
Verifying Concurrent Data Structures Using Data-Expansion

Technical Report

Tong Che∗ Rachid Guerraoui†

Abstract

We present the first thread modular proof of a highly concurrent binary search tree. This
proof tackles the problem of reasoning about complicated thread interferences using only thread
modular invariants. The key tool in this proof is the Data-Expansion Lemma, a novel lemma
that allows us to reason about search operations in any given state. We highlight the power of
this lemma when combined with our generalized version of the classical Hindsight Lemma, which
enables us to prove linearizability by reasoning about the temporal properties of the operations
instead of reasoning about the linearizability points directly.

The Data-Expansion Lemma provides an interesting solution to the proof blowup prob-
lem when reasoning about concurrent data structures by separating the verification of effectful
and effectless operations. We show that our proof methodology is widely applicable to several
published algorithms and argue that many advanced highly concurrent data structures can be
surprisingly easy to verify using thread-modular arguments.

∗École Polytechnique Fédérale de Lausanne, Switzerland, tong.che@epfl.ch
†École Polytechnique Fédérale de Lausanne, Switzerland, rachid.guerraoui@epfl.ch

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/148004959?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


1 Introduction

Highly concurrent algorithms are extremely hard to design and verify. On one hand, the vast
number of interference possibilities makes formal proof impractical and human proof error-prone.
On the other hand, thread modular proofs are usually impossible dreams, even for very simple
algorithms. Hence, the verification of concurrent algorithms is a major research challenge and an
important step to boost the reliability of concurrent programming.

Sophisticated concurrent objects, such as concurrent binary search trees, are becoming popular
and are promising to replace traditional search structures , for example: skip lists. However, because
of their complexity, many of these algorithms are published without rigorous mathematical proofs,
not to mention formal ones. Meanwhile, the verification community spends most of its efforts on
relatively simple data structures, such as linked lists and stacks.

This paper presents a surprisingly simple proof strategy for the linearizability of advanced
concurrent algorithms, which is purely thread modular. Our proof strategy covers a number of
algorithms, but in this paper, we focus on one simple example for concreteness — an external
binary tree without rebalancing. This algorithm is simple but powerful, because many concurrent
algorithms [4, 9] use similar mechanisms.

For the verification of highly complicated advanced algorithms, thread modular proofs seem
to be the only feasible solution. Because of their complexity, the linearizability points of such
algorithms are in many cases non-fixed. In traditional methods [6, 11], reasoning about such
linearizability points was done by tracking the set of pending invocations and auxiliary states,
which lead to non-local proofs. In such proofs, one has to construct the set of linearizability points
before reasoning about the data abstraction. However, these methods are not adapted to advanced
data structures, because the behavior of the pending calls are highly complicated, and it is hard, if
not impossible, to avoid proof blowup.

A first purely thread modular proof of a simple linked list algorithm with non-fixed linearizability
point was presented in [10]. It was shown that for linked lists, reasoning about invariants of tiny
steps of every thread can lead to important mathematical conclusions, such as the Hindsight Lemma
[10], and finally to proofs. In this work, our main purpose is to argue that this idea is actually
widely applicable to many advanced data structures, some of which were previously considered too
complicated for rigorous or formal proofs.

Our proof strategy proceeds as follows: First, we identify a set of thread local invariants pre-
served by every computation step of each thread. Then we prove that a small subset of these
invariants implies our Generalized Hindsight Lemma as well as a new lemma: the Data-Expansion
Lemma. Each lemma captures a specific aspect of the reason why the tree traversal works in both
cases no matter whether the traversal encounters its target or not. At last, we prove the operations
are linearizable using abstraction functions. The two lemmas give us direct explanations of the
non-fixed linearizability points, avoiding thereby the use of extra auxiliary states.

The Data-Expansion Lemma is the main technical contributions of this work. It allows us to
infer the nonexistence of a key in some past state when the tree traversal failed to encounter it
without explicit construction of the linearizability points. This lemma can be applied to at least
three main kinds of search data structures: linked lists, skip lists, and search trees. Combined
with our generalized version of the Hindsight Lemma, it provides powerful tools to reason about
operations with non-fixed linearizability points in advanced concurrent data structures.

The rest of this paper is organized as follows: In Section 2, we briefly explain our verification
strategy. In Section 3, we present the verification target, a highly concurrent binary search tree

1



algorithm. In Section 4, we introduce our computation models. In Section 5, we present our
verification. In Section 6, we prove the most generalized version of Hindsight Lemma, and discuss its
applications. In section 7, we discuss some possible extensions to other highly concurrent objects.
In Appendix A and Appendix B, we formalize the programming language and the Generalized
Hindsight Lemma. In Appendix C we give some definitions. We put the proof of the invariants in
Appendix D.

2 Verification Overview

We describe our verification strategy intuitively, using the example of a concurrent set algorithm
implemented with an optimistic external binary search tree. An external binary search tree is a
variant of ordinary BST. Its keys are stored only in leaf nodes, and the internal nodes are used for
routing. We further assume that for all nodes u, v, w, where u is an ancestor of v, w and v/w is
located in the left/right subtree of u, then we have v.key ≤ u.key < w.key.

Figure 1: Concurrent BST

Heap Representation. The shared data of the threads underlying the set algorithm is an external
binary search tree composed of dynamic allocated nodes of two types, leaf and internal, which we
refer to as heap. Each internal node contains three fields, two pointer fields child(1), child(2)
pointing to its left and right children, and an integer field key storing the key of this node. Each
leaf node contains only an integer field key. The Root node contains the key −∞. For each state,
some portion of the heap is reachable by following a sequence of child pointers from Root. We refer
to this portion of the heap as reachable heap.

We view a computation of the algorithm as a sequence of shared program states. In each state,
each leaf node in the reachable heap corresponds to a key in the set. The unreachable portion of
the heap contains removed nodes.

Set Operations. There are three set operations, add, remove, and contains. Intuitively, they
correspond to operations that add, remove or search for a key in a sequential binary search tree.
All these operations need to traverse the tree first.

2



Generalized Hindsight Lemma. We use the example of the contains operation for illustration.
We assume several threads are running the set algorithm. One of them is a contains operation,
looking for key k in the binary search tree. If the operation reaches a leaf node with key k, can the
operation return and claim that the set contains a node with key k at some linearizability point?
We can separate two cases here:

• The leaf node is currently on the tree.

• The leaf node is removed from the tree in current state and is not in the reachable heap.

The first case is trivial. In the second case, the correctness (linearizability) of the operation is
guaranteed by the Generalized Hindsight Lemma. Basically, this lemma claims the following:

If add and remove operations preserves certain simple thread modular invariants when modify-
ing the data structure, each pointer link through which the contains operation has traversed was
on the tree in some past state between the invocation and return.

The above lemma is not enough for our verification. A question remains open: if the operation
reaches a leaf node with key k′ 6= k, can the operation return and claim that the set does not
contain a node with key k at some linearizability point? This is the question addressed by the
Data-Expansion Lemma.

Static Bound. Given a state σ in a computation of the algorithm, for any node u on the tree,
the range of keys which can be inserted to the subtree rooted at u is determined by the keys of the
ancestors of u. This range is called the static bound at u in state σ. For example, in Figure 1(a),
the static bound of the internal node with key 6 is (−∞, 8], because 6 is on the left side of 8.

Data-Expansion Lemma. The intuition behind our Data-Expansion Lemma is that a tree
traversal should not miss the target node on the tree in the presence of thread interference. We
assume a tree traversal targeting at key k arrives at an internal node u at state σ. If the leaf node
with key k is on the tree but not on the subtree rooted at u, then the traversal would miss it.

Our Data-Expansion Lemma states that this will never happen if certain thread modular in-
variants are preserved. Namely, key k lies in the static bound of node u at state σ if some invariants
are preserved by add and remove operations when they modify the heap. For example, in Figure
1(b), thread T1 is searching for node with key 7, while T2 is concurrently removing the node with
key 6. If T1 reaches the internal node with key 6 before the removal of T2, the static bound of the
node with key 7 is (6, 8], after the removal the static bound of the node with key 7 is (−∞, 8]. So
the target key 7 is contained in the static bound in the presence of thread interference.

