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Abstract— Airborne wind energy systems are built to exploit
the stronger and more consistent wind prevalent at high
altitude. This requires a reliable controller design that keeps
the airborne system flying while respecting all operational
and safety constraints. A frequent design for such a system
includes a flying airfoil tethered to a ground station. Here, we
demonstrate an on-line data based method that optimizes the
average towing force of such a system in the presence of altitude
constraints and varying wind. We utilize Gaussian Processes to
learn the mapping from the input to the objective, constraint
and state dynamic functions of the system. We then formulate
a chance - constrained optimization problem that takes into
consideration uncertainty in the learned functions and finds
feasible directions for improvement. Simulation studies show
that we can find near optimal set points for the controller
without the use of significant assumptions on model dynamics
while respecting the unknown constraint function. The results
demonstrate an improved performance over our previous work
which was restricted to steady state measurements.

I. INTRODUCTION

The power available in a wind stream is proportional to
the cube of its speed [1]. This is a major reason behind the
continuous increase in the height of modern wind turbines.
However, further scaling the support mast incurs consid-
erable costs, can arouse environmental opposition and has
certain structural limitations. To circumvent this obstacle
a number of commercial and research efforts have been
focusing in Airborne Wind Energy (AWE) systems that
operate without the need for structural support [2], [3].

We demonstrate here a data based optimization algorithm
on an AWE design actively used by a commercial company
(Skysails) in large marine vessels to increase their fuel
savings [4]. A tethered flexible airfoil is launched from
a mounting station at the front of the ship towards the
sky where it performs figure eight loops using a custom
made low level controller. In favourable wind conditions
the aerodynamic force generated upon the foil is transferred
through the tether to the boat and pulls forward, reducing the
effort of its onboard motors. However, such a controller can
neither guarantee an optimal trajectory nor that the airfoil
will keep flying above an altitude safety threshold.

We have previously addressed this problem in the frame-
work of steady state constrained optimization and have
demonstrated that a data based approach can be a potential
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solution [5]. We were however examining stable wind con-
ditions and using training measurements only after reaching
steady state (for the system here this implies at least 10
loops with the same inputs applied and fairly constant wind).
We now present a more flexible solution where transient
measurements (after each loop) are utilised. The general
optimization setting is

max
x,u

P (x, u, w)

s.t. ẋ = f(x, u, w),
0 ≤ G(x, u, w)

(1)

where P : Rnx ×Rnu ×Rnw → R is the objective function,
f : Rnx×Rnu×Rnw → Rnx describes the system dynamics
and G : Rnx × Rnu × Rnw → R is the constraint function.
The variables x ∈ Rnx describe the states of the system
and can be indirectly manipulated through the inputs u
which might be bounded by additional constraints in a set
X ⊆ Rnu . The variables w represent the exogenous signals
(here the wind) on which we have no control. The functions
can potentially be nonlinear and non-convex, unknown, and
are being actively learned through measurements using the
framework of Gaussian Processes (GP) [6]. GPs can be
used for regression with relatively few assumptions on the
structure of the unknown function and have been extensively
used in unconstrained optimization [7], [8].

The challenge arises in the presence of constraints that
need to be learned as well. A first approach to this problem
but with known constraints was given in [9] while [10]
assumes that the outputs of the objective and constraint
functions are dependent. The authors in [11] use an aug-
mented Lagrangian approach to transform the problem to
an unconstrained one. We follow here an approach where
we also learn the system dynamics and make predictions
about its future states which incur additional reachability type
constraints. We use simulation results to demonstrate that the
AWE system can be both optimized and remain adaptive to
wind variation while respecting the altitude safety thresholds.

Section II describes the AWE system, section III gives an
overview to GPs for optimization, section IV introduces the
algorithm proposed, section V presents simulation results,
while section VI provides a conclusion and discusses future
perspectives.

II. SYSTEM DESCRIPTION

Skysails has developed a commercial system to assist the
propulsion of large maritime vessels. The system consists of
a flying foil, a control pod applying deflections to the flexible
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Fig. 1: Low level tracking control for changing set points.
The yaw (ψ - kite orientation) controller tracks the level
reference signal which changes value when a crossing occurs.
The positional states (θ and φ) are affected by ψ.

surface and a mounting unit that transfers the tension from
the tether to the boat.

