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Abstract— We propose a new method for the localization of a
Micro Aerial Vehicle (MAV) with respect to a ground robot. We
solve the problem of registering the 3D maps computed by the
robots using different sensors: a dense 3D reconstruction from
the MAV monocular camera is aligned with the map computed
from the depth sensor on the ground robot. Once aligned, the
dense reconstruction from the MAV is used to augment the
map computed by the ground robot, by extending it with the
information conveyed by the aerial views. The overall approach
is novel, as it builds on recent developments in live dense recon-
struction from moving cameras to address the problem of air-
ground localization. The core of our contribution is constituted
by a novel algorithm integrating dense reconstructions from
monocular views, Monte Carlo localization, and an iterative
pose refinement. In spite of the radically different vantage
points from which the maps are acquired, the proposed method
achieves high accuracy whereas appearance-based, state-of-the-
art approaches fail. Experimental validation in indoor and
outdoor scenarios reported an accuracy in position estimation
of 0.08 meters and real time performance. This demonstrates
that our new approach effectively overcomes the limitations
imposed by the difference in sensors and vantage points that
negatively affect previous techniques relying on matching visual
features.

I. INTRODUCTION

A heterogeneous robotic system consistent of both, ground

and aerial robots of different sizes, shapes and with differ-

ent sense-act capabilities could greatly assist professional

rescuers in a search and rescue scenario. However, it is

difficult for the same human operator to concurrently monitor

and navigate multiple robots while coordinating with other

operators. Therefore, the necessary technologies must be

developed to allow heterogeneous robots to autonomously

localize and move with respect to each other and thereby

ease the task of the operator and provide the best possible

situation awareness.

In this work we consider a single MAV that acts as a

“flying external eye” for a ground robot. The MAV operates

in close range to the ground robot and offers the ability

to hover and move in complex three dimensional space

and observe the scene from a vantage point inaccessible

to the ground robot (see Figure 1). The use of very small

and lightweight MAVs reduces safety concerns, costs, and

increases the agility of the platform. However, active ranging

devices such as laser rangefinders or RGBD sensors cannot
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Fig. 1: The flying robot operating in close range to the ground robot provides
a different vantage point for human tele-operators in a search-and-rescue
scenario. We address the problem of autonomously localizing the aerial
robot with respect to the ground-robot based on the structure of the scene.

currently be used due to payload and power consumption

restrictions. The ground robot, on the other hand, can carry

more payload such as active depth sensors, processors and

may be equipped with a manipulator arm. The usefulness of

such a heterogeneous robot team in a disaster scenario has

recently been demonstrated in [1].

In this paper, we address the problem of localizing the

MAV with respect to the ground robot in close range. This

capability will allow the robots to execute collaborative tasks

and to present the teleoperator with a ground map which is

augmented with aerial views from the MAV.

Due to payload restrictions, the MAV is equipped with

a single downward-looking camera. On the other hand, the

ground robot has a range sensor (either a laser or an RGBD

camera) and further carries the main processing unit. Our

experimental platforms are depicted in Figure 16.

Given the available sensory capabilities, there are two

possible strategies to mutually localize the robots: (i) by

leveraging relative observations between the MAV and the

ground robot [2], (ii) or by matching and aligning maps

computed by the MAV and the ground robot. The second

option offers the advantage that the robots do not need to

remain in the field of view of each other. However, the main

challenge in the second strategy is the drastically different

view points of the two robots (see Figure 2).

In this paper we propose a novel solution to this problem

by leveraging the 3D surface computed from different view

points and heterogeneous sensors. Through the alignment of

both maps, the relative pose of the robots can be recovered.

Computing a dense 3D surface from monocular cameras

in real-time has only recently become feasible with the

use of GPGPU computing [3], [4]. Therefore, we propose

to distribute the processing between the robots. The MAV
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Fig. 2: Outdoor (left) and indoor (right) scenes observed from aerial and
ground point of views. Robot poses are expressed by the arrows: yellow for
the ground robot and green for the MAV.

