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Abstract: A new method based on pseudo-Wigner-Hough transform is
proposed for the simultaneous measurement of the in-plane and out-of-plane
displacements using digital holographic moiré. Multiple interference phases
corresponding to the in-plane and out-of-plane displacement components
are retrieved from a single moiré fringe pattern. The segmentation of the
interference field allows us to approximate it with a multicomponent linear
frequency modulated signal. The proposed method accurately and simulta-
neously estimates all the phase parameters of the signal components without
the use of any signal separation techniques. Simulation and experimental
results demonstrate the efficacy of the proposed method and its robustness
against the variations in object beam intensity.
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1. Introduction

Digital holographic interferometry (DHI) is a prominent measurement technique for deforma-
tion analysis and non-destructive testing applications because of its non-invasive and whole-
field measurement capability. The information on object deformation can be reliably obtained
by accurately estimating the interference phase of a recorded fringe pattern. However, this
method is in general effective for the measurement of a single component of displacement.

Advanced techniques employing multiple object beams have been proposed for multidimen-
sional deformation measurement. The multiple interference phases associated with the object
beams can be algebraically manipulated to obtain the components of object displacement. Dif-
ferent techniques have been proposed for the estimation of these interference phases. The basic
precept behind the techniques proposed in [1, 2, 3] is to obtain incoherently mixed holograms
generated by multiple reference and object beam-pairs. In [4], phase shifting technique is em-
ployed to separately record the holograms for each object beam. On the other hand, the tech-
niques proposed in [5, 6, 7] employ two object beams paired to the same reference beam result-
ing in an easy to handle optical set-up. The recording of wavefronts in this manner gives rise to
the formation of a holographic moiré pattern. Subsequently, signal processing approaches have
been applied to extract multiple phase information from the so formed moiré fringes. Recently,
another approach based on two dimensional continuous wavelet transform has been proposed
in [8] to separate the fringe components from a single moiré fringe pattern. This method pro-
vides the wrapped form of the separated interference phases which further necessitates the use
of unwrapping algorithms.

The multiple phase estimation method proposed in [5] requires a careful adjustment of the
carrier frequency in order to separate the signal components in spectral domain which is prac-
tically difficult. Moreover, the estimated phases are in wrapped form which necessitate the use
of complex unwrapping algorithms to obtain the unwrapped phase maps. Although these limi-
tations are avoided in the phase estimation methods proposed in [6, 7], the inherent sequential
phase parameter estimation procedure involved in them severely limits their ability to accu-
rately estimate the multiple phases. Furthermore, the accuracy of phase estimation depends
upon object beam intensity settings used to establish amplitude discrimination.

In the present work, a new method based on pseudo-Wigner-Hough transform is proposed
for the multiple interference phase estimation from a single moiré fringe pattern. The seg-
mentation of the moiré interference field allows us to represent it as a multicomponent linear
frequency modulated signal. The proposed method benefits from the amalgamation of the sig-
nal processing and image processing tools to simultaneously provide the accurate estimation
of phase parameters of all the signal components without the use of carrier frequency. These
phase parameters are further utilized for the estimation of the interference phases. The theory
of the proposed method is explained in Section 2. The simulation and experimental results are
provided in Section 3 followed by conclusion.

2. Theory

Consider that the object is illuminated with two object beams placed symmetrically to the nor-
mal to the object surface. Two holograms are recorded, each one before and after the deforma-
tion of the object. The numerical reconstruction of holograms is performed using digital Fresnel
transform to obtain the complex amplitudes of the optical wavefields for each object state. The
conjugate multiplication of the complex amplitudes generates an interference field with two
components. The phases of these two components carry the information on object deformation.
The interference field can be represented as,

Γ(x,y) = A1(x,y)exp[ j∆ϕ1(x,y)]+A2(x,y)exp[ j∆ϕ2(x,y)]+η(x,y) (1)
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The interference fieldΓ(x,y) is of the sizeN×N pixels. The pixels along the columns and
rows are represented byx andy, respectively.A1(x,y) andA2(x,y) are the slowly varying or
constant amplitudes;∆ϕ1(x,y) and∆ϕ2(x,y) represent the interference phases andη(x,y) is
the complex additive white Gaussian noise. In general, the interference phases are continu-
ous functions of spatial coordinatesx andy. Consequently, they can be approximated with the
polynomials of appropriate order. However, if the interference phases vary rapidly, the required
order for polynomial approximation of phases could be correspondingly high. The accuracy of
phase parameter estimation decreases with the increase in the polynomial order especially in
the case of multicomponent signals. Therefore, lower order polynomial approximation of inter-
ference phases is achieved by dividing the interference field into a number of non-overlapping
segmentsL in each columnx or in each rowy. Although, further analysis is carried out consid-
ering the signal segmentation in each columnx, it should be noted that the same analysis is true
in case of signal segmentation in each rowy also. Over these segments, the interference phases
are approximated with second order polynomial functions ofy with a multicomponent linear
frequency-modulated signal representation of the interference field. Thus, for a given column
x, the interference field in the segmentl with l ∈ (1,L) can be represented as,

