
for better performance in each radius, parallel compliance
should be designed accordingly. It seems that parallel spring
plays two important roles: recycling negative work, and
compensating the gravity. Latter is more effective on this ro-
bustness. Furthermore, we repeated the procedure in absence
of gravity. Parallel compliance reduced power consumption
by 42%; compare this to 75% in presence of gravity.

TABLE I: Power consumption for rigid and compliant cases

Case Without Compliance With compliance
Work per cycle 39.4J 9.84J
Average power 6.27W 1.56W
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Fig. 9: Bobcat, a quadruped robot with flexible spine. Robot is actuated by
9 RC-servo motors; four hip joints, four knee joints, and spinal joint.

B. Quadruped with Flexible Spine

A quadruped robot with flexible spine is an interesting
case study. It is long known that spinal joint helps to increase
forward velocity of quadrupedal mammals such as cheetah
and horse ([22] and [23]). Moreover, role of compliance
in animal locomotion is investigated in [24]. Inspired by
biology, recent robots are built to benefit from this fact; see
MIT and Boston dynamics cheetah as paragons ([25] and
[26]). In [15], we present the Bobcat, a cat-sized quadruped
robot with flexible spine. Despite its contribution to forward
velocity, adding an additional actuator, the spinal joint, will
drastically increase the power consumption. Adding a paral-
lel compliance and shaping the natural dynamics toward the
task, which is considered to be the bounding gait, can result
in lower power consumption and better cost of transportation.
In this work, we check this hypothesis in simulation.
The goal is to design a proper parallel compliance for the

spinal joint. Ghostdog robot with flexible spine is shown in
Fig. 10. As in cheetah, Ghostodog’s spine can bend upward
and downward; enabling the robot to bound faster. However,
adding an extra joint, the spinal joint, increases power
consumption dramatically. Hopefully, by adding proper par-
allel compliance, cost of transportation can be improved
significantly. Front and hind hip along with spinal joint are
controlled on sinusoidal trajectories specified in TABLE II.
To control active joints on their desired trajectory, a PID
controller is used (kp = 100, ki = 5, and kd = 1).
Knee joints are passive and throughout this experiment gait
parameters are fixed.

Torque-angle graph for 20 seconds of bounding, when
no parallel compliance is assumed, is illustrated in Fig. 11.
Using the method, a parallel compliance is designed to

TABLE II: Bounding gait parameters for Ghostdog robot.

Front hip Hind hip Spine
Frequency [Hz] 2.2 2.2 2.2
Amplitude [rad] 0.7 0.7 0.3
Offset [rad] 0.1 −0.1 0.1
Phase lag [rad] 0 2.2 0.2

Fig. 10: Ghostdog robot with flexible spine in Webots simulation environ-
ment.

reduce spinal joint power consumption; see Fig. 11. Power
consumption for non-compliant and compliant cases are
shown in TABLE. III. Power consumption on the spinal joint
in compliant case (second row) is reduced by 27.3% over the
non-compliant case.

Legged robots are more sophisticated than manipula-
tors. The higher complexity is the result of highly non-
linear dynamics and leg-ground impacts. Therefore, unlike
manipulators, it is not straightforward in practice to use
feedback linearization to attain a simple dynamics to control.
Therefore, here we used just PID controllers at the Ghostdog
joints to track the desired trajectory. Because of not canceling
the nonlinearities and using a simple controller, adding the
parallel compliance changes the robot’s behavior (output).
Any changes in the output behavior reduces the fitness of the
parallel compliance. Nonetheless, we can overcome this issue
by iterating the design procedure. Stop condition, however,
is determined by the designer. In each iteration, new force-
angle data will be saved and new proper parallel compliance
will be designed accordingly. Third row of TABLE III shows
the results for another iteration. The applied force and the
trajectory of spine in the second row are used to redesign the
compliance. It can be seen that the power consumption of
spine is improved from 18.2Nm/s to 17.0. On the other
hand, velocity and total power consumption of the robot
are worsened; compare the second and the third rows in
TABLE III. In this case, however, cost of transportation
can be a better index for choosing compliance since it
codes overall behavior of the robot; see the last column
of TABLE III. Cost of transportation (COT ) is defined as
COT = P/mgv. where P and v are the robot’s average
consumed power and average velocity. Mass of the robot is
shown by m, and g is the gravitational constant. This index
is widely used in literature ([27]).

TABLE III: Performance of Ghostdog robot.

Spine Robot Average Robot
average power average power speed COT

Non-compliant 25.0Nm/s 90.1Nm/s 1.66m/s 0.64
Compliant (1st) 18.2Nm/s 83.3Nm/s 1.65m/s 0.59
Compliant (2nd) 17.0Nm/s 84.9Nm/s 1.62m/s 0.62
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Fig. 11: Torque-angle graph for quadruped spine and the proper parallel
compliance. Sampling Time is 4ms. Spring profile is τ = 40θ + 1.

V. CONCLUSIONS

In this work, we presented a method for designing parallel
compliance to reach lower power consumption. The designed
compliance is task dependent. Additive force of parallel com-
pliance and periodicity of motions helped us to construct this
methodology. In the proposed method, compliance profile
is directly extracted form force-displacement graph. In this
method, dynamics of the system are considered implicitly
since they are encoded in force-displacement graph. Compli-
ance profile can take any form as long as it satisfies passivity
conditions and realization limitation. We showed that for
a simple mass-spring-damper, spring constant is tuned to
match the natural frequency of the system with frequency
of the task. This results in reducing the consumed energy.
Another way to attain higher energy efficiency is natural
dynamics exploitation where we modify the task to match
robot’s natural dynamics. Natural dynamics modification
(shaping) and exploitation might be used alternatively.

We designed compliance for a 2-DOF manipulator re-
sulting in 75% improvement in energy consumption. It was
also shown that designed compliance is robust to reasonable
changes in the task. 2-DOF manipulator was an interesting
case due to its similarity to 2-segmented leg; consider
first/second joint as hip/knee.

Finally, we tried to design parallel compliance for the
spinal joint of a quadruped. Dynamics discontinuity due
to ground impacts and subsequently imperfection in the
tracking deteriorates the design performance. Nonetheless,
energy consumption of spine was reduced by 27.3%.

Simulation results showed the effectiveness of the pro-
posed method for designing parallel compliance. In future,
we will try to use this methodology in real world experi-
ments; designing spinal parallel compliance for Bobcat robot.
We are also interested in combination of natural dynamics
modification, as in this work, with natural dynamics ex-
ploitation, as in adaptive oscillators, in order to reach energy
efficiency. This approach will be useful for redundant robots
and cases where task is not fully defined.
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