Fig. 3: Image feature matching results of the indoor scene using ASIFT [6].
Matches were found on planar textured surfaces. No matches were found
in the outdoor scene depicted on the left of Figure 2.

computes its relative motion onboard using the downward

looking camera [5] and, additionally, streams the video to

the ground robot where a dense 3D model is computed and

aligned with the ground robot’s 3D map. Thereby, the relative

pose of the robots is recovered.

We propose a solution for global alignment of the aerial

and ground maps based on Monte Carlo Localization on the

height-maps. Subsequently, the estimated transformation is

refined through an Iterative Closest Point (ICP) algorithm. In

experimental results we show that in a cluttered environment

with sufficient 3D structure, we can compute the relative

position with a precision of 0.078 m. Furthermore, we

illustrate how the ground-based map can be augmented with

the aerial view.

The outline of the paper is the following. In Section II we

compare our approach to related works in the literature, while

Section III provides an overview of the proposed method.

In Section IV we present the SLAM methods operating on

the MAV and the ground robot, while in Section V the

dense reconstruction method is detailed. In Section VI, our

Monte Carlo approach to global localization is described

and in Section VII we present the iterative pose refinement.

Section VIII reports about the experimental validation and

in Section IX the conclusion is drawn.

II. RELATED WORK

Very little research has addressed close-range relative

localization of aerial and ground-robots. In most related

works, the aerial robot flies outdoors higher than 20 meters,

and can be localized using GPS [7]–[9]. To the best of our

knowledge, the work in [1] is the first to demonstrate how

a MAV could assist a ground robot in close collaboration in

mapping a damaged building indoors. In their configuration,

the ground-robot is equipped with a laser rangefinder and

the flying robot with both a laser rangefinder and a RGBD

sensor. The computed maps are aligned under the assumption

that the ground robot does not move during the flight of

the MAV. It is not mentioned whether the global map

computation is executed onboard or in an offline stage and no

processing times are reported. In our work, we investigate the

relative localization, which is a precondition to the mapping

task. Furthermore, we do not require that the ground-robot

remains still while the flying robot is mapping and provide

continuous relative position information in real-time.

Photorealistic modeling of urban scenes addresses a reg-

istration problem related to ours [10], [11]. Similar to our

work, the one described in [12] addresses the computation of

a 3D point-cloud from aerial video using dense motion stereo

and the alignment with a ground-based map. Wendel [13]

proposes to align a 3D reconstruction created by a MAV with

a Digital Surface Model (DSM), where an initial alignment

is provided by GPS information and a refined alignment is

computed by evaluating the correlation between a height map

computed from the reconstruction and the DSM. The time for

alignment takes about 10 minutes, depending on the number

of points and resolution. Our work advances the state of the

art in two important aspects: (i) dense monocular maps are

effectively used for MAV localisation and (ii) the integrated

system can operate in real time, which is a desirable feature

in most robotic perception tasks.

Registration methods based on image appearance require

finding matches between the visual features in the aerial

and ground views. Recently, advancements have been made

in the field of wide-baseline image matching [6], [14],

[15]. Many state-of-the-art approaches are grounded on

the method described in [6] and aim at providing affine

invariance by computing feature descriptors after a set of

pre-defined warping transformations have been applied to

the images to be matched. These methods implicitly rely

on a piecewise planarity assumption, which is satisfied in

many man made scenarios but does not hold in general. An

example is provided in Figure 2. The aerial and ground views

are shown from our validation dataset in case of indoor and

outdoor scenarios. Figure 3 displays the results for a feature

matching algorithm based on the work in [6] on the images

corresponding to the ground and aerial views. Noticeably,

the method managed to find few correct matchings on the

planar box surfaces. The same method, applied to the views

in the left column of Figure 2, returned no correct matches.

The required processing time (about 6 seconds for feature

extraction and 27 for matching) constitutes another important

limitation to the application of robust approaches for visual

feature matching to the problem of real time localisation.

To overcome these limitations, instead of relying on visual

feature matching between the views from the MAV and the
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Fig. 4: Illustration of the localization and mapping pipeline. Each building
block is described in detail in Sections IV to VII.

ground robot, our new approach exploits the 3D structure,

which is computed by the MAV through monocular dense

reconstruction and by the ground robot making use of its

range sensor. This approach is novel and constitutes the

actual contribution of this paper.