A. System Dynamics

The skysails model neglects the mass in the dynamics (a
reasonable assumption for large counteracting aerodynamic
forces) and substitutes the sagging tether by a rigid rod (ac-
ceptable while the tether remains under substantial tension).
The equations of motion describing the system are

ϑ̇ =
wE

L
cosϑ cosψ − w

L
sinϑ (2)

ϕ̇ = −wE
L

cosϑ

sinϑ
sinψ (3)

ψ̇ = wEg cos (ϑ)δ + ϕ̇ cosϑ. (4)

The spherical coordinates (ϑ, ϕ) and orientation (ψ) of the
airfoil represent the states of the system. The exogenous
signal is the wind speed (w). Note that the system coordinates
are defined in such a way that one of the horizontal axes
remains always aligned to the wind direction. The main sys-
tem parameters are the airfoil glide ratio (E), the deflection
coefficient (g) and the tether length (L). Finally, δ is the
deflection applied to the kite affecting its orientation.

The system exhibits nonlinear behaviour even with con-
siderable simplification of the aerodynamics and it is dif-
ficult to find closed form expressions for the functions of
interest. Numerical optimization results using model based
approaches, while useful, would be challenged in realistic
situations where the model mismatch and wind conditions
are unknown.

B. Skysails Control

A simple but robust low level controller developed by
Skysails is used for tracking “figure eight” loops. The
controller uses a cascaded control scheme where a given
set-point on the kite orientation (yaw angle, ψ) is tracked by
applying deflections to the kite, see Figure 2. This set-point
changes during every single loop at predefined switching
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Fig. 2: Example of kite trajectory (blue) and switching
surfaces (red) for the Skysails controller in the spherical
coordinate system. Arrows denote the direction of crossing
for which a switching surface is active.

positions. The set point values at each corresponding switch
represent the high level decision variables employed by our
optimization algorithms.

When the kite crosses a particular section the yaw set
point is changed to a predefined level such that the kite flies
a stable loop. The kite is considered to be crossing the ith

switching surface when:

ϕ− ϕi = 0 & kϕ̇ > 0; k = 1 or− 1 (5)

Each surface is defined by a constant ϕi giving its position
in the ϕ space and a constant k taking values 1 or -1 (to
define the orientation of the crossing). Each surface considers
crossings only in one direction and ignores crossings in the
other direction. A depiction can be seen in Figure 2. A
detailed analysis can be found in [12], [13].

III. GAUSSIAN PROCESSES FOR CONSTRAINED
OPTIMIZATION

Gaussian processes are an extension of the multivariate
Gaussian distribution to infinite dimensional spaces where
any finite combination of outputs is jointly Gaussian. They
are used in supervised learning mainly for regression from
a Bayesian perspective. A GP essentially describes a dis-
tribution in the function space. GPs are more flexible than
parametric models and due to Gaussianity assumptions can
make predictions, incorporate new measurements and quan-
tify uncertainty using mostly closed-form expressions [14].

A. Gaussian Processes - Regression

A GP is fully specified by its mean m(x) and covariance
(or kernel) function k(x, x′) . For a finite set of N training
data points D = {xi, yi}i=1:N generated by an unknown
function h : Rd → R, the GP assumes a multivariate
distribution

y1:N ∼ N (m1:N ,K(x1:N , x1:N )) (6)

where y1:N = h(x1:N ) and m1:N is compact notation for
m(x1:N ). For any point (or collection of points) x∗, we can



analytically predict the output of the learned function y∗ =
h(x∗) as a conditional distribution

y∗|D, x∗ ∼ N (µ(x∗|D), σ(x∗|D)), (7)

where

µ(x∗|D) = m∗ + k(x∗, x1:N )K−11:N (y1:N −m1:N )

and

σ(x∗|D) = k(x∗, x∗) + k(x∗, x1:N )K−11:Nk(x1:N , x
∗)

with compact notation K1:N = K(x1:N , x1:N ).
The element that encodes our assumptions on the shape

and properties of the learned function is the kernel. We use
here an ARD (Automatic Relevance Determination) Squared
Exponential (SE) kernel, defined as

kSE(x, x′) = σ2
y exp(− (x− x′)T Λ−1(x− x′)

