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Abstract— We propose a semi-direct monocular visual odom-
etry algorithm that is precise, robust, and faster than current
state-of-the-art methods. The semi-direct approach eliminates
the need of costly feature extraction and robust matching
techniques for motion estimation. Our algorithm operates
directly on pixel intensities, which results in subpixel precision
at high frame-rates. A probabilistic mapping method that
explicitly models outlier measurements is used to estimate 3D
points, which results in fewer outliers and more reliable points.
Precise and high frame-rate motion estimation brings increased
robustness in scenes of little, repetitive, and high-frequency
texture. The algorithm is applied to micro-aerial-vehicle state-
estimation in GPS-denied environments and runs at 55 frames
per second on the onboard embedded computer and at more
than 300 frames per second on a consumer laptop. We call our
approach SVO (Semi-direct Visual Odometry) and release our
implementation as open-source software.

I. INTRODUCTION

Micro Aerial Vehicles (MAVs) will soon play a major role

in disaster management, industrial inspection and environ-

ment conservation. For such operations, navigating based

on GPS information only is not sufficient. Precise fully

autonomous operation requires MAVs to rely on alterna-

tive localization systems. For minimal weight and power-

consumption it was therefore proposed [1]–[5] to use only

a single downward-looking camera in combination with an

Inertial Measurement Unit. This setup allowed fully au-

tonomous way-point following in outdoor areas [1]–[3] and

collaboration between MAVs and ground robots [4], [5].

To our knowledge, all monocular Visual Odometry

(VO) systems for MAVs [1], [2], [6], [7] are feature-

based. In RGB-D and stereo-based SLAM systems how-

ever, direct methods [8]–[11]—based on photometric error

minimization—are becoming increasingly popular.

In this work, we propose a semi-direct VO that combines

the success-factors of feature-based methods (tracking many

features, parallel tracking and mapping, keyframe selection)

with the accurracy and speed of direct methods. High frame-

rate VO for MAVs promises increased robustness and faster

flight maneuvres.

An open-source implementation and videos of this work

are available at: http://rpg.ifi.uzh.ch/software

A. Taxonomy of Visual Motion Estimation Methods

Methods that simultaneously recover camera pose and

scene structure from video can be divided into two classes:

∗The authors are with the Robotics and Perception Group, University
of Zurich, Switzerland—http://rpg.ifi.uzh.ch. This research was
supported by the Swiss National Science Foundation through project number
200021-143607 (“Swarm of Flying Cameras”), the National Centre of
Competence in Research Robotics, and the CTI project number 14652.1.

a) Feature-Based Methods: The standard approach is

to extract a sparse set of salient image features (e.g. points,

lines) in each image; match them in successive frames using

invariant feature descriptors; robustly recover both camera

motion and structure using epipolar geometry; finally, refine

the pose and structure through reprojection error minimiza-

tion. The majority of VO algorithms [12] follows this proce-

dure, independent of the applied optimization framework. A

reason for the success of these methods is the availability of

robust feature detectors and descriptors that allow matching

between images even at large inter-frame movement. The

disadvantage of feature-based approaches is the reliance on

detection and matching thresholds, the neccessity for robust

estimation techniques to deal with wrong correspondences,

and the fact that most feature detectors are optimized for

speed rather than precision, such that drift in the motion

estimate must be compensated by averaging over many

feature-measurements.

b) Direct Methods: Direct methods [13] estimate struc-

ture and motion directly from intensity values in the image.

The local intensity gradient magnitude and direction is used

in the optimisation compared to feature-based methods that

consider only the distance to some feature-location. Direct

methods that exploit all the information in the image, even

from areas where gradients are small, have been shown to

outperform feature-based methods in terms of robustness in

scenes with little texture [14] or in the case of camera-

defocus and motion blur [15]. The computation of the

photometric error is more intensive than the reprojection

error, as it involves warping and integrating large image

regions. However, since direct methods operate directly on

the intensitiy values of the image, the time for feature

detection and invariant descriptor computation can be saved.