Verification of Linearizability. Our verification is a combination of formal proofs of the thread
modular invariants and rigorous mathematical arguments, such as the Data-Expansion Lemma and
Generalized Hindsight Lemma.

We treat two kinds of operations separately. Effectful operations are operations which success-
fully modify the heap. Effectless operations are read-only to the shared heap. Effectless operations
do not have fixed linearizability points, so reasoning about their linearizability points using auxil-
iary states in such a complicated logic brings severe proof blowup. We will use our two lemmas to
deal with two aspects of effectless operations, no matter the traversal encounters its target or not.

3



3 Verification Target

Our verification target is Listing 1. The algorithm implements a concurrent dictionary using binary
search trees. It is essentially similar to [4], but is simpler, since this algorithm excludes mechanisms
in [4] to achieve lock-freedom using only CAS. This algorithm can be viewed as a ”template” imple-
mentation of concurrent binary search trees. In fact, many tree algorithms use similar mechanisms
to achieve concurrency. The algorithm is optimistic and highly concurrent, for its atomic sections
access only a very small portion (three nodes) of the data structure.

1 Node*,Node*,Node* search(KeyType k){ struct Leaf: Node {

2 Node *n := Root; Key k;

3 while (n is not leaf node) { bool marked;

4 dir = k.compareTo(n.key); }

5 gp := p; struct Internal : Node {

6 p := n; Key k;

7 n = n.child(dir); Node * children [2];

8 } marked;

9 return gp, p, n; }

10 } void init() {

11 Root = new Internal(-infty);

12 Root.left = new Leaf(-infty );

13 Root.right = new Leaf(+infty );

14 bool contains(KeyType k){

15 while(true) { }

16 _,_,n := search(k);

17 if(k.compareTo(n.key) != 0) bool add(KeyType k){

18 return false; while(true){

19 return true; gp,p,n := search(k);

20 } dir = k.compareTo(n.key);

21 } if(dir == 0)

22 return false;

23 bool remove(KeyType k){ na = new Leaf(k);

24 while(true){ n1 = new Internal(n.key);

25 gp,p,n := search(k); n1.setChild(n,na);

26 if(k.compareTo(n.key )!=0) atomic{

27 return false; if(!p->marked

28 && p.isParentOf(n))

29 atomic{ { p.changeChild(n,n1);

30 if(gp.isParentOf(p) && // change p’s child from n to n1.

31 p.isParentOf(n)&& !gp.marked) { return true; }}}}

32 n.marked = true;

33 p.marked = true;

34 //gp change child from p to the child of p other than n.

35 gp.changeChild(p,p.getOtherChild(n));

36 return true;

37 }}}}

Listing 1: Implementation of the optimistic BST

We make several explanations of the algorithm in Listing 1. First, compareTo is a method to
compare keys. The method k1.compareTo(k2) returns 0 if two keys are equal, or it returns -1 when
k1 < k2, or 1 when k1 > k2. Second, the children choosing function n.child(dir) for internal
node n returns the left child if dir == 0 or dir == −1, and the function returns the right child
otherwise.

The most surprising part of this algorithm is the search operation. It traverses the data
structure without any synchronization or retry. Many recent tree-based algorithms such as [2]
share this property, and many of these algorithms can be verified with our method.

4



Dictionary Operations. The algorithm implements three common operations, contains, add
and remove. Their sequential specifications are listed in the table below. They all use the helper
operation search to locate the position where the operations take place. add and remove operations
modify the heap under the protection of atomic sections. The atomic sections first check a set of
validity conditions and retry if they are violated. After these validity checks, atomic sections
perform the heap modification safely.

The sequential specification of the concurrent object can be viewed as a set of operations which
operate on an abstract set S of keys.

Precondition operation Postcondition
S = A contains(k) S′ = A ∧ ret = k ∈ A
S = A add(k) S′ = A ∪ {k} ∧ ret = k /∈ A
S = A remove(k) S′ = A− {k} ∧ ret = k ∈ A

4 Basic Definitions

States and Transitions. Program states are combinations of local stores and a shared heap.
The ith local store si is a map from the local variables of thread i to values. A shared heap h
is a finite map from memory locations L to values. The heap can be accessed by all threads. A
memory state can be written as σ = (s, h). In our specific setting, h = ha ∪ hb, where ha is the set
of memory locations which can be accessed by following heap pointer links starting from Root, hb
is the locations which cannot be accessed from Root.

Backbone Nodes/Links. For a state σ, a link u →σ v is a pair of nodes such that for some
i ∈ 1, 2, u.child(i) = v in state σ. A node/link is called a backbone node/link in state σ, if and
only if in state σ, there is a link path from Root to the node/link. In any state σ, for two backbone
nodes u, v we say that u <σ v, if and only if there is a link path from v to u. The state may be
omitted if it can be inferred from the context.

Computation Steps and Executions. For any thread t, we define a computation step s of t as
a transition κ from state σ to σ′. We write s = σ →t

κ σ
′, and denote src(s) = σ, trg(s) = σ′. A

computation step of thread t is either an invocation of an operation, a return from an operation,
or an atomic action in an operation invoked by thread t.

An execution Π is an alternating sequence of states and computation steps σ0, s0, σ1, s1, · · · ,
where σi = src(si) and σi+1 = trg(si). We define an execution trace of the execution by omiting
all the computation step symbols, namely σ0, σ1, · · · . An execution trace π can be simplified if we
consider only heap computation steps, these simplified execution traces are called heap execution
traces, they are simplifications of corresponding full execution traces.

Temporal Node Path, Temporal Backbone. In an execution trace σ0, σ1, · · ·σn, a sequence
of consecutive pairs of different nodes (u0, u1), (u1, u2), · · · (um−1, um) is called a node path. It is
called a temporal node path / backbone, if there is a sequence of integers 0 ≤ i1 ≤ i2 · · · im ≤ n,
such that (uk−1, uk) is a link / backbone link in state σik for each 1 ≤ k ≤ m. Sometimes, we also
call the sequence u0, u1, · · ·um a temporal node path / backbone going through the subsequence
Ts = {σi1 , · · ·σim}.

Bounds. For every state σ = (s, h), from the state invariants in Figure 1, we know that the

5



Shape φR Root node exists.

Shape φloop Shared heap does not contain any loop.

Shape φc2 Every internal node has two children.

Data φ∞ Root node has key −∞.

Data φ<
Data preserves tree order, for any node u, the keys on the left subtree ≤
u.key < the keys on the right subtree.

Mark φR A node is marked ⇔ it is a removed node.

Shape δe Child fields of removed nodes never changes.

Shape δo For a computation step (σ1, σ2), if u <σ2
v, then u <σ1

v

Shape δR Root never changes.

Shape δsn
If a computation step removes a backbone node, the successors of the node
remains unchanged in the next state.

Shape δRe A marked node can never become backbone again.

Data δK Key of any node can never change.

Table 1: Invariants of an external binary search tree.

reachable heap h0 is actually a binary search tree. For every unmarked node u in heap h0, there
is a unique heap path (u0 = Root, u1, u2 · · ·um = u) from Root. We associate to u a real interval
Sσ(u) = (a, b], where a = max{ui.key|ui.key < k, i ∈ [1, k]}, and b = min{ui.key|ui.key ≥ k, i ∈
[1,m]}. We refer to this interval as Static Bound of u at state σ.

Given a temporal node path P = (v0, · · · , vn) going through states Ts such that v0 is Root, we
define intervals Dl(P ) = (c, d] for l ∈ {1, 2 · · ·n}, where c = max{vi.key|vi.key < k, i ∈ [1, l]}, and
d = min{vi.key|vi.key ≥ k, i ∈ [1, l]}. Dn(l) is called the Dynamic Search Bound of Pl.

Linearizability. Linearizability [6] is a widely-used correctness property of concurrent objects.
Intuitively, it means each operation can be viewed as taking effect at some unique point in time
between the invocation and response. We put the definition of linearizability in Appendix C.

