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École Polytechnique Fédérale de Lausanne
Dept. I&C, LINX

Lausanne, Switzerland
giel.optveld@epfl.ch michael.gastpar@epfl.ch

Abstract

Successive refinement is a technique to encode a source iteratively, improving
the distortion at each step. If the code rates of all steps combined can be as
efficient as coding only for the final distortion in one go, then the source is said to
be successively refinable. We turn our attention to vector sources and we propose
to replace the high-distortion first stage by a projection to low-dimensional space.
The goal remains the same: code the original, high-dimensional source afterwards
by only a small addendum. We look at Gaussian sources subject to an MSE
criterion as a first step in this direction. A coding scheme for this problem is
developed by turning the projection into an estimator of the source. It is shown
that Gaussian vector sources coded via a projection can be successively refinable.
We derive a parametric description of distortion pairs that can achieve this state;
this region exists for any projection matrix, but its size may vary.

1 Introduction

With the rapid growth of data, it becomes increasingly difficult to assess in advance
whether a data set is going to be of value. To prevent any unnecessary processing, one
can evaluate either a fragment or a lower quality thumbnail first to decide if one wants
to have the entire set. Equitz and Cover pitched the idea of successive refinement as
an improvement on efficiency: can one optimally code a random variable X at a low
distortion D1 and then use the bits such that only an addendum is required to code
a second representation at a better distortion D2 < D1 [1]? Moreover, can such two
stages combined be as efficient as the rate-distortion optimal rate RX(D2)? The answer
turned out to be affirmative, be it under strict conditions and for specific sources.

We extend this idea to involve projections. First, a user requests only a low-
dimensional projection of the original data. This projection reflects his interests: he
may value certain components more than others in his assessment of the data’s value.
Can one still use this first low-dimensional projection to code a final high-dimensional
representation by only a small addendum and if so, can one do it without the loss
of rate? In a continuous setting, we adopt the mean squared error as our distortion
measure. Gaussian sources, as maximizers of differential entropy, form our choice for
a start to the problem.

The amount of classic results on successive refinement is vast, featuring amongst
others [1, 2]. Both [3] and [4] also considered the successive coding of two correlated
variables X and Y ; our problem is in principle encapsulated in their models. Both
papers also go into the specific case of a pair of jointly Gaussians. We let the source
X and the projection U = ATX be of arbitrary dimensions, N and M respectively.
Other work by Nayak and Tuncel involved the extension to vector sources as well, but
focused on accommodating individual distortion criteria [5].

We present a sequential coding scheme for Gaussian sources with a projection on
the first stage in Section 3. The strategy is to, if the projection was satisfactory,
turn it into an estimator of the original source and use it as side information on the
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refinement. The algebraic nature of Gaussian sources allows us to find the estimator in
closed form and we show that the refinement boils down to a rank-M downdate of the
source statistics in Section 4. Furthermore, we will derive a lemma on the rates and
comment on the successive refinability of the problem afterwards in Section 5. We find
a parametric expression for a distortion level on the projection that marks a threshold
in successive refinability. The value of this threshold depends on the projection A, but
it always exists, provided the required distortion on the second stage is not too large.

2 Preliminaries

Let X be a random variable over some alphabet X and let X̂ be its reconstruction,
whose precision one evaluates by some distortion measure d(X, X̂) : X × X̂ → [0,∞).
A classic, two stage successive refinement problem codes X twice, first at a distortion
D1 and then at a D2 ≤ D1. The scheme is such that the second stage only codes an
addendum to the bits of the first so as to meet d(X, X̂2) ≤ D2. In particular, a source
is called successively refinable if it achieves the rate distortion limit on both stages, i.e.,
R1 = R(D1) and R1 +R2 = R(D2). Equitz and Cover showed that Gaussians subject
to an MSE criterion are successively refinable [1].

This source coding problem has been extended to involve different, yet correlated
sources on the first and second stage (X1, X2) by most notably [4, 3]. One first codes
X1 and subsequently, X2 can be described by fewer bits if one exploits the correlation
with X̂1. Viswanathan and Berger adopt the terminology sequential coding to refer
to a situation in which the first encoder only has access to the first source, while the
second has access to both [4]. Nayak and Tuncel allowed both encoders access to both
sources and dubbed their problem successive coding [3]. Of these two, we adopt the
sequential coding approach.