B. Related Work

Most monocular VO algorithms for MAVs [1], [2], [7] rely

on PTAM [16]. PTAM is a feature-based SLAM algorithm

that achieves robustness through tracking and mapping many

(hundreds) of features. Simultaneously, it runs in real-time by

parallelizing the motion estimation and mapping tasks and by

relying on efficient keyframe-based Bundle Adjustment (BA)

[17]. However, PTAM was designed for augmented reality

applications in small desktop scenes and multiple modifica-

tions (e.g., limiting the number of keyframes) were necessary

to allow operation in large-scale outdoor environments [2].

Early direct monocular SLAM methods tracked and

mapped few—sometimes manually selected—planar patches

[18]–[21]. While the first approaches [18], [19] used filtering

algorithms to estimate structure and motion, later methods
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[20]–[22] used nonlinear least squares optimization. All these

methods estimate the surface normals of the patches, which

allows tracking a patch over a wide range of viewpoints,

thus, greatly reducing drift in the estimation. The authors

of [19]–[21] reported real-time performance, however, only

with few selected planar regions and on small datasets. A VO

algorithm for omnidirectional cameras on cars was proposed

in [22]. In [8], the local planarity assumption was relaxed

and direct tracking with respect to arbitrary 3D structures

computed from stereo cameras was proposed. In [9]–[11],

the same approach was also applied to RGB-D sensors.

With DTAM [15], a novel direct method was introduced

that computes a dense depthmap for each keyframe through

minimisation of a global, spatially-regularised energy func-

tional. The camera pose is found through direct whole image

alignment using the depth-map. This approach is compu-

tationally very intensive and only possible through heavy

GPU parallelization. To reduce the computational demand,

the method described in [23], which was published during the

review process of this work, uses only pixels characterized

by strong gradient.

C. Contributions and Outline

The proposed Semi-Direct Visual Odometry (SVO) al-

gorithm uses feature-correspondence; however, feature-

correspondence is an implicit result of direct motion estima-

tion rather than of explicit feature extraction and matching.

Thus, feature extraction is only required when a keyframe

is selected to initialize new 3D points (see Figure 1). The

advantage is increased speed due to the lack of feature-

extraction at every frame and increased accuracy through

subpixel feature correspondence. In contrast to previous

direct methods, we use many (hundreds) of small patches

rather than few (tens) large planar patches [18]–[21]. Using

many small patches increases robustness and allows neglect-

ing the patch normals. The proposed sparse model-based

image alignment algorithm for motion estimation is related to

model-based dense image alignment [8]–[10], [24]. However,

we demonstrate that sparse information of depth is sufficient

to get a rough estimate of the motion and to find feature-

correspondences. As soon as feature correspondences and

an initial estimate of the camera pose are established, the

algorithm continues using only point-features; hence, the

name “semi-direct”. This switch allows us to rely on fast and

established frameworks for bundle adjustment (e.g., [25]).

A Bayesian filter that explicitly models outlier measure-

ments is used to estimate the depth at feature locations. A

3D point is only inserted in the map when the corresponding

depth-filter has converged, which requires multiple measure-

ments. The result is a map with few outliers and points that

can be tracked reliably.

The contributions of this paper are: (1) a novel semi-

direct VO pipeline that is faster and more accurate than

the current state-of-the-art for MAVs, (2) the integration

of a probabilistic mapping method that is robust to outlier

measurements.
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Fig. 1: Tracking and mapping pipeline

Section II provides an overview of the pipeline and Section

III, thereafter, introduces some required notation. Section IV

and V explain the proposed motion-estimation and mapping

algorithms. Section VII provides experimental results and

comparisons.

II. SYSTEM OVERVIEW

Figure 1 provides an overview of SVO. The algorithm

uses two parallel threads (as in [16]), one for estimating

the camera motion, and a second one for mapping as the

environment is being explored. This separation allows fast

and constant-time tracking in one thread, while the second

thread extends the map, decoupled from hard real-time

constraints.