5 Verification of the Algorithm

5.1 Thread-Local Invariants Needed for the Proof

Our proof relies on a set of thread modular invariants. Basically, we classify two main classes of
invariants: state invariants and step invariants. State invariants are predicates p(σ0) on the state of
shared heap σ0, which can be written as separation logic formulas. Step invariants are predicates on
single computation steps. Step invariants can also be written as separation logic formulas, taking
account in both pre- and post-program states.

These invariants are natural to concurrent binary search tree algorithms, and most algorithms
preserve at least some of them. These invariants can all be formally verified using separation logic.
We list these invariants in Table 1. State invariants are named using φ, while step invariants are
named using δ. Note that these invariants are by no means immutable. They can certainly be
modified to verify other algorithms.

5.2 Generalized Hindsight Lemma

Lemma 1. Tree Version Hindsight Lemma

6



Consider an execution trace satisfying the shape invariants in Table 1, σ0, σ1, · · ·σn. For 0 ≤
i ≤ j ≤ n, if there is a backbone link u →σi v, and a link v →σj w (u, v, w are different nodes),
then there is i ≤ k ≤ j, such that v →σk w is a backbone link.

Proof. See proof of Lemma 7.

Lemma 2. Tree Version Temporal Backbone Lemma
Given an execution trace T = (σ0, σ1, · · · , σn) satisfying the shape invariants and a temporal

node path N = {(u0 = Root, u1), (u1, u2), · · · (um−1, um)} going through Ts = {σi1 , · · ·σim}, Then
there is another subsequence of execution trace T ′s = {σj1 , · · ·σjm} such that for all 1 ≤ k ≤ m− 1,
jk−1 ≤ jk ≤ ik, and N is a temporal backbone going through T ′s.

Proof. Apply the Tree version Hindsight Lemma n times, and the theorem follows.

For a search operation invoked by any thread t, the operation crosses the links to reach a leaf
node. The search path of thread t is defined as a temporal node path N = u0, u1, · · ·um of all the
nodes visited by the search operation.

Corollary 5.1. Consider an execution trace of the algorithm in Listing 1 satisfying shape invari-
ants, T = (σ0, σ1, · · ·σn). If this execution trace has an invocation to the search operation of a
thread t, its search path is N = u0, u1, · · ·um. Then there is a subsequence Ts = {σi1 , · · ·σim}, such
that N is a temporal backbone goes through Ts.

5.3 Data-Expansion Lemma

To state the Data-Expansion Lemma, we reconsider our definition of static bound Sσ(u) of a
backbone node u in a state σ. We want to extend the definition to removed nodes. Since a removed
node v must be on the backbone at some past state, we denote τ the last state when v was on the
backbone. Then we define Sσ(v) = Sτ (v). Note this static bound will never change after a node is
removed. We can prove the static and temporal versions of Data-Expansion Lemma.

Lemma 3. Static Data-Expansion Lemma
Given an execution trace σ0, σ1, · · ·σn satisfying shape, data and mark invariants, then for each

0 ≤ i ≤ j ≤ n, if internal node u exists from state σi, then we have

Sσi(u) ⊆ Sσj (u)

Proof. We only have to prove Sσi(u) ⊆ Sσi+1(u) for each i. We distinguish 2 cases:

1. If u is a backbone node in both σi and σi+1. Let Ak = {v|v < u in σk}. Then Ai+1 ⊆ Ai,
because from δo, each node such that u <σi+1 v satisfied u < vσi .

So Ai+1 ⊆ Ai. Since the static bound is determined by the the set Ai, and the key of u remain
the same, so the static bound of u is non-decreasing.

2. If u is not a backbone node in σi+1, then the static bound is obviously the same in σi and
σi+1.

7



Lemma 4. Data-Expansion Lemma
Let T be an execution trace σ0, σ1, · · ·σn satisfying shape, data and mark invariants. Let P be

a temporal node path P = {v0 = Root, v1, · · · vm} goes through subsequence Ts = {στ(1), · · ·στ(m)}.
For simplicity we assume vm is a leaf node. Then the dynamic search bound Di(P ) of the temporal
node path is contained in the static bound Sστ(i)(vi). Namely, we have

Di(P ) ⊆ Sστ(i)(vi), 0 ≤ i < m

Proof. Because v0 = Root, the temporal node path is also a temporal backbone goes through
subsequence T ′s = {σγ(1), · · ·σγ(m)}, such that γ(k − 1) ≤ γ(k) ≤ τ(k) for each k.

We prove a stronger form of the lemma:

Di(P ) ⊆ Sσγ(i)(vi), 0 ≤ i < m

Due to the static Data-Expansion lemma, we have Sσγ(i)(vi) ⊆ Sστ(i)(vi), so this stronger form
implies our lemma.

We prove this lemma by induction on i. For i = 0, the lemma holds trivially, because D0(P ) =
Sσγ(0)(v0) = (−∞,+∞).

We assume i = k, Dk(P ) ⊆ Sσγ(k)(vk). Because of the static Data-Expansion Lemma, we have
Dk(P ) ⊆ Sσγ(k)(vk) ⊆ Sσγ(k+1)

(vk).
For i = k + 1, in state σγ(k+1), the link l : uk → uk+1 is a backbone link. Crossing the link

would put the same constraint on both dynamic search bound and static bound, for example, if
link l is a right child pointer of uk, then Dk+1(P ) = Dk(P )∩ (uk.key,+∞), and also Sσγ(k+1)

(vk) =
Sσγ(k+1)

(vk+1) ∩ (uk.key,+∞). So we have Dk+1(P ) ⊆ Sσγ(k+1)
(vk+1).

So the lemma holds for every 0 ≤ i < m.

Corollary 5.2. Suppose a search path P = {v0, v1, · · · vm} is visited by a search operation in an
execution trace σ0, σ1, · · ·σn satisfying shape, data and mark invariants. For simplicity we assume
the search operation invoked at state σ0 and return at σn. We denote at state σi, the search operation
is visiting node vφ(i)(namely pointer n = vφ(i)), then the dynamic search bound Dφ(i)(P ) of node v
is contained in the static bound Sσi(vφ(i)). Since the search key k always lies in the dynamic search
bound, we have

k ∈ Dφ(i)(P ) ⊆ Sσi(vφ(i))

Proof. A search path is a temporal node path from Root goes through a sequence of states Ts =
{στ(1), · · ·στ(m)}. So we have from above lemma:

Dφ(i)(P ) ⊆ Sστ(φ(i))(vφ(i)) ⊆ Sσi(vφ(i))

This is because obviously we can make φ(τ(k)) = k for k ≤ m.

5.4 Verification of Linearizability

We define an effectless operation as one of three types: contains operations, remove operations
returning false, and add operations returning false. In these three cases, the linearizability points of
these operations are non-fixed. Namely, the linearizability point of one thread running an effectless
operation is sometimes in another thread. However, the linearizability of effectless operations can
be directly deduced from the thread modular invariants, which simplifies our verification.

8



Lemma 5. Effectless operations are linearizable with respect to their sequential specifications.

Proof. All effectless operations invokes the search operation as sub-procedure. We assume the
search path of one effectless procedure is v0 = Root, v1, · · · vm, vm is a leaf node. The execution
trace is T = (σ0, σ1, · · ·σn). According to the temporal backbone lemma, we know that link
Lm = (vm−1, vm) was a backbone link in some past state. We denote σd the last state when the
Lm is on backbone before the search operation crosses the link. (If it remains a backbone till the
search crosses the link, we take σd to be the last state before it decides no further search is needed,
line 5 in the algorithm below) We claim that σd is the right linearizability point.

We distinguish two cases: If a search operation actually ”finds” a node with the search key ,
namely vm.key = k, then in σd, vm was on the backbone. If search operation finds vm.key 6= k,
then node with key k is not in the tree on σd. We can prove this as follows:

Without loss of generality, we assume k > vm−1.key. The ”≤” case follows the same argument.
From the Data-Expansion lemma, we know that k ∈ Sσd(vm−1). Namely, if a leaf node k is
presented in the tree, it should be found in the subtree rooted at node vm−1, namely, on the right
subtree of vm−1.