2
) + σ2

nδii′ ,

where Λ = diag(λ1, ..., λd) and δii′ is Kroenecker’s delta (=
1 iff i = i′, 0 otherwise). The parameters η = {σy, λ1:d, σn}
(usually called hyperparameters in the GP terminology) are
being learned from the measurements D. This kernel includes
measurement uncertainty (σn). We select as appropriate
hyperparameters η those that maximize the log marginal
likelihood for the observed data (for many cases this function
is nonconvex and presents an optimization challenge). The
selection of hyperparameters is essentially the learning phase
that allows for the construction of a covariance matrix
including any point of interest and the already sampled
points. The function output at this point of interest can be
easily calculated in a closed form manner using (7).

B. Gaussian Processes - Optimization
Instead of directly optimizing over the mean of the learned

function we follow a methodology where an auxiliary ac-
quisition function indicates the next sampling point and
gradually progresses towards the optimum while also learn-
ing the unknown function [15]. This auxiliary function is
called Expected Improvement (EI) and quantifies the ex-
pected magnitude of improvement over the current best value
ymax = max y1:N+K (where N are the initial training points
and K the additional points sampled during the process). This
function can be analytically derived for any given point x in
the search space as

EI(x) = σ(x)[vΦ(v) + φ(v)], (8)

where v = (y(x) − ymax)/σ(x), σ(x) is the variance as
predicted by the GP and Φ(·), φ(·) are the cumulative and
probability density functions for the normal distribution. EI
promotes points with high variance and large mean and
allows for sampling in locations where the mean is low but
there exists substantial potential for improvement.

IV. LEARNING AND OPTIMIZATION WITH TRANSIENT
MEASUREMENTS

Before proceeding in the main contribution of the paper,
where we accommodate for the use of transient measure-
ments, we review our previous approach that is using only
steady state measurements.

A. Steady State Optimization

For this setting we assume that the decision variables (u)
are being repeatedly applied until the system settles in a
stationary orbit. This way the state (x) of the system does
not affect the objective (P ) or the constraint function (G)
which now depend only on the input applied. Thus, we solve
the problem in the static optimization setting (no dynamics
learned) with a chance constrained formulation

max
u

EIP (u)

s.t. P(GPG(u) ≤ 0) ≥ 1− β
σG(u) ≤ ασn,

(9)

where GPG is a GP approximating the constraint function
and EIP is the expected improvement for the GPP (ap-
proximating the objective function). The constraint function
is replaced with an auxiliary statement requiring that the
probability of satisfying the constraint at a sample point u is
larger than (1−β). By setting β appropriately we can adjust
the conservativeness of our approach. Due to the use of GPs
we can easily derive this probability at any point u.

The second constraint restricts search only in locations
where the variance (σG) of GPG is below a threshold propor-
tional to the measurement uncertainty (ασn). Large variance
implies that this part of the domain has not been adequately
sampled and usually the estimates are not accurate even in a
probabilistic setting (GPs like most regression methods have
difficulties in extrapolating). This reduces the convergence
rate but does not allow significant constraint violations. The
full procedure can been seen in Algorithm 1.

Algorithm 1 Stready State Optimization

1: Initialization. Choose N points in the feasible set (form-
ing D)

2: Training. Learn the hyper-parameters for GPG and
GPP

3: Optimization. Find Pmax among the sampled points
4: - Calculate EIP using Pmax for the objective function
5: - Calculate the Chance Constraint on GPG

6: - Calculate the Variance Constraint on GPG

7: Next Point. Select the point ũ = arg max EIP that
satisfies all constraints

8: if P (ũ) ≥ Pmax and max EIP ≤ tolerance then
9: Terminate and use u∗ = ũ

10: else
11: Add (ũ, P (ũ)) in D and Go To 2
12: end if

B. Optimization with Transient Measurements

We solve now the optimization problem, as described in
the general setting (1), that incorporates system dynamics.
We define the discrete dynamics as the change in the system
state after one complete loop. A loop is complete when
the kite crosses a particular switching surface (described in
subsection II-B). We assume that the evolution of the state



can be directly observed within some measurement error. The
system dynamics can then be represented as

xn+1 = f(xn, un, wn) (10)

where (xn, wn) are the state of the system and the exoge-
neous signal (here the wind) at the beginning of the nth

loop, un is the control sequence throughout the loop and
xn+1 is the state at the end of the loop. We also measure the
objective P (xn, un, wn) and the constraint G(xn, un, wn)
function output over a single loop.