The motion estimation thread implements the proposed

semi-direct approach to relative-pose estimation. The first

step is pose initialisation through sparse model-based image

alignment: the camera pose relative to the previous frame

is found through minimizing the photometric error between

pixels corresponding to the projected location of the same

3D points (see Figure 2). The 2D coordinates corresponding

to the reprojected points are refined in the next step through

alignment of the corresponding feature-patches (see Figure

3). Motion estimation concludes by refining the pose and

the structure through minimizing the reprojection error in-

troduced in the prevous feature-alignment step.

In the mapping thread, a probabilistic depth-filter is ini-

tialized for each 2D feature for which the corresponding

3D point is to be estimated. New depth-filters are initialised

whenever a new keyframe is selected in regions of the image

where few 3D-to-2D correspondences are found. The filters

are initialised with a large uncertainty in depth. At every

subsequent frame the depth estimate is updated in a Bayesian

fashion (see Figure 5). When a depth filter’s uncertainty

becomes small enough, a new 3D point is inserted in the

map and is immediately used for motion estimation.



III. NOTATION

Before the algorithm is detailed, we briefly define the

notation that is used throughout the paper.

The intensity image collected at timestep k is denoted with

Ik : Ω⊂R
2 7→R, where Ω is the image domain. Any 3D point

p = (x,y,z)⊤ ∈ S on the visible scene surface S ⊂ R
3 maps

to the image coordinates u = (u,v)⊤ ∈Ω through the camera

projection model π : R3 7→ R
2:

u = π(kp), (1)

where the prescript k denotes that the point coordinates are

expressed in the camera frame of reference k. The projection

π is determined by the intrinsic camera parameters which

are known from calibration. The 3D point corresponding to

an image coordinate u can be recovered, given the inverse

projection function π−1 and the depth du ∈R:

kp = π−1(u,du), (2)

where R⊆Ω is the domain for which the depth is known.

The camera position and orientation at timestep k is ex-

pressed with the rigid-body transformation Tk,w ∈ SE(3). It

allows us to map a 3D point from the world coordinate frame

to the camera frame of reference: kp=Tk,w · wp. The relative

transformation between two consecutive frames can be com-

puted with Tk,k−1 = Tk,w ·T
−1
k−1,w. During the optimization,

we need a minimal representation of the transformation

and, therefore, use the Lie algebra se(3) corresponding to

the tangent space of SE(3) at the identity. We denote the

algebra elements—also named twist coordinates—with ξ =
(ω,ν)T ∈ R

6, where ω is called the angular velocity and ν
the linear velocity. The twist coordinates ξ are mapped to

SE(3) by the exponential map [26]:

T(ξ ) = exp(ξ̂ ). (3)

IV. MOTION ESTIMATION

SVO computes an initial guess of the relative camera

motion and the feature correspondences using direct methods

and concludes with a feature-based nonlinear reprojection-

error refinement. Each step is detailed in the following

sections and illustrated in Figures 2 to 4.

A. Sparse Model-based Image Alignment

The maximum likelihood estimate of the rigid body trans-

formation Tk,k−1 between two consecutive camera poses

minimizes the negative log-likelihood of the intensity resid-

uals:

Tk,k−1 = argmin
T

∫∫

R̄

ρ
[

δ I
(

T,u
)

]

du. (4)

The intensity residual δ I is defined by the photometric

difference between pixels observing the same 3D point. It

can be computed by back-projecting a 2D point u from the

previous image Ik−1 and subsequently projecting it into the

current camera view:

δ I
(

T,u
)

= Ik

(

π
(

T ·π−1(u,du)
)

)