Γl (y) = Al1(y)exp[ j∆ϕl1(y)]+Al2(y)exp[ j∆ϕl2(y)]+ηl(y) (2)

where,
∆ϕl1(y) = al1+bl1y+ cl1y

2 (3)

∆ϕl2(y) = al2+bl2y+ cl2y
2 (4)

The phase parametersa ∈ {al1,al2}, b ∈ {bl1,bl2}, c ∈ {cl1,cl2} correspond toinitial phase,
mean spatial f requencyand sweep rate, respectively. From the above equations, it can be
understood that the phase parametersa, b andc have to be accurately estimated for reliable
estimation of the interference phases.

A combined form of Wigner-Ville-Distribution (WVD) and Hough transform, termed as
Wigner-Hough-transform (WHT), has been proposed [9] for analyzing linear frequency-
modulated signals. The WVD of a linear frequency-modulated signal produces a distribution
of energy concentrated along a straight line in space-frequency (s-f) plane. Thus, the problem
of analyzing linear frequency-modulated signal can be looked upon more as the detection of a
linear pattern in the s-f plane. The Hough-transform, a popular technique used in the image pro-
cessing for the detection of lines in images, is applied for the detection of a linear pattern in the
s-f plane. The Hough transform of the WVD of a given signal essentially transforms it from the
s-f domain to the phase parameter domain. The peak observed in the phase parameter domain
provides the estimates of the signal phase parameters. These estimates are subsequently utilized
as initial values of the optimization algorithm to obtain accurate values of phase parameters.

The WHT method proves to be equally effective in the case of multicomponent signal anal-
ysis. The WVD of a multicomponent signal produces a distribution of energy in the s-f plane
corresponding to the multiple signal components along with the unwanted cross terms. The
cross terms arise on account of the bilinear property of the WVD. This property of WVD se-
riously hampers its ability to analyze the multicomponent signal. It is observed that the energy
distribution corresponding to the multiple signal components is positive whereas the energy
distribution of cross terms oscillates between positive and negative values. This attribute is
exploited by WHT. In the WHT of given multicomponent signal, the effect of cross terms pro-
duced by WVD is removed by the Hough transform due to the inherent integration process
involved in it. Thus, the WHT can accurately estimate the phase parameters of all the signal
components simultaneously.

However, the advantages of WHT come at the price of high computational cost. This led to
the development of the combined use of pseudo-Wigner-Ville-Distribution (PWVD) and Hough
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transform, more appropriately termed as pseudo-Wigner-Hough-transform (PWHT) [10]. The
PWHT of the interference fieldΓl (y) can be represented as,

PWHT(θ ) =
NL−M−1

∑
y=M

M

∑
l=−M

Γl (y+ l)Γ∗
l (y− l)exp( j2ω(y;θ )) (5)

where,NL = N/L is the length ofΓl (y); M is the parameter defining window length,W =
2M+1;θ represents the domain of phase parametersb andc; ω = b+cy. The optimum value of
M = 0.1NL has been suggested [10] for optimal estimation of phase parameters. The number of
peaks observed in the PWHT of a given multicomponent signal indicates the number of signal
components present in it. The locations of these peaks provide the estimates of phase parameters
b andc of all the signal components. PWHT is computationally more efficient as compared to
WHT due to the windowing involved in PWVD. Additionally, the width of peak observed in
PWHT parameter space is much larger than that observed for the WHT. This suggests that the
PWHT offers improved numerical properties during optimization than that offered by the WHT.
It is required to ensure that the initial estimates of phase parameters calculated using PWHT are
accurate enough so that the optimization algorithm converges to true phase parameter values.
In order to achieve this, peak detection in PWHT is performed on the grid of phase parameters
b andc with appropriate grid spacings of∆b and∆c, respectively. The values of∆b and∆c can
be calculated as [10],

∆b =
π

1.4W
(6)

∆c =
π

(−1.19M2+1.2MNL−3M+0.4NL+17.5)
(7)