In this paper, X is an N -dimensional vector and we replace the first stage by a
projection to M-dimensional space for M < N . We label it

U = ATX, (1)

where A ∈ R
N×M is an arbitrary matrix with orthonormal columns. In contrast to

U , we label the vector corresponding to the refinement in the second stage as V . One
could view upon the source and its projection as two correlated sources, X and U .
Their correlation is of course special, since p(X,U) = p(X)δ(U −ATX). All in all, we
seek the following encoder-decoder pairs:







f1 : Un → {1, · · · , 2nRU}

f2 : X n → {1, · · · , 2nRV }

g1 : {1, · · · , 2nRU} → Ûn

g2 : {1, · · · , 2nRU} × {1, · · · , 2nRV } → X̂ n,

(2)

where Û = g1(f1(U)) and X̂ = g2(f1(U), f2(X)). A schematic is depicted in Figure 1.
We investigate the impact of these projections for a specific case: Gaussians under

mean squared error distortion measure. The source thus follows X ∼ N (0,ΣX), with
ΣX = diag(λ1, λ2, · · · , λN), ordered such that λ1 ≥ · · · ≥ λN . The same ordering
and numbering applies to the eigenvalues of any matrix. We adopt scalar distortions
(DU , DX) to evaluate Û and X̂ respectively. Since we are working with vectors, an
encoder will allocate rate to each vector component such that their individual distortion
levels satisfy the end distortion constraint. To accommodate that procedure with
terminology, D̂X,i refers to the individual distortion of the i’th component of X . For
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Figure 1: Schematic of successive refinement with a projection.

convenience, it is sometimes shorter to aggregate the distortion profile into a diagonal
matrix D̂X = diagi(D̂X,i).

The achievable rate region of our problem is contained in the results of [4].Thus if
we reformulate, the achievable rate region is already known to be:

Theorem 1. The rate distortion quadruple (RU , RV , DU , DX) is achievable if and only

if there exists a joint distribution p(X, X̂, Û) such that

I(U ; Û) ≤ RU (3)

I(X ; X̂|Û) ≤ RV (4)

E[||U − Û ||2] ≤ DU (5)

E[||X − X̂||2] ≤ DX (6)

In the following sections, we will introduce a sequential coding scheme for Gaussian
sources, whose optimality we will evaluate with respect to the following definition:

Definition 1. We say the source X is successively refinable via a projection U at
(DU , DV ) if the quadruple (RU , RV , DU , DX) is achievable and it holds that RU =
RU(DU) and RU +RV = RX(DX).

3 Coding Strategy

Let us first emphasize that Definition 1 states that successive refinability requires both
stages to be rate-distortion optimal. Hence, any possible code for a Gaussian source
that we wish to be fully successively refinable can be constructed by minimizing the
rate of the first stage first; the second stage will follow suit. A trivial first observation is
that if X is Gaussian then so is U = ATX . Hence, the rate RU ≥ RU (DU) is uniquely
(see [6, Theorem 12.1.1]) minimized by the straightforward procedure of reversed water

filling [6, p. 314], which leads to a Û that is Gaussian as well.
It is not immediately clear that the refinement, which we dubbed V , is best coded

in a Gaussian fashion as well. After the first stage, the decoder has a copy of Û at
a distortion no more than DU and he may decide he is also interested in a copy of
the high-dimensional X . Before even starting to code, the decoder already knows
something on X , namely he can compute E[X|Û ] as its MMSE-estimate. Hence, the
second stage only revolves around the residual, that which is not yet known on X :

V = X − E[X|Û ], (7)

so that coding this leads to a final estimate on X afterwards as:

X̂ = V̂ + E[X|Û ]. (8)



Conveniently, the distortion measures on X and the residual V match as follows:

E[||X − X̂||2] = E[||(V + E[X|Û ])− (V̂ + E[X|Û ])||2] = E[||V − V̂ ||2]. (9)