− Ik−1(u) ∀ u ∈ R̄, (5)
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Fig. 2: Changing the relative pose Tk,k−1 between the current and the
previous frame implicitly moves the position of the reprojected points in the
new image u′i. Sparse image alignment seeks to find Tk,k−1 that minimizes
the photometric difference between image patches corresponding to the same
3D point (blue squares). Note, in all figures, the parameters to optimize are
drawn in red and the optimization cost is highlighted in blue.
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Fig. 3: Due to inaccuracies in the 3D point and camera pose estimation,
the photometric error between corresponding patches (blue squares) in
the current frame and previous keyframes ri can further be minimised by
optimising the 2D position of each patch individually.
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Fig. 4: In the last motion estimation step, the camera pose and the structure
(3D points) are optimized to minimize the reprojection error that has been
established during the previous feature-alignment step.

where R̄ is the image region for which the depth du is known

at time k− 1 and for which the back-projected points are

visible in the current image domain:

R̄=
{

u
∣

∣ u ∈Rk−1 ∧ π
(

T ·π−1(u,du)
)

∈Ωk

}

. (6)

For the sake of simplicity, we assume in the following

that the intensity residuals are normally distributed with

unit variance. The negative log likelihood minimizer then

corresponds to the least squares problem: ρ[.]=̂ 1
2
‖ . ‖2. In

practice, the distribution has heavier tails due to occlusions

and thus, a robust cost function must be applied [10].

In contrast to previous works, where the depth is known

for large regions in the image [8]–[10], [24], we only know

the depth dui
at sparse feature locations ui. We denote small

patches of 4× 4 pixels around the feature point with the

vector I(ui). We seek to find the camera pose that minimizes



the photometric error of all patches (see Figure 2):

Tk,k−1 = arg min
Tk,k−1

1

2
∑
i∈R̄

‖ δ I(Tk,k−1,ui) ‖
2
. (7)

Since Equation (7) is nonlinear in Tk,k−1, we solve it in an

iterative Gauss-Newton procedure. Given an estimate of the

relative transformation T̂k,k−1, an incremental update T(ξ )
to the estimate can be parametrised with a twist ξ ∈ se(3).
We use the inverse compositional formulation [27] of the

intensity residual, which computes the update step T(ξ ) for

the reference image at time k−1:

δ I(ξ ,ui) = Ik

(

π
(

T̂k,k−1 ·pi

)

)

− Ik−1

(

π
(

T(ξ ) ·pi

)

)

, (8)

with pi = π−1(ui,dui
). The inverse of the update step is then

applied to the current estimate using Equation (3):

T̂k,k−1←− T̂k,k−1 ·T(ξ )
−1
. (9)

Note that we do not warp the patches for computing speed-

reasons. This assumption is valid in case of small frame-to-

frame motions and for small patch-sizes.

To find the optimal update step T(ξ ), we compute the

derivative of (7) and set it to zero:

∑
i∈R̄

∇δ I(ξ ,ui)
⊤ δ I(ξ ,ui) = 0. (10)

To solve this system, we linearize around the current state:

δ I(ξ ,ui)≈ δ I(0,ui)+∇δ I(0,ui) ·ξ (11)

The Jacobian Ji := ∇δ I(0,ui) has the dimension 16× 6

because of the 4× 4 patch-size and is computed with the

chain-rule:

∂δ I(ξ ,ui)

∂ξ
=

∂ Ik−1(a)

∂a

∣

∣

∣

a=ui

·
∂π(b)

∂b

∣

∣

∣

b=pi

·
∂T(ξ )

∂ξ

∣

∣

∣

ξ=0
·pi

By inserting (11) into (10) and by stacking the Jacobians in

a matrix J, we obtain the normal equations:

JT J ξ =−JT δ I(0), (12)

which can be solved for the update twist ξ . Note that by

using the inverse compositional approach, the Jacobian can

be precomputed as it remains constant over all iterations (the

reference patch Ik−1(ui) and the point pi do not change),

which results in a significant speedup [27].

B. Relaxation Through Feature Alignment

The last step aligned the camera with respect to the

previous frame. Through back-projection, the found relative

pose Tk,k−1 implicitly defines an initial guess for the feature

positions of all visible 3D points in the new image. Due to

inaccuracies in the 3D points’ positions and, thus, the camera

pose, this initial guess can be improved. To reduce the drift,

the camera pose should be aligned with respect to the map,

rather than to the previous frame.