In the proposed method, the interference phases are estimated in a given columnx one at
a time. It is therefore required to group the estimated phases together with their respective
counterparts from the other columns to obtain the complete 2D phase maps. To achieve this,
a simple amplitude discrimination criteria is proposed. Different intensity levels are set up
for each of the two object beams which result in different amplitudes of signal components in
Eq.(1). It should be noted that the amplitude discrimination criteria is not used for the estimation
of the phase parameters but only to discriminate between the estimated phases. On the contrary,
the phase parameters of all signal components are estimated simultaneously. Consequently,
the inherent error propagation effect of the sequential phase parameter estimation procedure
based on amplitude discrimination criteria proposed in [7] is avoided in the PWHT based phase
estimation method. Furthermore, the ratio of the amplitudes of the individual components need
not be controlled precisely because its variation does not affect the phase parameter estimation
accuracy. The procedure of multicomponent signal analysis using PWHT is explained in the
following steps:

1. Set up the amplitude discrimination criteria withA1 > A2.

2. Obtain the estimates of{bl1,bl2} and{cl1,cl2} by calculating PWHT ofΓl (y) using Eq.
(5) - Eq.(7).

3. Calculate the estimates of{al1,al2} and{Al1,Al2} using following equations:

âlk = angle







1
NL

NL−1
2

∑
y=−

NL−1
2

Γl (y)exp[− j(b̂lky+ ĉlky2)]







(8)
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Âlk =

∣
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1
NL

NL−1
2

∑
y=−

NL−1
2

Γl (y)exp[− j(b̂lky+ ĉlky2)]

∣

∣

∣

∣

∣

∣

(9)

where,k∈ {1,2}.

Although the error propagation effect is eliminated by PWHT, there exists an inherent bias
caused by the multiple peaks observed in parameter space in case of a multicomponent signal.
These peaks disturb one another due to the peaks’ spreading. As a result, the peaks’ loca-
tions get shifted from the true phase parameter values. To avoid this problem, bias reduction
operation is performed in which the contribution of the lower amplitude signal component is re-
moved fromΓl (y). Subsequently, the above explained steps (ii) and (iii) are used to re-estimate
the phase parameters. These estimates are used as initial values for Nelder-Mead simplex opti-
mization algorithm [11] for further refinement of phase parameters. This operation is repeated
for the phase parameter estimation of lower amplitude signal component. With the refined phase
parameter estimates, the unwrapped interference phases are estimated using Eq. (3) and Eq. (4)
for all the segments in all the columns. The complete 2D phase maps are generated using the
phase stitching operation.

3. Simulation and experimental results

Simulations were performed to examine the efficacy of the proposed method. The interference
field of size 257× 257 was simulated with signal-to-noise ratio (SNR) of 30 dB using two
interference phases∆ϕ1(x,y) and∆ϕ2(x,y) shown in Fig. 1(a) and Fig. 1(b). The ratio of signal
amplitudes was set to 1.5 : 1. The moiré fringe pattern i.e. the real part of the interference field,
Γ(x,y) given in Eq. (1), can be represented as,

Γr(x,y) = A1(x,y)cos[∆ϕ1(x,y)]+A2(x,y)cos[∆ϕ2(x,y)]+ηr(x,y) (10)

where,ηr(x,y) is the real part ofη(x,y). The moiré fringe pattern and Fourier spectrum of
the interference field are shown in Fig. 1(c) and Fig. 1(d), respectively. It can be observed that
the spectrum of the signal components overlap each other. The proposed technique does not
require any addition of carrier frequency for separation of signal components as proposed in
[5]. The interference field was divided intoL = 4 segments in each column. The grid spacings
of the parameter space forb andc were calculated using Eq. (6) and Eq. (7). Using these grid
spacings, the phase parameters were estimated over a small grid of size 19×12.

The cosine fringes corresponding to the estimated∆ϕ1(x,y) and∆ϕ2(x,y) are plotted in Fig.
2(a) and Fig. 2(b), respectively. The error in the estimation of∆ϕ1(x,y) and∆ϕ2(x,y) are plotted
in Fig. 2(c) and Fig. 2(d), respectively. The root-mean-square error (RMSE) in estimation of
∆ϕ1(x,y)and∆ϕ2(x,y) were found to be 0.0558 and 0.0818 radians, respectively. The error in
the phase estimation near the segment boundaries can be further reduced using overlapping
segments [12, 13], which improves the estimation accuracy, though at a higher computational
cost.

The analysis was also performed with the phase estimation method proposed in [7]. In this
case, it was found that the phase estimation method failed to accurately estimate the interfer-
ence phases. The RMSE in estimation of∆ϕ1(x,y)and∆ϕ2(x,y) were found to be 4.6797 and
13.0087 radians, respectively. This shows that the performance of PWHT based phase esti-
mation is far superior as compared to that proposed in [7]. The simulation study performed
in [10] has shown that the PWHT based phase parameter estimation has better performance
compared to product high order ambiguity function (PHAF). This indicates that the phase esti-
mation method proposed in this study performs better compared to the method based on PHAF
proposed in [6].
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(a) (b)

(c) (d)

Fig. 1: (a)∆ϕ1(x,y) (b) ∆ϕ2(x,y) (c) moiré fringe pattern (d) Fourier spectrum of interference
field. The phase values are in radians.