Since we can only observe the outcome of applying un
at a specific (xn, wn) and have no model for f(·), P (·) and
G(·) we learn them as GP regression models, as described
in subsection III-A, and denote them GPf , GPP and GPG

respectively.
For this setting the formulation of the optimization prob-

lem becomes

max
xs,us

EIP (xs, us, wn) (11a)

s.t.
x̂n+1 ∼ GPf (xn, us, wn) (11b)

Ĝ ∼ GPG(xn, us, wn) (11c)
P( ‖xs − x̂n+1‖ < εs |xn = xs ) > 1− βs (11d)
P( ‖xs − x̂n+1‖ < εr) > 1− βr (11e)

P( Ĝ > 0 |xn = xs ) > 1− βGs
(11f)

P( Ĝ > 0) > 1− βGt
(11g)

σf (x0, us, wn) < ασnf
for x0 = xs, xn (11h)

σG(x0, us, wn) < ασnG
for x0 = xs, xn (11i)

Pbest = max
xs,us

µP (xs, us, wn) (12a)

s.t. (11b), (11c), (11d), (11e), (11f), (11g), (11h), (11i)

The objective function, in (11a), is the EI for the GPP

(here P is the average force for a single loop). We call the
optimum Expected Improvement obtained from (11) as EI∗P
and the corresponding arguments, x∗s , u∗s . The subscript (s)
denotes steady state conditions. It is important to note here
that we are searching for a steady state solution (xs, us)
while the system might be residing in a transient state xn.
Furthermore, we can only directly manipulate us, while xs
is the steady outcome of that input sequence.

The dynamics of the system are described in a probabilistic
setting, through GPf as in (11b). The probabilistic output of
the constraint function is given in (11c).

The constraint (11d) accepts only the (xs, us) which
approximate a stationary orbit (tolerance εs) with high proba-
bility. The chance constraint (11e) restricts to steady states xs
close to states that are reachable in one loop starting from the
current state xn. This is important to maintain consistency
in the decisions taken by the algorithm from one iteration to
another and prevent the steady states chosen to continuously
keep jumping in inconsistent directions. The constraints (11f)

and (11g) restrict the choice of xs, us to pairs which do not
violate the altitude constraint in steady state and transient
respectively.

The bounds on the uncertainty of the GP output is
described in constraints (11h) and (11i) which act as a
trust region constraint. This way we avoid selecting points
for which a GP exhibits very large variance. Here, σnf

and σnG
are the measurement noise of the state (angles

ϑ, ψ) and the altitude respectively. The rest of the variables
(εs, εr, βs, βr, βGs

, βGt
, α, with common values ε., β. = 0.1

and α = 3) act as tuning parameters and govern the
aggressiveness of the search.

A fundamental difficulty with the transient approach is
that we do not have direct measurements of P for any steady
state (xs, us). To evaluate EIp however, we need a Pbest

over which all the possible next sampling points are to be
compared. We choose as Pbest, using (12), the point that
maximises over the mean prediction of average force by
GPP . With this formulation, Pbest plays the role of ymax

in (8). The corresponding input is called ubest.
The complete method can be seen in Algorithm 2. Note,

that here there is no terminating condition, since the exoge-
nous signal might be constantly changing and the system
seldomly resides in steady state.

Algorithm 2 Transient Optimization

1: Initialization. Choose N set-points (u) in the feasible
set and observe the transients (for Objective, Constraint,
Dynamics); (forming an initial D)

2: Training. Learn hyper-parameters for GPG, GPP , GPf

3: Optimization. Find Pbest, ubest from (12) for current
conditions of (xn, wn)
- Calculate EI∗P and u∗s using Pbest for the objective
function by solving (11)

4: Next Point. Select the next set-point ũn as follows:
5: if EI∗P (xs, us, wn) ≤ EIthreshold and ubest is feasible

then
6: Use ũ = ubest
7: else
8: Use ũ = u∗s
9: end if

10: Add measured data to D and Go To 2

V. RESULTS

We implement our algorithm in Matlab and the Skysails
controller in Simulink. For the GP regression we use the
object-oriented Matlab toolbox TacoPig [16]. We use the
skysails model described in II-A (with parameters E = 10,
L = 520, g = 1/7) to generate data corrupted with noise.
No algorithm is provided with any direct knowledge of this
model.