All 3D points of the map that are visible from the

estimated camera pose are projected into the image, resulting

in an estimate of the corresponding 2D feature positions u′i
(see Figure 3). For each reprojected point, the keyframe r

that observes the point with the closest observation angle

is identified. The feature alignment step then optimizes all

2D feature-positions ui in the new image individually by

minimizing the photometric error of the patch in the current

image with respect to the reference patch in the keyframe r:

u′i = argmin
u′i

1

2
‖ Ik(u

′
i)−Ai · Ir(ui) ‖

2
, ∀ i. (13)

This alignment is solved using the inverse compositional

Lucas-Kanade algorithm [27]. Contrary to the previous step,

we apply an affine warping Ai to the reference patch, since

a larger patch size is used (8× 8 pixels) and the closest

keyframe is typically farther away than the previous image.

This step can be understood as a relaxation step that vio-

lates the epipolar constraints to achieve a higher correlation

between the feature-patches.

C. Pose and Structure Refinement

In the previous step, we have established feature corre-

spondence with subpixel accuracy at the cost of violating

the epipolar constraints. In particular, we have generated a

reprojection residual ||δui||= ||ui−π(Tk,w wpi)|| 6= 0, which

on average is around 0.3 pixels (see Figure 11). In this final

step, we again optimize the camera pose Tk,w to minimize

the reprojection residuals (see Figure 4):

Tk,w = argmin
Tk,w

1

2
∑

i

‖ ui−π(Tk,w wpi) ‖
2
. (14)

This is the well known problem of motion-only BA [17] and

can efficiently be solved using an iterative non-linear least

squares minimization algorithm such as Gauss Newton.

Subsequently, we optimize the position of the observed

3D points through reprojection error minimization (structure-

only BA). Finally, it is possible to apply local BA, in which

both the pose of all close keyframes as well as the observed

3D points are jointly optimized. The BA step is ommitted in

the fast parameter settings of the algorithm (Section VII).

D. Discussion

The first (Section IV-A) and the last (Section IV-C)

optimization of the algorithm seem to be redundant as both

optimize the 6 DoF pose of the camera. Indeed, one could

directly start with the second step and establish feature-

correspondence through Lucas-Kanade tracking [27] of all

feature-patches, followed by nonlinear pose refinement (Sec-

tion IV-C). While this would work, the processing time

would be higher. Tracking all features over large distances

(e.g., 30 pixels) requires a larger patch and a pyramidal im-

plementation. Furthermore, some features might be tracked

inaccurately, which would require outlier detection. In SVO

however, feature alignment is efficiently initialized by only

optimizing six parameters—the camera pose—in the sparse

image alignment step. The sparse image alignment step

satisfies implicitly the epipolar constraint and ensures that

there are no outliers.

One may also argue that the first step (sparse image align-

ment) would be sufficient to estimate the camera motion. In
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Fig. 5: Probabilistic depth estimate d̂i for feature i in the reference frame r.
The point at the true depth projects to similar image regions in both images
(blue squares). Thus, the depth estimate is updated with the triangulated
depth d̃k

i computed from the point u′i of highest correlation with the reference
patch. The point of highest correlation lies always on the epipolar line in
the new image.

fact, this is what recent algorithms developed for RGB-D

cameras do [10], however, by aligning the full depth-map

rather than sparse patches. We found empirically that using

the first step only results in significantly more drift compared

to using all three steps together. The improved accuracy is

due to the alignment of the new image with respect to the

keyframes and the map, whereas sparse image alignment

aligns the new frame only with respect to the previous frame.

V. MAPPING

Given an image and its pose {Ik,Tk,w}, the mapping

thread estimates the depth of 2D features for which the

corresponding 3D point is not yet known. The depth estimate

of a feature is modeled with a probability distribution.

Every subsequent observation {Ik,Tk,w} is used to update

the distribution in a Bayesian framework (see Figure 5) as

in [28]. When the variance of the distribution becomes small

enough, the depth-estimate is converted to a 3D point using

(2), the point is inserted in the map and immediately used

for motion estimation (see Figure 1). In the following we

report the basic results and our modifications to the original

implementation in [28].