In other words, coding V for a distortion DX after having received Û ensures one of
also having a copy of X̂ at the same distortion. In this setup, the jointly Gaussian
nature of (U, V ) follows from the following:

I(U ; Û) + I(X ; X̂|Û) ≥ RU(DU) + h(X|Û)− h(X|X̂, Û) (10)

= RU(DU) + h(X − E[X|Û ]|Û)− h(X − X̂|X̂, Û) (11)

†

≥ RU(DU) + h(V )− h(V − V̂ ) (12)

≥
1

2
log

(

|ΣU |

|D̂U |

)

+
1

2
log

(

|ΣV |

|D̂V |

)

, (13)

where D̂U is the reversed water filling solution, computed as D̂U,i = min(θU , λi(ΣU))

with θU chosen such that
∑n

i=1 D̂U,i = DU is satisfied. The same goes for D̂V , but
with respect to end distortion constraint DX . (†) Follows from the fact that via this

construction, Û is jointly Gaussian with X and hence X − E[X|Û ] ⊥ Û . With this
set-up in check, it remains to be found what the covariance of the residual, ΣV , is and
what impact it has on the sum-rate RU +RV when compared to RX(DX).

4 Estimator and Refinement Algebra

Thanks to the Gaussian nature of both stages, rates can be computed in closed form.
To that end, we first derive the estimator E[X|Û ] and the residual statistics ΣV . We
already concluded that RU is minimized by applying reversed water filling to the prin-
cipal components of covariance ΣU , which we find as

ΣU := E[UUT ] = ATΣXA. (14)

Without loss of generality, we define our projections A actually as follows:

A = ÃQ, (15)

in which Q are the eigenvectors of ÃTΣXÃ. Ã can still be arbitrary, as long as its
columns are orthonormal. Incorporating Q inside A has as an effect that ΣU is already
diagonalized into its eigendecomposition. Consequently, also the D̂U found by means
of (13) is diagonal. Making this diagonalization implicit is without loss of generality
and allows us to construct simpler equations. Namely, we build a simple Gaussian test
channel Û = B(U +W ) (see, e.g., [6, p. 339]) where U ⊥ W , W ∼ N (0,ΣW ) and

ΣW = diagi=1,··· ,M

(
λi(ΣU )D̂U,i

λi(ΣU )−D̂U,i

)

= ΣUD̂U(ΣU − D̂U)
−1 (16)

B = diagi=1,··· ,M

(
λi(ΣU )−D̂U,i

λi(ΣU )

)

= (ΣU − D̂U)Σ
−1
U . (17)

Since X and Û are jointly Gaussian, the estimation of X follows as:

E[X|Û ] = E[XÛT ]E
[

ÛÛT
]−1

Û , (18)



of which the unknown expectations on the right hand side are found as:

E

[

XÛT
]

= ΣXAB (19)

E

[

ÛÛT
]

= B (ΣU + ΣW )B = ΣU − D̂U . (20)

Observe that (20) confirms that the channel follows the desired distribution, i.e., p(Û) ∼

N (0,ΣU − D̂U). This ultimately gives us the first estimation of X as

E[X|Û ] = ΣXAB
(

ΣU − D̂U

)−1

B(ATX +W ) (21)

= ΣXAΣ−2
U (ΣU − D̂U)(A

TX +W ). (22)

The only hiccup in this analysis is that (ΣU − D̂U)
−1 might not be invertible, which

happens when D̂U,i = λi(ΣU ) for some i. This situation occurs when the reversed water
filling procedure concludes that some principal components of U do not require coding
to meet the distortion constraint DU . These components do not partake in the coding
and thus cannot contribute to the estimator and can therefore be safely excluded to
make everything invertible. Notice, though, that the exclusion is implicit in (22).

As for the covariance of the residual V = X − E[X|Û ],

ΣV (DU) := E[V V T ] = E[(X − E[X|Û ])(X − E[X|Û ])T ] (23)

= E[(X − E[X|Û ])XT ] (24)

= ΣX − ΣXAΣ−2
U (ΣU − D̂U)A

TΣX . (25)

One term in (23) drops out by the orthogonality principle. The statistics of this
residual V are thus a perturbation of the original source statistics by subtracting a real
symmetric matrix of at most rank M , representing what one learned on the first stage.
We denote this covariance ΣV (DU) as a function of DU to emphasize its dependency.
Sometimes the function notation is dropped if the context does not benefit. On a side
note, observe that a projection back would lead one back to ATΣVA = D̂U .