If in σd+1, Lm is still a backbone link, then the computation step s = (σd, σd+1) is the link
crossing of the search operation, the heap hσd = hσd+1

. Then since vm.key 6= k, so k is not in
Abs(σd).

If in σd+1, Lm is not a backbone link. The invariants δsn and δe guarantee that in σd+1 and
subsequent states, the right child of node vm−1 remains the same as in state σd. If node with key k
exists in state σd, it should be on the right subtree of node vm−1. However, the right child of vm−1
is a leaf node vm with vm.key 6= k. So we know that no leaf node with key k exists in state σd.

The linearizability of effectful operations, which have fixed linearizability points, are not hard
to prove.

Lemma 6. The External BST algorithm implemented above is correct with respect to the sequential
specification.

Proof. It is easy to verify the invariants of Table 1 using separation logic [7] and Owicki-Gries
logic [11]. This verification can be done in a purely thread modular way. The rest is to define
the linearizability points of each operation. The linearizability point of a effectful operation is
the state before the execution of the last atomic section. The linearizability points of effectless
operations is defined above. The linearizability of effectless operations is implied by the thread-
modular invariants, which we have already proved in the lemma above. Now we only have to prove
the linearizability of effectful operations.

We consider the abstract set function on states, Abs(σ). Abs(σ) is the set of keys of all reachable
(unmarked) leaf nodes in the tree. Its formal definition is included in Appendix B.

For effectful add operations, let s = (σa, σ
′
a) be the computation step of the execution of last

atomic section. The validation condition ensures l1 : ∗p → n is a backbone link in σa. Using this
validation condition and the state invariants in Listing 1, and the definition of abstraction function,
it is obvious to check the computation step modify the heap according to its specification: all leaf
nodes reachable from Root in σa remains reachable in σ′a, and a single new leaf node with key k
become reachable.

The case for effectful remove operations is similar. let s = (σr, σ
′
r) be the computation step of

the execution of last atomic section. The validation condition ensures l1 : ∗p→ n and l2 : ∗gp→ p

9



are backbone links in σr. It is obvious to check the computation step modifies the heap according
to its specification: all leaf nodes reachable from Root in σa remains reachable in σ′a, except the
leaf node pointed by n.

6 Generalized Hindsight Lemma

In this section, we generalize Hindsight Lemma to a very general form. The lemma plays an essential
role in the verification of both linked list and trees, and interestingly, it is still valid on a large class
of linked data structures. We use the concept of search data structure to express the lemma.

Definition 6.1. A data node is a fixed-size dynamic-allocated heap object consisting of a boolean
mark field, a data field and several successor pointers to other data nodes. A search data structure
is a heap object consisting of several data nodes with a specific node H, called the entry node. A
concurrent search structure is a concurrent object whose shared heap is a search data structure. We
assume that the concurrent object also satisfies the thread-modular invariant that a node is marked
if and only if it is unreachable from H.

For a concurrent search structure T , we assume the object also satisfies the step invariant
that when or after nodes are removed from reachable heap, they cannot become backbone again
and their successor pointers remain unchanged. We call this assumption ”Removed Unchanged
Assumption (RUA)”. On a concurrent search structure, we define link, backbone link, temporal
backbone, temporal node path as we do in Section 4 and Section 5. We formalize all the conditions
of the Generalized Hindsight Lemma and the Generalized Temporal Backbone Lemma in Appendix
B.

Lemma 7. Generalized Hindsight Lemma
For a concurrent search structure Tg, assume Tg satisfies RUA. Consider an execution trace

σ0, σ1, · · ·σn. For 0 ≤ i ≤ j ≤ n, if there is a backbone link u →σi v, and a link v →σj w (u, v, w
are different nodes), then there is i ≤ k ≤ j, such that v →σk w is a backbone link.

Proof. If in state σj , node v is a backbone node, then choose k = j and we are done. If not, then
v is not a backbone node in σj , let l be the largest index such that v is a backbone node in σl, so
l ≥ i. In σl+1, v is removed from backbone. But the link v →σj w exists, according to δe and δsn,
v → w exists from state σl to σj . But in state σl, v is a backbone node, so the link v →σk w is a
backbone link.

7 Extensions to Other Algorithms

7.1 Balanced Binary Search Trees

Balanced binary search trees are similar to the example tree we present above, with a special re-
balancing operation performing a tree rotation. Careless rebalancing will mislead the tree traversal.
Consider the scenario in Figure 2. The searching thread T1 fails to find the existing node with key
6 due to a concurrent rotation by thread T2. So T1 usually have to backtrack and retry. In this
way, T1 makes the Data-Expansion Lemma hold through the search path.

10



Figure 2: Concurrent BST with rotation

However, one can also perform rebalancing by addition and removal of nodes instead of in-place
rotation. Performing a tree rotation is equivalent to performing the following procedure [2]: create
two new nodes with key 6 and key 8, set their pointers to form the rotated subtree, and change the
pointer of node with key −3 to the new node with key 6. In this way, the rebalancing procedure
satisfies almost all the step and state invariants listed in Table 1, thus can be verified in this way.

Listing 2 is an example of balanced binary search tree implemented in [2]. We only list the
Delete operation here for simplicity. Other operations are similar to this one, and they can be
found in their paper.

First, we briefly review the LLX and SCX primitives [2]. To simplify our proof, we assume that
the primitives are atomic. LLX and SCX operates on tree nodes. LLX(r) returns a snapshot of
the mutable fields of the node r if r is on the tree. If r is removed from the tree, LLX(r) returns
FINALIZED. SCX(V,R, flr, new) modifies the data structure only when every node r in V has
not been changed since LLX(r). The SCX atomically verifies the nodes in V remain unchanged,
and then it sets the nodes in R as FINALIZED, at last it sets the pointer flr to new. The relaxed
RB tree is an external binary search tree, with two sentinel nodes. Each node n in the tree has
three fields, n.w stands for weight, n.k stands for the key, n.v stands for the value corresponding
to n.k, and n.left, n.right stands for the children.

We can verify the tree-based map algorithm satisfies the invariants listed in Table 2.

Get(key)

(-,-,l) := SEARCH(key);

return (key = l.k)? l.v: null;

Search(key)

n0 = null; n1 = Root; n2 := entry.left;

while n2 is internal

n0 := n1; n1 := n2;

n2 := (key < n1.k)? n1.left: n1.right;

return (n0,n1,n2);

Delete(key)

do

11



result := Trydelete(key);

while result = FAIL;

(value ,violation) := result;

if violation then Cleanup(key);

return value;

Cleanup(key)

while(true)

n0 := null; n1 := null; n2:= Root; n3:= Root.left;

while(true)

if(n3.w > 1 || n2.w =0 && n3.w =0)

Tryrebalance(n0,n1,n2 ,n3);

break;

else if n3 is a leaf

return;

if (key < n3.k)

n0 := n1; n1 := n2; n2:= n3; n3:= n3.left;

else n0 := n1; n1 := n2; n2:= n3; n3:= n3.right;

Trydelete(key)

(n0 ,-,-) := Search(key);

if (n0 = null) return (null , false)

s0 = LLX(n0);

if (s0 = FAIL)

n1 := (key <s0.left.k)? s0.left: s0.right;

s1 = LLX(n1);

if (s1 = FINALIZED) return FAIL;

n2 := (key <s1.left.k) ? s1.left: s1.right;

if(n2.k != key) return FALSE;

s2 = LLX(n2);

if (s2 = FINALIZED) return FAIL;

n3 := (key <s1.left.k) ? s1.right: s1.left;

s3 := LLX(n3);

w := (n1.k = infty || n0.k = infty) ? 1: n1.w+n3.w

V := (key <s1.left.k)? (n0,n1,n2,n3) :(n0 ,n1,n3,n2);

R := (key <s1.left.k) ? (n1 ,n2,n3) :(n1 ,n3,n2);

fld = (key <s0.left.k) & n0.left: & n0.right;

if SCX(V,R,fld ,new) return (n2.v, (w >1));

else return FAIL;

Listing 2: Relaxed RB Tree

Using similar notations, we can prove the following Data-Expansion Lemma. The proof is
almost the same as the one presented in Section 4. The General Hindsight Lemma also trivially
applies here.