Every depth-filter is associated to a reference keyframe r.

The filter is initialized with a high uncertainty in depth

and the mean is set to the average scene depth in the

reference frame. For every subsequent observation {Ik,Tk,w},
we search for a patch on the epipolar line in the new image Ik

that has the highest correlation with the reference patch. The

epipolar line can be computed from the relative pose between

the frames Tr,k and the optical ray that passes through ui.

The point of highest correlation u′i corresponds to the depth

d̃k
i that can be found by triangulation (see Figure 5).

The measurement d̃k
i is modeled with a Gaussian + Uni-

form mixture model distribution [28]: a good measurement

is normally distributed around the true depth di while an

outlier measurement arises from a uniform distribution in

the interval [dmin
i ,dmax

i ]:

p(d̃k
i |di,ρi) = ρiN

(

d̃k
i

∣

∣di,τ
2
i

)

+(1−ρi)U
(

d̃k
i

∣

∣dmin
i ,dmax

i

)

,

where ρi is the inlier probability and τ2
i the variance of a

good measurement that can be computed geometrically by

assuming a photometric disparity variance of one pixel in

the image plane [29].

(a) (b) (c)

Fig. 6: Very little motion is required by the MAV (seen from the side at
the top) for the uncertainty of the depth-filters (shown as mangenta lines)
to converge.

The recursive Bayesian update step for this model is

described in detail in [28]. In contrast to [28], we use inverse

depth coordinates to deal with large scene depths.

The proposed depth estimation is very efficient when only

a small range around the current depth estimate on the

epipolar line is searched; in our case the range corresponds

to twice the standard deviation of the current depth estimate.

Figure 6 demonstrates how little motion is required to signif-

icantly reduce the uncertainty in depth. The main advantage

of the proposed methods over the standard approach of

triangulating points from two views is that we observe far

fewer outliers as every filter undergoes many measurements

until convergence. Furthermore, erroneous measurements are

explicitly modeled, which allows the depth to converge even

in highly-similar environments. In [29] we demonstrate how

the same approach can be used for dense mapping.

VI. IMPLEMENTATION DETAILS

The algorithm is bootstrapped to obtain the pose of the

first two keyframes and the initial map. Like in [16], we

assume a locally planar scene and estimate a homography.

The inital map is triangulated from the first two views.

In order to cope with large motions, we apply the sparse

image alignment algorithm in a coarse-to-fine scheme. The

image is halfsampled to create an image pyramid of five

levels. The intensity residual is then optimized at the coarsest

level until convergence. Subsequently, the optimization is

initialized at the next finer level. To save processing time, we

stop after convergence on the third level, at which stage the

estimate is accurate enough to initialize feature alignment.

The algorithm keeps for efficiency reasons a fixed number

of keyframes in the map, which are used as reference for

feature-alignment and for structure refinement. A keyframe is

selected if the Euclidean distance of the new frame relative to

all keyframes exceeds 12% of the average scene depth. When

a new keyframe is inserted in the map, the keyframe farthest

apart from the current position of the camera is removed.

In the mapping thread, we divide the image in cells of fixed

size (e.g., 30× 30 pixels). A new depth-filter is initialized

at the FAST corner [30] with highest Shi-Tomasi score in

the cell unless there is already a 2D-to-3D correspondence

present. This results in evenly distributed features in the

image. The same grid is also used for reprojecting the map

before feature alignment. Note that we extract FAST corners

at every level of the image pyramid to find the best corners

independent of the scale.
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Fig. 7: Comparison against the ground-truth of SVO with the fast parameter
setting (see Table I) and of PTAM. Zooming-in reveals that the proposed
algorithm generates a smoother trajectory than PTAM.