III. SYSTEM OVERVIEW

Figure 4 provides an overview of the proposed system. The

MAV is equipped with a single downward-looking camera

and an IMU. A monocular SLAM algorithm runs onboard

the MAV to estimate its egomotion. The absolute scale

is recovered by a Kalman Filter [16]. The MAV streams

the video to the ground robot together with relative-pose

estimates for every frame.

On the ground robot, a set of subsequent frames received

from the MAV are used to compute a dense map through

leveraging all information in the monocular images—not

only salient corner points. Real-time performance is achieved

through a highly parallelized GPU implementation. The

ground-robot is further equipped with a Kinect sensor to

create a second—ground-based—3D map by means of an

RGBD SLAM system.

For the alignment of the aerial and ground maps, we

propose two solutions: If an a priori guess is available for the

relative pose of the two robots, their maps are aligned using

ICP. Otherwise, we propose a Monte Carlo Localization

(MCL) based method to globally localize the MAV with

respect to the ground robot. The MCL method relies on

correlating the height-maps computed from the two vantage

points.

The proposed pipeline requires an overlap between the

aerial and ground maps and a 3D structure in the scene. In

a completely flat environment, the algorithm does not con-

verge. Hence, the proposed method is a strong complement to

image feature based methods which fail to match in cluttered

environments at such radically diffent viewpoints.

IV. SLAM ON THE MAV AND THE GROUND ROBOT

The SLAM system on the flying robot implements the

keyframe-based monocular Visual Odometry (VO) pipeline

by Kneip et. al [17]. It is boosted in terms of robustness and

Fig. 5: Air-ground localization and map augmentation.The trajectories of the
aerial and ground robots are displayed in blue and green respectively. The
map computed by the ground robot (displayed in red) is augmented with
the dense reconstruction from the aerial views (displayed in greyscale).

efficiency by including incremental relative rotation priors

obtained from the onboard IMU.

On the ground robot, an RGBD sensor is used to create

the map. Our RGBD SLAM system is a modification of the

monocular SLAM algorithm described above. Notably, we

are able to speed-up triangulation using the depth provided

by the sensor as a prior. Additionally, the depth measure-

ments are used to initialize map-points in case of pure

rotation of the camera.

Both SLAM systems could also be replaced with state-of-

the-art algorithms such as [18]–[21].

V. DENSE MONOCULAR RECONSTRUCTION

In this section we describe a method to estimate the dense

point cloud from the images collected by the MAV as it

flies over an area of interest. Timestamped views and camera

poses are streamed to the ground robot, where the com-

putation can take advantage of the multi-cores architecture

offered by the onboard GPU, an Nvidia Quadro K2000M in

our experiments.

The solution we propose to estimate a dense point cloud

from monocular views with known camera motion derives

from Multi View Stereo methods [22] and is motivated by

the following facts: i) assuming constant brightness, frames

taken from close viewpoints allow high quality matching; ii)

a large baseline among views enables a more reliable depth

estimation and outlier rejection. Therefore, similarly to [3],

we propose to compute depth maps from a large number of

highly overlapping views, yielding a coarse, but very fast

estimation. Filtering and regularization have been proposed

to improve the accuracy of the depth maps computed from

aggregation of the photometric error in stereo [3], [4]. Being

computed from close views, these depth maps may still con-

tain wrong estimations. For this reason, we chose to integrate

several depth maps, which are computed as the MAV flies

over the area of interest. This is due to the fact that—

differently from those previous works mainly concerned with

the recovery of visually appealing reconstructions—we are

interested in accurate maps, useful for localization. Thus,



Fig. 6: Point clouds computed by monocular dense reconstruction for one indoor evaluation dataset. Depth maps are also shown in insets. In (a) the
reference view is shown. Figures (b)-(d) correspond to different depth computations, fused into the depth map of Figure (e) through the algorithm presented
in Section V. Figures (f)-(i) show several results from the fusion algorithm computed as the MAV flies over the experimental scenario. The color code
refers to the distance d from the camera acquiring the reference view.

we aim at rejecting wrong estimations that would negatively

affect the alignment performance. Further, the use of the

recovered structure for the air-ground localization imposes

severe constraints in computing time (cfr. Table I for average

computing times). We chose to rely on the range-image

fusion algorithm introduced in [23]. The algorithm is robust

against wrong estimations; it is reported to be accurate

and it is highly parallelizable, which makes it suitable for

computation on a modern graphics card.