Lemma 8. Static Data-Expansion Lemma
Given an execution trace σ0, σ1, · · ·σn satisfying shape, data and mark invariants in Table 3,

then for each 0 ≤ i ≤ j ≤ n, if internal node u exists from state σi, then we have

Sσi(u) ⊆ Sσj (u)

Proof. We only have to prove Sσi(u) ⊆ Sσi+1(u) for each i. We distinguish 2 cases:

1. If u is a backbone node in both σi and σi+1. Let Ak = {v.key|v < u in σk}. Then Ai+1 ⊆
Ai, because from δo, each node key k such that ∃u • u.key = k ∧ u <σi+1 v satisfies also
∃u • u.key = k ∧ u <σi v.

So Ai+1 ⊆ Ai. Since the static bound is determined by the the set Ai, and the key of u remain
the same, so the static bound of u is non-decreasing.

12



Shape φR Root node exists.

Shape φloop Shared heap does not contain any loop.

Shape φc2 Every internal node has two children.

Data φ∞ Root node has key −∞.

Data φ<
Data preserves tree order, for any node u, the keys on the left subtree ≤ u.k <
the keys on the right subtree.

Mark φR A node is finalized ⇔ it is a removed node.

Shape δe Child fields of removed nodes never changes.

Shape δo
For a computation step (σ1, σ2), v is a backbone node in σ1 and σ2. ∀k such
that u <σ2

v and u.k = k, we have ∃u′ such that u′.k = k and u <σ1
v.

Shape δR Root never changes.

Shape δsn
If a computation step removes a backbone node, the successors of the node
remains unchanged in the next state.

Shape δRe A finalized node can never become backbone again.

Data δK Key of any node can never change.

Table 2: Invariants of the relaxed RB tree.

2. If u is not a backbone node in σi+1, then the static bound is obviously the same in σi and
σi+1.

Lemma 9. Data-Expansion Lemma
Let T be an execution trace σ0, σ1, · · ·σn satisfying shape, data and mark invariants. Let P be

a temporal node path P = {v0 = Root, v1, · · · vm} goes through subsequence Ts = {στ(1), · · ·στ(m)}.
For simplicity we assume vm is a leaf node. Then the dynamic search bound Di(P ) of the temporal
node path is contained in the static bound Sστ(i)(vi). Namely, we have

Di(P ) ⊆ Sστ(i)(vi), 0 ≤ i < m

Following the same line, we define effectless operations are of three kinds: Put operations
returning false, Delete operations returning false, and Get operations. It is easy to prove the
following lemma.

Lemma 10. Effectless operations are linearizable with respect to their sequential specifications.

Note since the rebalancing operations do not change the value of Abs and the static bound, so
this operation does not need to be taken into consideration explicitly in our verification. This is
why our verification is much simpler than previous solutions.

7.2 Skip Lists

we can also easily apply the verification method in this paper to an optimistic variant of the lazy
skip list algorithm [5]. Traversal in the skip list is wait-free, and several natural thread modular
invariants can imply Generalized Hindsight Lemma and Data-Expansion Lemma on skip lists, thus
can guarantee the correctness of the algorithm.

We list the optimistic version of the algorithm in Listing 3.

13



class Node {

int key;

int topLayer;

Node *[ MaxHeight] nexts;

bool marked;

}

int findNode(int v, Node* preds[], Node * succ){

int lFound = -1;

Node* pred = Head;

for(int layer = MaxHeight -1; layer >= 0; layer --){

Node * curr = pred ->nexts[layer ];

while(v>curr ->key){

pred = curr; curr = pred ->nexts[layer];

}

if(lFound == -1 && v = curr ->key)

lFound = layer;

preds[layer] = pred;

succs[layer] = curr;

}

return lFound;

}

bool add(int v){

int topLayer = randomLevel(MaxHeight );

Node * preds[MaxHeight], succs[MaxHeight ];

while(true){

int lFound = findNode(v,preds ,succs);

if(lFound != -1)

return false;

}

Node * pred , * succ , * prevPred = null;

bool valid = true;

atomic{

for(int layer =0; valid && layer <= toplayer; layer ++){

pred = preds[layer];

succ = succs[layer];

if(pred != prevPred)

prevPred = pred;

valid = !prev ->marked && !succ ->marked &&

pred ->nexts[layer] == succ&& valid;

}

if(! valid) continue;

Node * newNode = new Node(v,topLayer );

for(int layer =0;layer <= toplayer;layer ++){

newNode -> nexts[layer] = succs[layer];

preds[layer]->nexts[layer] = newNode;

}

return true;

}

}

bool remove(int v){

Node *nodeToDelete = null;

bool isMarked = false;

int topLayer = -1;

Node* preds[MaxHeight], succs[MaxHeight ];

while(true){

int lFound = findNode(v,preds ,succs);

if(lFound == -1){

return false;

14



Shape φR Head and Tail node exists.

Shape φloop Shared heap does not contain any loop.

Shape φT The tail node has no successor.

Shape φc2 Every node other than the tail node has node.topLayer successors.

Data φH∞ Head node has key −∞.

Data φT∞ Tail node has key +∞.

Data φsort
The keys of successors of a node are strictly sorted, nodes in the bottom layer
have smallest key.

Data φ<
Data preserves order, the key of every node is smaller than the keys of its
successors.

Mark φR The tail node is reachable from every node.

Shape δe Successor fields of removed nodes never changes.

Shape δH The value of Head never changes.

Shape δT The value of Tail never changes.

Shape δsn
If a computation step changes the successor pointer of one node, the node will
remain on backbone in the following state.

Shape δRe A removed node can never become backbone again.

Data δK Key of any node can never change.

Table 3: Invariants of the optimistic skip list.

}

nodeToDelete = succs[lFound ];

atomic{

for(int layer =0; valid && layer <= toplayer; layer ++){

pred = preds[layer];

succ = succs[layer];

valid = !pred ->marked && pred ->nexts[layer] = succ;

for(int layer =toplayer ;layer >=0; layer --)

preds[layer]->nexts[layer] = nodeToDelete ->nexts[layer ];

}

return true;

}

}}

Listing 3: Optimistic skip list

For the skip list algorithm above, we also figure out the set of invariants below in Table 3.
We can also define the concepts of the temporal backbone, temporal node paths on the optimistic

skip list. Then we have the following version of Generalized Hindsight Lemma:

Lemma 11. Skip-List Version Hindsight Lemma
Consider an execution trace satisfying the shape invariants in Table 3, σ0, σ1, · · ·σn. For 0 ≤

i ≤ j ≤ n, if there is a backbone link u →σi v, and a link v →σj w (u, v, w are different nodes),
then there is i ≤ k ≤ j, such that v →σk w is a backbone link.

Proof. See proof of Lemma 7.

Lemma 12. Skip-List Version Temporal Backbone Lemma
Given an execution trace T = (σ0, σ1, · · · , σn) satisfying the shape invariants in Table 3 and a

temporal node path N = {(u0 = Root, u1), (u1, u2), · · · (um−1, um)} going through Ts = {σi1 , · · ·σim},
Then there is another subsequence of execution trace T ′s = {σj1 , · · ·σjm} such that for all 1 ≤ k ≤
m− 1, jk−1 ≤ jk ≤ ik, and N is a temporal backbone going through T ′s.

15



Proof. Apply the Tree version Hindsight Lemma n times, and the theorem follows.

We also have the following version of Data-Expansion Lemma.

Lemma 13. Consider an execution trace satisfying the shape, data and mark invariants in Ta-
ble 3, σ0, σ1, · · ·σn. Let N be a temporal node path N = {(u0, u1), (u1, u2), · · · (um−1, um)} goes
through subsequence Ts = {σi1 , · · ·σim}. Assume um−1, um are on the bottom layer of the skip
list. Then for each l = (um−1, um), there is a state σni, such that Abs(σni) ∩ [ui.key, ui+1.key] =
{ui.key, ui+1.key}.