VII. EXPERIMENTAL RESULTS

Experiments were performed on datasets recorded from

a downward-looking camera1 attached to a MAV and se-

quences from a handheld camera. The video was processed

on both a laptop2 and on an embedded platform3 that is

mounted on the MAV (see Figure 17). Note that at maximum

2 CPU cores are used for the algorithm. The experiments on

the consumer laptop were run with two different parameters’

settings, one optimised for speed and one for accuracy (Table

I). On the embedded platform only the fast parameters’

setting is used.

Fast Accurate

Max number of features per image 120 200
Max number of keyframes 10 50
Local Bundle Adjustment no yes

TABLE I: Two different parameter settings of SVO.

We compare the performance of SVO with the modified

PTAM algorithm of [2]. The reason we do not compare with

the original version of PTAM [16] is because it does not

handle large environments and is not robust enough in scenes

of high-frequency texture [2]. The version of [2] solves

these problems and constitutes to our knowledge the best

performing monocular SLAM algorithm for MAVs.

A. Accuracy

We evaluate the accuracy on a dataset that has also been

used in [2] and is illustrated in Figure 7. The ground-truth for

the trajectory originates from a motion capture system. The

trajectory is 84 meters long and the MAV flew on average

1.2 meters above the flat ground.

Figures 8 and 9 illustrate the position and attitude error

over time. In order to generate the plots, we aligned the

first 10 frames with the ground-truth using [31]. The results

of PTAM are in a similar range as reported in [2]. Since

the plots are highly dependent on the accuracy of alignment

of the first 10 frames, we also report the drift in meters

1Matrix Vision BlueFox, global shutter, 752×480 pixel resolution.
2Intel i7, 8 cores, 2.8 GHz
3Odroid-U2, ARM Cortex A-9, 4 cores, 1.6 GHz
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Fig. 8: Position drift of SVO with fast and accurate parameter setting and
comparison against PTAM.

0 50 100 150 200 250
−0.04
−0.02
0.00

0.02

0.04

0.06

0.08

0.10

ro
ll
-e
rr
or

[r
ad

] Accurate Fast PTAM

0 50 100 150 200 250
−0.10
−0.08
−0.06
−0.04
−0.02
0.00
0.02
0.04
0.06

p
it
ch
-e
rr
or

[r
ad

]

0 50 100 150 200 250
time [s]

−0.030
−0.025
−0.020
−0.015
−0.010
−0.005
0.000
0.005
0.010

ya
w
-e
rr
or

[r
ad

]

Fig. 9: Attitutde drifts of SVO with fast and accurate parameter setting and
comparison against PTAM.
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Fig. 10: Scale-drift over time of the trajectory shown in Figure 7
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Fig. 11: Average reprojection error over time of the trajectory shown in
Figure 7. The initial error is after sparse image alignment (Section IV-A)
and the final error after pose refinement (Section IV-C).
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Fig. 12: Number of tracked features over time for two different parameter
settings. For the accurate parameter setting, the number of features is limited
to 200 and for the fast setting to 120.



Pos-RMSE Pos-Median Rot-RMSE Rot-Median
[m/s] [m/s] [deg/s] [deg/s]

fast 0.0059 0.0047 0.4295 0.3686
accurate 0.0051 0.0038 0.4519 0.3858
PTAM 0.0164 0.0142 0.4585 0.3808

TABLE II: Relative pose and rotation error of the trajectory in Figure 7

per second in Table II as proposed and motivated in [32].

Overall, both versions of SVO are more accurate than PTAM.

We suspect the main reason for this result to originate from

the fact that the PTAM version of [2] does not extract

features on the pyramid level of highest resolution and

subpixel refinement is not performed for all features in

PTAM. Neglecting the highest resolution image inevitably

results in less accuracy which is clearly visible in the close-

up of Figure 7. In [2], the use of lower resolution images is

motivated by the fact that high-frequency self-similar texture

in the image results in too many outlier 3D points. SVO

efficiently copes with this problem by using the depth-filters

which results in very few outliers.