Lemma 1. For all DU ≥ 0, the eigenvalues of ΣV satisfy

λi(ΣV ) ≥ λi+M(ΣX) for 1 ≤ i ≤ N −M (26)

λi(ΣV ) ≥ 0 for N −M < i ≤ N. (27)

Proof. Observe that (25) is a subtraction of two real symmetric matrices. The sub-
tracted matrix is of at most rank M < N . Consequently, we can apply a theorem
by Weyl [7, Thm 4.3.6] that for any two N × N Hermitian matrices A,B, of which
rank(B) ≤ M , the following holds:

λk(A) ≥ λk+M(A+B) ≥ λk+2M(A). (28)

Let A = ΣX and pick for B the perturbation matrix on the right of (25), including the
minus sign. Conclude that the update matrix was positive semidefinite by construction
and is thus now negative semidefinite if one indeed includes the subtraction as its sign.
All λi(ΣV ) can thus only decrease with respect to λi(ΣX), but Weyl’s theorem now
implies that in any case they can never drop below λi+M(ΣX). Hence, (26) holds.

The second line of the lemma is somewhat trivial, since ΣV is a covariance matrix.
However, to prove that this is indeed true, one could apply an argument similar to that
of [8, Thm 1]. Due to space limitations, we leave it to a reference for now.



5 Rates and Successive Refinability

Lemma 1 and (25) show that the eigenvalues of ΣV are strictly non-decreasing in DU .
An example is drawn in the left plot of Figure 2. A trivial observation is that if
DU ≥ tr(ΣU) then RU(DU) = 0, implying that ΣV = ΣX ; the entire first stage is
skipped and the ’refinement’ is the one-stage RD-coding problem. Furthermore, note
that ΣX � ΣV and thus by the fact that both X and V are Gaussian, we have

RV (DX) ≤ RX(DX), (29)

with equality if and only if RU = 0. Furthermore, the two-stage refinement can never
produce a sum-rate lower than the one-step optimal coding of RX(DX). Combining
the latter observation with (29), we find the following bounds:

max{RX(DX), RU(DU)} ≤ RU (DU) +RV (DX) ≤ RU(DU) +RX(DX). (30)

An example is shown in the center plot of Figure 2. Evaluating the sum-rate is more
convenient than one might expect, as becomes clear from the following lemma:

Lemma 2. ∗ For 0 � D̂U � ΣU , it holds that

1

2
log

(

|ΣU |

|D̂U |

)

=
1

2
log

(
|ΣX |

|ΣV |

)

. (31)

Proof. Let us start with the determinant of the residual ΣV by making use of (25).

|ΣV | = |ΣX − ΣXAΣ−2
U (ΣU − D̂U)A

TΣX | (32)

= |ΣX | · |IN − Σ
1/2
X AΣ−2

U (ΣU − D̂U)A
TΣ

1/2
X |. (33)

The rest of the proof relies on Sylvester’s theorem for determinants. It states that for
any P ∈ R

M×N and Q ∈ R
N×M it holds that |IM + PQ| = |IN +QP| (see, .e.g, [9]).

Now, continue expanding the right hand side

|ΣV |

|ΣX |
= |IN −Σ

1/2
X AΣ−1

U
︸ ︷︷ ︸

Q

Σ−1
U (ΣU − D̂U)A

TΣ
1/2
X

︸ ︷︷ ︸

P

| (34)

= |IM − Σ−1
U (ΣU − D̂U)A

TΣ
1/2
X Σ

1/2
X AΣ−1

U
︸ ︷︷ ︸

=Im

| (35)

= |Σ−1
U | · |D̂U |. (36)

Since the arguments of the logs in the lemma are equal, so are the logs.