Proof. The proof follows from the Generalized Hindsight Backbone Lemma, and the invariants that
keys in the skip lists are strictly sorted.

Following the same line, we define effectless operations are of three kinds: add operations
returning false, remove operations returning false, and find operations. It is easy to prove the
following lemma.

Lemma 14. Effectless operations are linearizable with respect to their sequential specifications.

8 Remarks

8.1 Related Works

The proof strategy used in this paper is essentially based on the idea of Herlichy and Wing [5]. In
their fundamental paper, a proof of linearizability using data abstraction function is presented.

Our work is related to the recent advances [4, 1, 3] in concurrent binary search tree algorithms.
The algorithm we set as our verification target is similar to [4], except that we use locks or atomic
sections instead of non-blocking primitives. We find the idea of our verification may also be appli-
cable to many of these algorithms. Our work also shares commonalities with the Hindsight Lemma
paper [10]. We go one significant step forward by providing purely thread modular proofs for ad-
vanced concurrent algorithms such as trees. In fact, most tree algorithms are extremely complicated
and hard to prove correct or verify rigorously. There are some recent proofs for tree algorithms [4],
However, their proofs are purely mathematical (not formal) and do not use explicit thread modular
arguments, making their proofs much longer than ours, and it is very hard (if not impossible) to
refine their proofs into formal ones.

As the verification of the lazy linked list algorithm in [10], our verification of the invariants can
also be viewed as taking place in simple Owicki-Gries logic [11], namely, we do not use complex
mechanisms such as these used in rely-guarantee reasoning [8]. In order to express our verification in
a clean way, we use small atomic sections instead of locks. This technical limitation, however, is by
no means essential. In the price of more complicated proofs, we can actually allow the verification
of lazy counterpart of these algorithms with some extra complexity.

In [2], a new abstraction to implement concurrent search trees is presented, together with several
mathematical proofs of correctness. Also, in the correctness proof, the author proved a result
similar to the Generalized Hindsight Lemma in the context of their implementation. However,
their correctness results rely on specialized implementation technique and do not rely on explicit
thread local invariants. So they cannot be used as a basis for thread modular formal verification.

16



8.2 Conclusions

Formal verification of shared memory concurrent algorithms is a hard but important problem in
the multicore era. The main difficulty is to prove the correctness of the algorithms in the presence
of complicated thread interferences. Existing methods such as [11] usually need to introduce many
auxiliary states, which lead to over-complicated proofs. So they cannot be adapted to some ad-
vanced concurrent data structures, such as binary search trees. In [10], O’Hearn etc. have shown
that for a special concurrent linked list algorithm, thread modular verification can be established.
In this paper, we make a rather surprising observation that for some advanced concurrent data
structures, such as binary search trees, thread modular proofs are also achievable, thus can greatly
simplify formal verification of concurrent algorithms.

In [11], Owicki and Gries argued that using auxiliary states is sometimes a must, and many
simple concurrent programs cannot admit purely thread modular proofs without auxiliary states.
Although Owicki and Gries’ work limits the use of thread modular proofs, it is interesting to see
that many advanced highly concurrent data structures do not fall into this limitation. Thanks to
the Data-Expansion lemma and the Generalized Hindsight Lemma, we can see that some advanced
concurrent algorithms can admit purely thread modular formal verification. This observation makes
the goal of formal verification of many advanced concurrent objects actually achievable.

On the bright side, the Generalized Hindsight Lemma is proved correct on a large class of data
structures satisfying only the Removed Unchanged Assumption, which is easy to formalize and,
hopefully, to automate. On the other side, the Data-Expansion Lemma is more data structure
specific. It is shown in our running example to hold on the binary search trees. However, the
lemma is very promising for generalization to other data structures.

The Data Expansion Lemma combined with the Generalized Hindsight Lemma eliminates the
needs of constructing linearizability points in other threads before carrying out formal proofs. This
is particularly important for advanced concurrent data structures, such as binary search trees,
whose internal logic is highly complicated. These lemmas give an direct formal explanation of why
the tree traversal can work without any synchronization. They may play an important rule in the
design and verification of concurrent algorithms.

17



References

[1] Nathan G Bronson, Jared Casper, Hassan Chafi, and Kunle Olukotun. A practical concurrent
binary search tree. In ACM Sigplan Notices, volume 45, pages 257–268. ACM, 2010.

[2] Trevor Brown, Faith Ellen, and Eric Ruppert. A general technique for non-blocking trees.
In Proceedings of the 19th ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming, PPoPP ’14, pages 329–342, New York, NY, USA, 2014. ACM.

[3] Dana Drachsler, Martin Vechev, and Eran Yahav. Practical concurrent binary search trees
via logical ordering. In Proceedings of the 19th ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming, PPoPP ’14, pages 343–356, New York, NY, USA, 2014.
ACM.

[4] Faith Ellen, Panagiota Fatourou, Eric Ruppert, and Franck van Breugel. Non-blocking binary
search trees. In Proceedings of the 29th ACM SIGACT-SIGOPS symposium on Principles of
distributed computing, pages 131–140. ACM, 2010.

[5] Maurice Herlihy, Yossi Lev, Victor Luchangco, and Nir Shavit. A simple optimistic skiplist al-
gorithm. In Structural Information and Communication Complexity, pages 124–138. Springer,
2007.

[6] Maurice P Herlihy and Jeannette M Wing. Linearizability: A correctness condition for con-
current objects. ACM Transactions on Programming Languages and Systems (TOPLAS),
12(3):463–492, 1990.

[7] Samin S Ishtiaq and Peter W O’Hearn. Bi as an assertion language for mutable data structures.
In ACM SIGPLAN Notices, volume 36, pages 14–26. ACM, 2001.

[8] Cliff B. Jones. Specification and design of (parallel) programs. In IFIP Congress, pages
321–332, 1983.

[9] Aravind Natarajan and Neeraj Mittal. Fast concurrent lockfree binary search trees. In Proc.
19th ACM Symposium on Principles and Practice of Parallel Programming, 2014.

[10] Peter W O’Hearn, Noam Rinetzky, Martin T Vechev, Eran Yahav, and Greta Yorsh. Verifying
linearizability with hindsight. In Proceedings of the 29th ACM SIGACT-SIGOPS symposium
on Principles of distributed computing, pages 85–94. ACM, 2010.

[11] Susan Owicki and David Gries. An axiomatic proof technique for parallel programs i. Acta
informatica, 6(4):319–340, 1976.

18



A Programming Language

We define that a concurrent program P is comprised of a init atomic command and a set of
concurrent operations. One thread runs the init command first, and then other threads are made
ready to run.

Atomic commands. An atomic command is comprised of one or more program statements. It
can be represented as an edge in the control flow graph, so each atomic command is a basic block.
However, a basic block is not necessarily an atomic command. Intuitively, atomic commands are
not interfered by other threads. Each atomic command may access global variables, thread-local
variables or the shared heap. To simplify the programming language, we only allow the thread to
refer to the global variables and the share heap by load/store statements.

Concurrent Operations. A concurrent operation is comprised of several atomic commands. A
concurrent operation can be run by any thread, and the schedule of atomic commands between
concurrently executing threads are completely undefined. We define the semantic domain of our
programming language below. A→ B represents the set of partial functions from A to B.

Values = Integers ∪ Bools ∪ Locations

Heaps = ∪A∈finLocations(A→ Memory Allocated Objects)

Memory Allocated Objects = Field Names→ Values

StoresL = VL → Values

StoresG = VG → Values

We can define the syntax of our programming language. e represents an expression over local
stack variables, T represents a memory allocated object type, c is a field of a heap cell. {x, y, z · · · }
are local stack variables in VL, we write the local variables of thread t by {xt, yt · · · }. {X,Y, Z · · · }
are global stack variables in VG, b is a boolean variable.

Stmt = Skip
| x = e | x = Y | X = y
| x = new T( ) | assume (b)
| x = y . c | x . c = y

Listing 4: Program Statements

Memory States. A memory state σ = (sl, sg, h) is comprised of a local stack for every thread
sl ∈ T → StoresL, a global stack sg ∈ StoresG, and a heap h ∈ Heaps. We write Σ the set of
program states, and T the set of thread IDs. The small step semantics of the program statements
can be defined in Table 2.