The depth maps are converted into distance fields fi :
Ω → [−1, 1] defined on a voxel space Ω ⊂ R

3 specifying

the volume of interest, and compressed into a histogram

representation to reduce the memory footprint. At every

voxel v, the values of fi encodes the distance to the surface

according to the i-th depth map and is approximated by

evenly-spaced bin centers cj .

Let n(v, j) denote the histogram count of bin j at voxel v.

The depth map fusion consists in estimating the distance field

φ given the hypotheses represented by fi and is computed

by the following minimization of an energy functional:

min
φ

∫

Ω

{

|∇φ|+ λ
∑

j

n(v, j)|φ(v)− cj |

}

dv. (1)

The data term
∑

j n(v, j)|φ(v) − cj | approximates the dis-

tance of the solution from the distance fields, while the

regularization term |∇φ| penalizes the surface area, removing

errors due to outliers and approximating the surface in case

of missing depth data. λ is a tunable parameter weighting

the data term. The minimization in Equation 1 follows an

iterative approach based on gradient descent.

The integrated surface is implicitly defined by the zero

level set of the φ function and a point cloud is then computed

through ray casting (see, for example, [24] Listing 3).

Figure 6 depicts the process of fusing 3 dense structure

estimations by the MAV (subfigures (b)-(d)) into one reg-

ularized structure (subfigure (e)). The algorithm effectively

rejects erroneous estimations that are not supported by the

majority of the depth maps. Different examples of dense

reconstructions from the MAV views are reported in the

second row of Figure 6. Once computed, the structure is

made available for localization, as explained in the following

sections.

VI. GLOBAL LOCALIZATION

In this section, we describe a method to globally localize

the MAV with respect to the ground robot based on 3D

point-clouds computed from the two perspectives. Since the

MAV operates in close range to the ground robot, we assume

the global search region to be approximately 3m around the

ground robot position.

The standard method to align two image-based maps is

to find corresponding features (points, lines, edges, planes)

either in the 2D images or the 3D pointcloud [25], [26].

However, we want to make no assumption on any regularity

in the scene such as piecewise planarity. Additionally, both

the aerial and ground based map can contain missing data

and may not be fully overlapping.

We solve the problem through searching for the highest

correlation between height-maps computed from the two

pointclouds. In order to deal with local minima of the

alignment, the procedure is extended with a Monte Carlo

Localization method that verifies many hypotheses over the

course of multiple pointclouds computed by the MAV. This

extension is described thereafter.

A. Height-Map Alignment

In our setting, both the MAV and ground robot are

equipped with an IMU. This provides the gravity vector,

which can be used to project their maps to the ground plane

(see Figure 7). This results in the height maps that we denote

with Ha and Hg respectively. The height maps are defined

on discrete 2D grids Ωa and Ωg with a resolution of 50 cells

per meter. If multiple points project on to the same grid

cell, the highest point is selected. Furthermore, we apply a

morphological dilation operator on the height-maps of 3×3

cells in order to fill holes. Holes denote cells of the height-

map with missing height data.

The best alignment of the two height maps in the prede-

fined search region is found by searching for the relative pose
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Fig. 7: The height maps of an aerial and a ground-based map are illustrated
in Figures (a) and (b) respectively. The red dotted square in (b) shows the
best alignment of the two height-maps. The costmap in (c) illustrates the
ZMSSD cost for every possible relative position u of the two maps. A
global minima is located at the dark spot.

u with the minimum Zero Mean Sum of Squared Differences

(ZMSSD) of the two maps:

C(u) = η
∑

x∈Ω̄(u)