For constant wind conditions, we start both Algorithms
1 and 2 with N = 15 initial training points in the feasible
set. This is possible from prior experience of the operator.
For Algorithm 1, set points are repeated for 10 loops, until
the kite reaches a steady trajectory. On the other hand,
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Fig. 3: Convergence of Algorithm 1 in constant wind condi-
tion and 200m altitude constraint. Red circles represent mea-
sured values and black crosses represent Pmax (predicted)

for Algorithm 2 we take measurements after every loop.
Both algorithms show convergence (within 20-30 samples)
to within 5% of the optimum calculated using a numerical
optimal control solver GPOPS-II, see [17], which makes use
of the model and has full control throughout the trajectory
and not just at the switching surfaces. The wind dependence
of the objective value has been normalised so that the results
are comparable across different wind conditions.

Figure 3 shows the performance of Algorithm 1 in constant
wind. Table I compares with Algorithm 2 for the same condi-
tions. Both algorithms perform well in finding the optimum,
however Algorithm 2 using 1-step ahead predictions can
avoid large constraint violations and converges much faster
to the optimum. Also Algorithm 2 guarantees constraint
satisfaction both in predicted stationary orbit and during
transients.

TABLE I: Performance comparisons in constant wind

Method Final value Max Violation (m) Loops
Algorithm 1
(2 surfaces) 71.17 3.2 320

Algorithm 1
(4 surfaces) 72.60 4.77 300

Algorithm 2
(2 surfaces) 71.05 0.00 65

GPOPS-II 74.61 0.00 -

Algorithm 1 was mainly developed under the assumption
of constant wind and is not well suited for handling varying
wind conditions. This is due to the large difference between
the time at which the decision is made and the time at which
the system reaches the corresponding steady state. Algorithm
2 overcomes this limitation by sampling in transients and
thus increasing the frequency at which decisions are revised.

Table II summarizes performance results in varying wind
conditions. Algorithm 2 can track the optimum without
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Fig. 4: Maximum objective tracking with Algorithm 1 under
varying wind conditions.

significant violations and is able to learn control policies as
the exogenous conditions vary. Figure 5 shows the progress
of the transient algorithm under varying wind conditions
(and Figure 4 for Algorithm 1), while Figure 7 shows the
tracked trajectory under these conditions. Figure 6 shows
the evolution of the system states and set points with time
and wind. Algorithm 1 performs slightly better because it
is oblivious to the changed wind condition at the time of
execution and tends to move closer to the constraint for
which the average towing force is more favorable.

TABLE II: Performance comparisons for varying wind

Decision
space Final value Max Violation (m) Loops

Algorithm 1
(2 surfaces) 75.09 15.35 320

Algorithm 2
(2 surfaces) 73.84 2.90 47

VI. CONCLUSIONS

We present here two algorithms for optimizing the towing
force produced by an AWE system that take into account alti-
tude constraints. Both methods are model free and use Gaus-
sian Processes to progressively learn the system dynamics,
objective and constraint functions. The first method uses only
steady state measurements and converges slowly towards the
optimum. The second method utilizes measurements from
transient state and converges an order of magnitude faster
towards the optimum. Moreover it better adapts to chang-
ing wind conditions without significant constraint violations
(below measurement error). The results are then compared
to an off-line optimal control numerical solver (with full
knowledge of the model and extensive input control, not
simply controller set points) and the performance in terms of
the objective is found similar. Future plans include testing the



Fig. 5: Towing force optimization for a 200m altitude con-
straint and varying wind condition using Algorithm 2.

Fig. 6: System states, set-points and wind measurements
during the application of Algorithm 2.

algorithm in an experimental testbed against realistic wind
conditions and expanding the second algorithm for multiple
steps ahead prediction horizon.
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