Since a camera is only an angle-sensor, it is impossible to

obtain the scale of the map through a Structure from Motion

pipeline. Hence, in the above evaluation we also align the

scale of the first 10 measurements with the ground-truth. The

proposed pipeline propagates the scale, however with some

drift that is shown in Figure 10. The scale drift is computed

by comparing the euclidean norm of the relative translation

against the ground-truth. The unknown scale and the scale

drift motivate the need for a camera-IMU state estimation

system for MAV control, as described in [33].

Figure 11 illustrates the average reprojection error. The

sparse image alignment step brings the frame very close

to the final pose, as the refinement step reduces the error

only marginally. The reprojection error is “generated” in

the feature-alignment step; hence, this plot also shows that

patches move only a fraction of a pixel during this step.

The difference in accuracy between the fast and accurate

parameter setting is not significant. Optimizing the pose

and the observed 3D points separately at every iteration

(fast parameter setting) is accurate enough for MAV motion

estimation.

B. Runtime Evaluation

Figures 13 and 14 show a break-up of the time required

to compute the camera motion on the specified laptop and

embedded platform respectively with the fast-parameter set-

ting. The laptop is capable to process the frames faster than

300 frames per second (fps) while the embedded platform

runs at 55 fps. The corresponding time for PTAM is 91 fps

and 27 fps respectively. The main difference is that SVO does

not require feature extraction during motion estimation which

constitutes the bulk of time in PTAM (7 ms on the laptop, 16

ms on the embedded computer). Additionally, PTAM tracks

between 160 and 220 features while in the fast parameter

setting, this value is limited to 120. The reason why we can

reliably track the camera with less features is the use of

depth-filters, which assures that the features being tracked

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5
Processing time [ms]

Total Motion Estimation: 3.04ms

Refinement: 0.16ms

Feature Alignment: 1.73ms

Sparse Image Alignment: 0.81ms

Pyramid Creation: 0.06ms

Fig. 13: Timing results on a laptop computer.
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Fig. 14: Timing results on the embedded platform.

Fig. 15: Successful tracking in scenes of high-frequency texture.

(a) SVO

outliers

(b) PTAM

Fig. 16: Sideview of a piecewise-planar map created by SVO and PTAM.
The proposed method has fewer outliers due to the depth-filter.

are reliable. Motion estimation for the accurate parameter

setting takes on average 6ms on the laptop. The increase

in time is mainly due to local BA, which is run at every

keyframe and takes 14ms. The time required by the mapping

thread to update all depth-filters with the new frame is highly

dependent on the number of filters. The number of filters

is high after a keyframe is selected and reduces quickly as

filters converge. On average, the mapping thread is faster

than the motion estimation thread, thus it is not a limiting

factor.

C. Robustness

The speed and accuracy of SVO is partially due to the

depth-filter, which produces only a minimal number of

outlier 3D points. Also the robustness is due to the depth-



Processor

Camera

Fig. 17: “Nano+” by KMel Robotics, customized with embedded processor
and downward-looking camera. SVO runs at 55 frames per second on the
platform and is used for stabilization and control.

filter: precise, high frame-rate tracking allows the filter to

converge even in scenes of repetitive and high-frequency

texture (e.g., asphalt, grass), as it is best demonstrated in

the video accompanying this paper. Screenshots of the video

are shown in Figure 15. Figure 16 shows a comparison of

the map generated with PTAM and SVO in the same scene.

While PTAM generates outlier 3D points, by contrast SVO

has almost no outliers thanks to the use of the depth-filter.

VIII. CONCLUSION

In this paper, we proposed the semi-direct VO pipeline

“SVO” that is precise and faster than the current state-of-the-

art. The gain in speed is due to the fact that feature-extraction

and matching is not required for motion estimation. Instead,

a direct method is used, which is based directly on the image

intensities. The algorithm is particularly useful for state-

estimation onboard MAVs as it runs at more than 50 frames

per second on current embedded computers. High frame-

rate motion estimation, combined with an outlier resistant

probabilistic mapping method, provides increased robustness

in scenes of little, repetitive, and high frequency-texture.
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