{

[Ha(x)− Ĥa]− [Hg(x+ u)− Ĥg(u)]
}2

, (2)

where Ĥg(u) and Ĥa are the mean of the height maps in

the overlapping area at the relative position u and η =
1/(2|Ω̄(u)|) is a normalization factor. Furthermore, |Ω̄(u)| =
|Ωa(u)∩Ωg| denotes the number of cells on which a height is

defined for both, the translated aerial height-map Ha(u) and

the ground-based height-map Hg . The final relative position

ũ corresponds to the minimum ZMSSD:

ũ = argmin
u

C(u) (3)

The advantage of the ZMSSD cost is that the local

normalization makes the alignment independent of the z
location, whereas the final alignment in the vertical z axis can

easily be recovered with ∆z = Ĥg(ũ) − Ĥa. However, the

ZMSSD cost does not equalize the average relative heights

between the two height-maps which is in contrast to the

correlation cost which is applied in [13].

The search is done over u = [x, y] ∈ R
2 since in the

experiments the magnetic north direction could be recovered

from the IMU. Depending on the environment, this mea-

surement can be less reliable which would require to add

the heading direction to u. This extension is straightforward

but has the drawback that the computation time increases

exponentially and there can be more local minima in the cost

which can however be recovered with the filter described in

the next section.

Furthermore, the search space is limited by a minimum

overlap between the two height-maps |Ω̄(u)| > θoverlap. We

set the threshold to 50% of the area of the aerial height-map

|Ωa|. This is the reason for the curvy boarder in the costmap

illustrated in Figure 7c.

B. Monte Carlo-based Alignment

Due to self-similarities in the environment, the costmap

computed in the previous section may contain multiple local

minima. We propose to apply Monte Carlo Localization

with mixture proposal distribution [27, p. 262]. This allows

us to track multiple hypotheses over the course of several

height-maps computed from the MAV in order to identify the
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Fig. 8: Evolution of the particles in the Monte-Carlo–based global align-
ment. The costmap in the background is computed with Eq. (2) for all
possible relative positions of three aerial maps. Dark values mean low
ZMSSD. The white ellipse shows the covariance of the 200 green particles.
The true position is marked with a black cross.

true relative position. We represent the belief of the relative

position with a set U of M particles:

U = u
[1],u[2], . . . ,u[M ]. (4)

For the first height-map from the MAV the cost for each

relative position is computed within the search region which

results in the costmap of Figure 7c. M particles are then

sampled from the costmap with probability

p(u) ∼ exp

{

−
C(u)

σ

}

, (5)

where σ depends on the resolution of the costmap and has

been set to 0.08 in our experiments. This results in an initial

distribution of the particles that spreads them among the

local minima. When a new height-map is available from the

MAV, the particles are propagated with the following motion

model:

u
[n]
t = u

[n]
t−1 +∆u+ ǫ, where ǫ ∼ N (0,Σ). (6)

The relative motion ∆u is provided by the SLAM on the

MAV (Section IV).

Using the cost from Equation (2), the propagated particles

are weighted and resampled. Hence, the full cost map of

the search region is only required for the first aerial map to

guarantee a good initial distribution of the particles. In each

subsequent step, the cost is only computed at the M particle

locations.

In the experiments we found that the particles converge to

the true location after maximally three to four iterations (see

Figure 11).

VII. POSE REFINEMENT

Given an initial guess of the relative pose between the

MAV and the ground robot, the relative pose can be re-

fined through alignment of the respective pointclouds using

ICP [28]. In order to assure convergence to the global

minima, ICP needs to be initialized close to the solution;

hence, the global alignment in the section above. Further-

more, the structure of the two pointclouds must be such that

their relative movement is constrained (e.g., through both

horizontal and vertical structures).
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Fig. 9: Translation error of the Monocular SLAM on the MAV. The
trajectory is 23.0 meters long and the RMS error is 1.2 cm. There is no
visible drift because the trajectory contains many loops.
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Fig. 10: Translation error of the RGBD SLAM on the ground robot. The
trajectory is 7.7 meters and the RMS error is 3.8 cm.

We use the modular ICP algorithm libpointmatcher [21]

that is provided as open-source software. To find the nearest-

neighbour points, we apply a kd-tree which is provided by

libpointmatcher. As an error metric, we use the point-to-plane

distance.