Program Semantics. The semantics of an atomic command is determined by the composition
of relations of the small step semantics above. An atomic transition tra = σ →t σ

′ means that
executing sequentially the program statements in the semantics above may produce a new program
state σ′. Its execution thread is t. The atomic transition is also called a computation step. A
program execution is a sequence of transitions σ1, σ2 · · · .

19



skip (sl, sg, h)→ (sl, sg, h)
x = e (sl, sg, h)→ (sl[xt 7→ JeK(sl)], sg, h)
x = Y (sl, sg, h)→ (sl[xt 7→ sg(Y )], sg, h)
X = y (sl, sg, h)→ (sl, sg[x 7→ sl(yt)], h) .
x = new T() (sl, sg, h)→ (sl[xt 7→ l], h[l 7→ λc.⊥]) l /∈ dom(h)
x = y.c (sl, sg, h)→ (sl[xt 7→ h(yt, c)], sg, h) sl(yt) ∈ dom(h)
x = y.c (sl, sg, h)→ error sl(yt) /∈ dom(h)
x.c = y (sl, sg, h)→ (sl, sg, h[(sl(x), c) 7→ sl(yt)]) sl(xt) ∈ dom(h)
x.c = y (sl, sg, h)→ error sl(xt) /∈ dom(h)
assume(b) (sl, sg, h)→ (sl, sg, h) JbK(sl)

Table 4: Semantics of Program Statements by Thread t.

B Formal Definitions of Invariants and Abstraction Function

B.1 Invariants Used in the Proof of Concurrent BST

We formalize the shape and state invariants using separation logic. The invariants can then be
used in thread modular formal verification.

First, we define some sub-formulas corresponding to four kinds of nodes on the tree:

N I
1 (x, k, p1, p2) = x 7→ (false, k, p1, p2)

NL
1 (x, k) = x 7→ (false, k)

NL
2 (x, k, p1, p2) = x 7→ (true, k, p1, p2)

NL
2 (x, k) = x 7→ (true, k)

N(x, k) = NL
1 (x, k) ∨NL

2 (x, k) ∨ (∃p1, p2 •N I
1 (x, k, p1, p2)) ∨ (∃p1, p2 •N I

2 (x, k, p1, p2))

Each unmarked leaf node on the tree may be the root of a removed inversed tree. So we define
the sub-formulas:

T (x, k) = emp ∨ (∃k′1, p′1, y • k′1 > k ∧N I
2 (y, k′1, p

′
1, x) ∗ Tr2(p′1, k′1))

∨(∃k′2, p′2, y′ • k′2 ≤ k ∧N I
2 (y′, k′2, x, p

′
2) ∗ Tr3(p′2, k′2))

Tr2(x, k) = ∃k1 • (k1 ≤ k ∧NL
2 (x, k1) ∗ T (x, k1))

Tr3(x, k) = ∃k2 • (k2 > k ∧NL
2 (x, k1) ∗ T (x, k1))

Then we can encode the invariants in Table 1 in a single separation logic formula:

Tr1(x, k) = (NL
1 (x, k) ∗ T (x, k))

∨(∃p1, k1, p2, k2 • k1 ≤ k ∧ k < k2 ∧N I
1 (x, k, p1, p2) ∗ Tr1(p1, k1) ∗ Tr1(p2, k2))

The overall shape invariant is defined as:

φ(Root,−∞) = Tr1(Root,−∞) (1)

First, we have the following immutability invariants:

φk(x, k) = N(x, k) (2)

20



φR(x) = Root = x ∧ x 6= null (3)

Second, we have the removed unchanged assumption invariant:

φrua(x, k, p1, p2) = N I
2 (x, k, p1, p2) (4)

We have also the following conditional order preserving invariant, it holds in any computation
step σ1, s, σ2, when x, y both points to backbone nodes in pre and post states σ1 and σ2. First we
write the following sub-formula:

pr(x, y) = (∃k, p1 •N I
1 (x, k, p1, y)) ∨ (∃k, p2 •N I

1 (x, k, y, p2))

∨(∃k, p1, z •N I
1 (x, k, p1, z) ∗ φr(z, y)) ∨ (∃k, p2, z •N I

1 (x, k, z, p2) ∗ φr(z, y))

Then the invariant can be written as, for any computation step (σ, σ′), we have:

σ |= pr(x, y)∗true⇔ σ′ |= (pr(x, y)∗true)∨(∃k, p1, p2•N I
2 (x, k, p1, p2))∨(∃k, p1, p2•N I

2 (y, k, p1, p2))

The abstraction function is defined as:

Abs(σ) = {k ∈ (−∞,+∞)|σ |= NL
1 ( , k) ∗ true} (5)

We have the following obvious formula, namely, a node is not removed is a node which is
reachable from Root.

φ(Root,−∞)⇒ (∀k • (k ∈ Abs(σ))⇔ ∃x • pr(Root, x) ∗NL
1 (x, k) ∗ true) (6)

B.2 Formalizing the Generalized Hindsight Lemma

We formalize the Generalized Hindsight Lemma, to make it available in future verification of con-
current algorithms. We present a few invariants, that can be easily checked by Hoare tuples written
in separation logic. In this way, we can see why this lemma is promising to automate.

First, we assume the data nodes have type T1, T2, · · ·Tn. n is a constant. Nodes of type Ti have
a mark field, a data field, and ki pointers to other nodes. First , we define sub-formulas:

N i
1(x, d,pi) = N i

1(x, d, p1, p2, · · · pki) = x 7→ (false, d, p1, p2 · · · pki), 1 ≤ i ≤ n (7)

N i
2(x, d,pi) = N i

1(x, d, p1, p2, · · · pki) = x 7→ (true, d, p1, p2 · · · pki), 1 ≤ i ≤ n (8)

N i(x, d,pi) = N i
1(x, d,pi) ∨N i

2(x, d,pi) (9)

N1(x) = ∨ni=1(∃d,pi •N i
1(x, d,pi)) (10)

S(x, y) = ∨ni=1(∃p1, p2 · · · , pki−1 • ∨
ki
j=1N

i(x, d,pj
i(x))) (11)

where pj
i(x) = (p1, p2 · · · pj−1, x, pj · · · pki−1).

21



The Generalized Hindsight Lemma assumes first, there is a pointer H, H does not change, so
we have the invariant:

φh(x) = H = x ∧ ∃d,pi •N i
1(x, d,pi) (12)

We define the sub-formula, the formula formalize the assertion that there is a heap path from
x to y. Note the presence of dangling pointers is not a problem, our model allow loops in the heap.

pr(x, y) = (x = y ∧ emp) ∨ (∃z • S(x, z) ∗ pr(z, y)) (13)

The concurrent search data structure should also satisfy the following invariant:

φmark(x) = pr(H,x)↔ N1(x) (14)

In practice the mark field can be omitted. It can be viewed as an auxiliary variable in order to
make our formulas simpler.

The RUA assumption step invariant can be formalized as, for any computation step (σ, σ′):

δrua(x, d, d
′) : σ |= N i(x, d,pi) ∧ σ′ |= N i

2(x, d
′,p′i)⇒ (p′i = pi) (15)

The above step invariant ensures that once a node become marked, its successor pointers become
immutable. It can easily translated to Hoare tuple used in thread modular verification.

The Generalized Hindsight Lemma can be formally stated as:

Lemma 15. Given a concurrent search structure with nodes of types T1, T2 · · ·Tn. If it satisfies
thread modular state invariants ∃x • φh(x), ∀x • φmark(x), and step invariant ∀x, d, d′ • δrua(x, d)
in an execution trace σ1, σ2, · · ·σm. Then if S(u, v) ∧N1(u) in σi, and S(v, w) in σj, then there is
i ≤ k ≤ j, such that S(v, w) ∧N1(v).