This Lemma turns out to be the crucial tool to comment on successive refinability.
To that end, let us zoom in on a specific region of distortions, namely DX < NλN(ΣX).
For these DX , we are ready to prove the absence of rate loss for any A. The case of
larger DX requires some care, which we will explain after the following theorem:

∗The authors would like to thank Stefan Apostol for his substantial contribution to Lemma 2.
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Figure 2: Example for (N,M) = (6, 3) for ΣX = diag(2.5, 1.8, 1.6, 1.4, 1.3, 0.9) and
DX

N
= 0.675. Left: λi(ΣV ) are non-decreasing in DU by Lemma 1. Middle: The sum-

rate is bounded as in (30) and is equal to RX(DX) for DU ≥ DU,c. Right: Eigenvalue
drop for ΣX → ΣV at the critical point DU = DU,c ≈ 2.36.

Theorem 2. For sufficiently small distortion, i.e., DX ≤ NλN (ΣX), a Gaussian
source X is successively refinable after a projection A if and only if the projection is
requested at a DU ≥ DU,c for a critical DU,c that satisfies

λN (ΣV (DU,c)) =
DX

N
, (37)

where ΣV (DU,c) follows (25).

Proof. The theorem says that one must pick a DU so that no eigenvalue of the residual
ΣV drops below the distortion threshold that is set by reversed water filling for the

optimal one-stage coding of RX(DX) =
1
2
log
(

|ΣX |
(DX/n)n

)

. Assume for convenience that

all the following D̂ are already fixed so that rates are minimized. Then by Lemma 2,

RU(DU) +RV (DX) =
1

2
log

(

|ΣU |

|D̂U |

)

+
1

2
log

(

|ΣV |

|D̂V |

)

(38)

=
1

2
log

(
|ΣX |

|ΣV |

)

+
1

2
log

(

|ΣV |

|D̂V |

)

(39)

=
1

2
log

(

|ΣX |

|D̂V |

)

. (40)

If λN(ΣV ) ≥
DX

N
then D̂V,i =

DX

N
for all i = 1, · · · , N by the reversed water filling

procedure. That means that D̂V = D̂X and thus RU(DU) + RV (DX) = RX(D). For
the converse assume that DU is picked so small that λN(ΣV ) <

DX

N
. Then the reversed

water filling procedure will assign individual distortion levels,

|D̂V | =
N∏

i=1

min(θV , λi(ΣV )), (41)

where θV is picked such that
∑N

i=1min(θV , λi(ΣV )) = DX . This product is maximized

by
(
DX

n

)N
, which can only be a solution if all λi(ΣV ) ≥

DX

N
, contradicting the assump-

tion. We have |D̂V | < |D̂X | otherwise, resulting in a sum-rate strictly higher than
RX(DX). Since λi(ΣV ) are continuous and non-decreasing in DU , successive refinabil-
ity is guaranteed for all DU larger than the DU at which λN(ΣV (DU)) =

DX

N
.



The right plot of Figure 2 shows an example of the eigenvalues at this critical point.
Note that everything above the dotted line DX

N
is what X̂ would have been by a one-

stage optimal coding via RX(DX). A too small DU so that any λi(ΣV ) drops below
DX

N
means that E[X|Û ] contains information on X not present in the X̂ that would

have been the one-stage optimal solution. One can show that if A consists of any set
of M eigenvectors of ΣX , then DU,c = M ·DX

N
. It appears that DU,c > M ·DX

N
for any

other projection matrix, but we are yet to formally show this.
Low distortion, DX < NλN (ΣX), ensures that all principal components ofX require

coding in the first place. Under this condition there always exists a DU,c < tr(ΣU ) for
any A. Were the condition not true, then A could have been aligned in the direction
of components that are not part of the one-stage optimal description of X . One could
thus, for example, exclude these directions fromA to also achieve successive refinability
for DX > NλN (ΣX). In general, the critical point DU,c in Theorem 2 is more formally
found by comparing the partaking principal components λi(ΣV (DU,c)) to θX , the coding
threshold the reversed water filling procedure uses to compute RX(DX). All in all, the
successive refinability of X is not so much restricted by the dimensionality reduction
imposed by A, it is directionality to which it is most sensitive.
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