In the experimental-results section, we demonstrate that

the pointclouds computed from the dense reconstruction can

be aligned with the ground-based map using ICP with an

accuracy of 8 cm. Furthermore, we show that the alignment

result from the previous section can be refined through ICP.

VIII. EXPERIMENTAL RESULTS

We validated the proposed system on four datasets, three

were collected indoors and one outdoors. The datasets consist

of video and IMU recordings from both, the aerial and

ground robot’s point of view. The indoor environments

were created out of cardboard boxes to resemble a disaster

scenario (see Figure 2). Additionally, the ground-truth robot

trajectories were recorded indoors with a motion-capture

system. A video of the experimental results is available at

http://rpg.ifi.uzh.ch.

A. SLAM Results

Figure 9 and 10 illustrate exemplary the translation error

of the SLAM algorithms on the MAV and the RGBD ground

robot respectively. Notice that the trajectory of the MAV does

not drift. This is because the MAV flies several loops contrary

to the ground robot. The Root-Mean-Square (RMS) error of

the Monocular SLAM trajectory is 1.2 cm and for the ground

robot 3.8 cm. Average timings of the algorithm are provided

in Table I. The RGBD SLAM algorithm is slightly slower

because on average more map-points were triangulated and

tracked.

B. Dense Reconstruction

The map computed by the monocular SLAM of Section IV

provides sparse information on the scene observed by the

MAV and is conveniently used to determine the extent of

the current volume of interest. The set of consecutive views
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Fig. 11: Distribution of the translation error over 12 iterations of the Monte-
Carlo–based localization illustrated with boxplots. The central mark on the
box is the median, the edges of the box are the 25th and 75th percentiles.
Results are from 41 experiments.
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Fig. 12: Distribution of the standard deviation of the particles (see ellipses in
Figure 8) over 12 iterations of the Monte-Carlo–based localization illustrated
with boxplots. Results are from 41 experiments.

that are aggregated to form a depth map is simply charac-

terised by the distance from the reference camera pose, and

controlled by a tuneable threshold parameter set to 12 cm in

our experiments. Similarly, a threshold on the distance from

which the first depth map has been acquired characterises the

set of depth maps to be fused. This distance was set to 70

cm for the experimental validation. Despite the basic view

selection strategy controlling depth map creation and fusion,

the proposed approach proved highly effective in computing

dense and accurate data for the air-ground registration. The

λ parameter was set to 0.26, while 8 iterations proved a good

tradeoff between speed and accuracy for the minimisation in

Equation 1.

C. Global Localization

The Monte-Carlo–based localization algorithm was tested

on 41 sequences of 12 subsequent depth-maps from three

different indoor environments. In Figure 11 the distribution

of the localization error is reported for all 12 iterations. In

65% of the experiments, the distance between the mean of

the particle distribution at the first iteration and the true

position is less than 0.5 meters. Hence, the global minima

of the costmap could attract most of the particles. After 4

iterations, the particle means of 89% of the 41 experiments

have moved closer than 0.25m to the ground truth. At this

range, the ICP algorithm can further refine the pose. Note

that the accuracy of the alignment could be further improved

by increasing the resolution of the height-maps at the cost of

higher computation times. The processing time (Table I) for
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Fig. 13: Distribution of the translation error before and after ICP pose refine-
ment. The data originates from 67 experiments in 3 different environments.
The median error is 0.076 m.

 

 

Error after ICP
Initial Error

N
u
m
b
er

o
f
M
ea
su
re
m
en
ts

Orientation Error [deg]
0 2 4 6 8 10 12

0

2

4

6

8

Fig. 14: Distribution of the angular error before and after ICP pose
refinement. The provided angle derives from the angle-axis representation of
the orientation error. The data originates from 67 experiments. The median
error is 3.0 deg.

the first frame is approximately 9 seconds for the 4×5 meters

search area on a single CPU. Furthermore, for every subse-

quent iteration, the ZMSSD cost must only be computed at

the particle locations. We selected M = 200 particles which

resulted in a processing time of approximately 38 ms on the

CPU. Note that the processing time depends on the size of

the depth-map, the search radius, and the number of particles.