(a) (b)

(c) (d)

Fig. 2: cosine fringes corresponding to the estimated (a)∆ϕ1(x,y) (b) ∆ϕ2(x,y). Error in esti-
mation of (a)∆ϕ1(x,y) (b) ∆ϕ2(x,y). All values are in radians.
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The effect of variations in amplitude ratio on the phase estimation accuracy was also studied.
The interference field was simulated with a SNR of 30 dB at different amplitude ratios (A1 : A2)
using the simulated phases shown in Fig. 1(a) and Fig. 1(b). For each case, the calculated
RMSE in the estimation of interference phases are given in Table 1. The RMSE values, found
to be well below 0.1 radians, indicate that the accuracy of phase estimation is least affected
by the variations in amplitude ratio. It should be noted that the variation in estimation error
with varying amplitude ratio is mainly caused by the variation in the white Gaussian noise
component added in the signal during each simulation run.

Table 1: Phase estimation error in radians at different amplitude ratio

Interference phase
Amplitude ratio (A1 : A2)

1.3 1.5 1.7 1.9 2.1

∆ϕ1(x,y) 0.0488 0.0558 0.0524 0.0507 0.0520
∆ϕ2(x,y) 0.0537 0.0818 0.0635 0.0436 0.0499

An important point to note here is that the various phase unwrapping algorithms proposed in
the literature are applicable for single interference phase unwrapping only. They are not useful
in the case of moiré fringes as it contains multiple interference phases. The proposed method
not only extracts the multiple interference phases from a single moiré fringe pattern, but also
directly provides the unwrapped phase estimates.

The ability of simultaneous estimation of phase parameters of the signal components of the
interference field allows the proposed technique to outperform the previously reported phase
estimation methods in [6, 7].

 laser source

M4

M1 M2

object

CCD

BE3

BE1

RB 

M3

M5

BE2

BS1 BS2

OB1 OB2

IF

Fig. 3: Experimental set up: BS1-BS2, beam splitters; BE1-BE3, beam expanders; M1-M5,
mirrors; OB1-OB2, object beams; RB, reference beam; IF, beam intensity filter.
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The experimental set-up consisted of two object beams OB1 and OB2 and a reference beam
(RB) derived from a Coherent Verdi (Coherent,Inc., USA) laser source of wavelength 532nm
as shown in Fig. 3. Two distinct intensities were set for the two object beams using a beam
intensity filter (IF) in the object beam OB2 arm to establish the amplitude discrimination crite-
ria. The variable filter provides the flexibility of setting different object beam intensity ratios.
Holograms were recorded with a CCD camera (XCL-U1000, Sony Corporation, Japan) of size
1600× 1200 pixels. A circular membrane with clamped edges was used as a light diffusing
object. The object was subjected to out-of-plane deformation with a point load and an in-plane
rigid body rotation was superimposed on this deformation. The coordinate system used is also
shown in the figure.

The recorded moiré fringe pattern is shown in Fig. 4(a). The Fourier spectrum of the inter-
ference field is shown in Fig. 4(b). The proposed method was applied for the interference phase
estimation. The estimated interference phases are shown in Fig. 4(c) and Fig. 4(d). Due to the
symmetrical illumination of the object, the sum and difference of the interference phases pro-
vide the out-of-plane and in-plane components of displacement, respectively [5]. The sum and
differences of the estimated phases are shown in Fig. 5(a) - Fig. 5(d) along with their wrapped
forms.

(a) (b)

(c) (d)

Fig. 4: (a) Moiré fringe pattern (b) Fourier spectrum of interference field (c) Estimated∆ϕ1(x,y)
(d) Estimated∆ϕ2(x,y). The phase values are in radians.
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(a) (b)

(c) (d)

Fig. 5: (a) Sum of phases (b) wrapped form of sum of phases (c) Difference of phases (d)
wrapped form of difference of phases. The phase values are in radians.

4. Conclusion

This paper proposes a new method for simultaneous measurement of in-plane and out-of-plane
displacement based on pseudo-Wigner-Hough transform using a single moiré fringe pattern.
The PWHT based phase parameter estimation is successfully implemented for the accurate
estimation of multiple interference phases. The proposed phase estimation method is robust
against the object beam intensity variations, making the method suitable for practical applica-
tions. Both simulation and experimental results are provided to substantiate the effectiveness of
the proposed method in case of two dimensional displacement measurement.
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