Furthermore, it was not necessary to inject new particles after

the initial sampling. In order to detect whether the particles

have converged, the covariance of the particle distribution

can be considered, which is illustrated in Figure 12. One

can observe, that with the convergence of the error also the

variance decreases.

D. Pose Refinement

The pose refinement was tested with 67 depth-maps com-

puted from the dense reconstruction in the three indoor

environments. The translation and orientation errors before

and after the alignement are reported in Figure 13 and 14.

Since the monocular SLAM algorithm of the MAV is too

accurate to illustrate the performance of the ICP algorithm,

we artificially added Gaussian noise with σang = 3deg to

the orientation, and σtrans = 0.2m to the position. The

experiments show that the dense map computed by the

monocular reconstruction is accurate and dense enough to

succeed in the alignment with an accuracy of 8 cm and of

3 deg. There are two reasons why the error is not smaller:

the ground map by the RGBD SLAM drifts (see Figure 10)

or the error source could come from inaccuracies in the

dense reconstruction. The ICP algorithm requires on average

0.5 seconds to align the maps. Note that all depth-maps

contained 3D structures, which is a requirement for the ICP

algorithm to converge to the global minima, as discussed

Fig. 15: Results from the outdoor experiment. Figure (a) shows the aligned
maps from the viewpoint of the ground robot (yellow triangle) and Figure
(b) the same two maps from the aerial viewpoint (green triangle). The red
pointcloud is computed from the ground robot and the dense greyscale
pointcloud originates from the reconstruction of the aerial views. Refer to
Figure 2 for two images from the dataset.

Runtime [ms]

Egomotion Estimation:

Monocular SLAM: Avg. time per frame 14
RGB-D SLAM: Avg. time per frame 15

Dense Reconstruction:

Add frame to depth map
(200 depth hypotheses) 5
Compute distance field from depth map
(376× 240× 150 voxels) 21
Depth map fusion (8 iterations) 800
Ray casting 15

Global Localization:

Full costmap computation (first depth-map) 9143
ZMSSD for M = 200 particles: 38

Pose Refinement:

ICP alignment 462

TABLE I: Average runtimes of the algorithms in the pipeline. The timings
were measured on an 8 core i7 laptop, 2.4 GHz. The used GPU is a Nvidia
Quadro K2000M with 384 CUDA cores.

above. As soon as a map is available from the MAV, pose

refinement is run on a dedicated thread. Given an acquisition

rate of 30 frames per second, a new augmented map is

available approximately every 300 frames.

Remarkably, the complete pipeline is capable of real-time

performance on multi-core machines, and the timing for the

complete execution is reported in Table I.

E. Outdoor Experiment

Figure 15 illustrates a result of the outdoor experiment.

The same environment is also depicted in Figure 2. The

dense reconstruction algorithm produced qualitatively highly

accurate reconstructions due to the naturally very textured

surface. The proposed pipeline succeeded in finding the

correct alignment of the two maps. The accuracy cannot

be reported as no groundtruth is available. Note that in this

scenario state-of-the-art algorithms for wide-baseline visual

feature maching normally fail as reported in Section II.



Fig. 16: The NanoQuad MAV, equipped with a down-looking camera and
an onboard computer, is hovering above the Kuka YouBot ground robot,
equipped with an RGBD camera.

IX. CONCLUSION

In this paper, we introduced a method to register the 3D

structure computed by a MAV with that computed by a

ground robot operating in close range. The MAV is equipped

with a monocular camera while the ground robot relies on a

range sensor. Building on the recent development of real-

time, monocular dense mapping techniques, the proposed

method allows the integration of structures computed from

radically different viewpoints, i.e. from the aerial and the

ground robot. Therefore, this paper contributes a novel ap-

proach to the fusion of visual maps with the ones computed

from different depth-sensor modalities. Thereby, we prove

how dense structure computation from monocular moving

cameras is highly valuable in robot perception tasks. We

demonstrated the effectiveness of the presented approach in

augmenting the three-dimensional structure from the ground

robot with an aerial dense map, in two different scenarios:

three indoor, experimental setups, and one outdoor, where

state-of-the-art alignment methods based on appearance nor-

mally fail.
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