Lemma 16. Generalized Temporal Backbone Lemma
Given a concurrent search structure with nodes of types T1, T2 · · ·Tn. If it satisfies thread mod-

ular state invariants ∃x • φh(x), ∀x • φmark(x), and step invariant δrua in an execution trace
T = (σ1, σ2, · · ·σn). Let N be a temporal node path N = {(u0, u1), (u1, u2), · · · (um−1, um)} goes
through subsequence Ts = {σi1 , · · ·σim}, such that (u0, u1) is a backbone link in σi1. Then there
is another subsequence of execution trace T ′s = {σj1 , · · ·σjm} such that for all 1 ≤ k ≤ m − 1,
jk−1 ≤ jk ≤ ik, and N is a temporal backbone going through T ′s.

Proof. This lemma simply follows for applying the Generalized Hindsight Lemma m times.

C Definitions

Definition C.1. A history H is an execution trace containing only invocations and responses. A
sequential history is a history where for each invocation, follows by a corresponding response. A
partial history Ht of thread t w.r.t history H is the subsequence of H which is invoked by thread t. A
history H is called well-formed when for every thread t, Ht is sequential. A sequential specification
Sp is a set of sequential histories.

Definition C.2. Suppose H is a well formed history, it is linearizable with sequential history
HS, if there is a map τ from operations in H to the same operations in HS that preserves real
time order(Namely, if two operations t1, t2 with the response of t1 is before the invocation of t2,
then τ(t1) before τ(t2) ), then H is linearizable w.r.t HS. If every execution of an algorithm is a
linearizable history w.r.t a sequential history in its sequential specification Sp, the algorithm is said
to be linearizable w.r.t. Sp.

22



D Proofs

In this section, we prove the invariant φ(Root,−∞).
We write the following formula:

Tr0(x, k, b) = (∃p2, k2 •N I
1 (x, k, b, p2) ∗ Tr1(p2, k2))

∨(∃p2, k2 •N I
1 (x, k, p1, b) ∗ Tr1(p1, k1))

∨(∃p1, k1, p2, k2 •N I
1 (x, k, p1, p2) ∗ Tr0(p1, k1, b) ∗ Tr1(p2, k2))

∨(∃p1, k1, p2, k2 •N I
1 (x, k, p1, p2) ∗ Tr1(p1, k1) ∗ Tr1(p2, k2, b))

We have the following important lemmas:

Lemma 17.
(∃k′ • Tr0(x, k, b) ∗ Tr1(b, k′))⇒ Tr1(x, k)

Proof. We have

(∃k′, p2, k2 •N I
1 (x, k, b, p2) ∗ Tr1(p2, k2) ∗ Tr1(b, k′))⇒ Tr1(x, k)

By using induction we have:

(∃k′, p1, k1, p2, k2 •N I
1 (x, k, p1, p2) ∗ Tr0(p1, k1, b) ∗ Tr1(p2, k2) ∗ Tr1(b, k′))⇒ Tr1(x, k)

(∃k′, p1, k1, p2, k2 •N I
1 (x, k, p1, p2) ∗ Tr1(p1, k1) ∗ Tr1(p2, k2, b) ∗ Tr1(b, k′))⇒ Tr1(x, k)

So combine the cases above, we have

(∃k′ • Tr0(x, k, b) ∗ Tr1(b, k′))⇒ Tr1(x, k)

Lemma 18.

(Tr1(x, k) ∧ (NL
1 (b, k′) ∗ true ∨ ∃p1, p2 •N I

1 (b, k′, p1, p2) ∗ true))⇒ Tr0(x, k, b)

Proof. Unroll the definition of Tr1 and use induction.

23



{emp ∧ Root == null}
Init (){

{emp ∧ Root == null}
Root = new Internal(-infty );

{Root→ (false,−∞, , )}
Root.left = new Leaf(-infty );

{Root→ (false,−∞, x, ) ∗NL
1 (x,−∞)}

Root.right = new Leaf(+infty );

{Root→ (false,−∞, x, y) ∗NL
1 (x,−∞) ∗NL

1 (x,+∞)}
{NI

1 (Root,−∞, l, r) ∗NL
1 (l,−∞) ∗NL

1 (r,+∞)}
{φ(Root,−∞)}

}

Listing 5: Proof of Init

24



{φ(Root,−∞)}
bool add1(Key k){

{φ(Root,−∞)}
while(true){

{φ(Root,−∞)}
-,p,n := search1(k);

{φ(Root,−∞) ∧ (p 7→ ( , k′p, , ) ∗ n 7→ ( , k′n) ∗ true) ∧ k′p < k′n < k}
dir = k.compareTo(n.key);

{φ(Root,−∞) ∧ (p 7→ ( , k′p, , ) ∗ n 7→ ( , k′n) ∗ true) ∧ k′p < k′n < k ∧ dir = 1}
if(dir == 0)

{φ(Root,−∞) ∧ (p 7→ ( , k′p, , ) ∗ n 7→ ( , k′n) ∗ true) ∧ k′p < k′n < k ∧ dir = 1}
return false;

{φ(Root,−∞) ∧ (p 7→ ( , k′p, , ) ∗ n 7→ ( , k′n) ∗ true) ∧ k′p < k′n < k ∧ dir = 1}
atomic {

if(!p->marked && p.isParentOf(n)){

{φ(Root,−∞) ∧ (NI
1 (p, k′p, , n) ∗NL

1 (n, k′n) ∗ true) ∧ k′p < k′n < k ∧ dir = 1}
na = new Leaf(k);

{(∃km,m • Tr0(−∞, Root, p) ∗NI
1 (p, k′p,m, n) ∗ Tr1(km,m) ∗ Tr1(n, k′n) ∗NL

1 (na, k)) ∧ k′p < k′n < k ∧ dir = 1}
n1 = new Internal(min(n.key ,k));

{(∃km,m • Tr0(−∞, Root, p) ∗NI
1 (p, k′p,m, n) ∗ Tr1(km,m) ∗ Tr1(n, k′n) ∗NL

1 (na, k) ∗NI
1 (n1, k′n, , ))

∧k′p < k′n < k ∧ dir = 1}
n1.setChild(n,na);

{(∃km,m • Tr0(−∞, Root, p) ∗NI
1 (p, k′p,m, n) ∗ Tr1(km,m) ∗ Tr1(n, k′n) ∗NL

1 (na, k) ∗NI
1 (n1, k′n, n, na))

∧k′p < k′n < k ∧ dir = 1}
p.changeChild(n,n1);

{(∃km,m • Tr0(−∞, Root, p) ∗NI
1 (p, k′p,m, n1) ∗ Tr1(km,m) ∗ Tr1(n, k′n) ∗NL

1 (na, k) ∗NI
1 (n1, k′n, n, na))

∧k′p < k′n < k ∧ dir = 1}
{(∃km,m • Tr0(−∞, Root, p) ∗ Tr1(p, k′p)) ∧ k′p < k′n < k ∧ dir = 1}
return true;

}

{(∃km,m • Tr0(−∞, Root, p) ∗ Tr1(p, k′p)) ∧ k′p < k′n < k ∧ dir = 1}
{φ(Root,−∞)}

}

{φ(Root,−∞)}

Listing 6: Proof of add

In order to make our formulas shorter and clearer, we separate the verification by the result of the
search operation. We assume the special search1 operation is guarded by an assume command
which guarantees k′gp < k′p < k′n < k, search2 operation guarantees k′gp < k′p < k′n = k. Other
cases are very similar, we omit them. The formulas in the actually proof is the disjunction of
formulas of all these cases.

25



{φ(Root,−∞)}
bool remove2(Key k){

while(true){

{φ(Root,−∞)}
gp ,p,n := search2(k);

{φ(Root,−∞) ∧ (gp 7→ ( , k′gp, , ) ∗ p 7→ ( , k′p, , ) ∗ n 7→ ( , k′n) ∗ true) ∧ k′gp < k′p < k′n = k}
dir = k.compareTo(n.key);

{φ(Root,−∞) ∧ (gp 7→ ( , k′gp, , ) ∗ p 7→ ( , k′p, , ) ∗ n 7→ ( , k′n) ∗ true) ∧ k′gp < k′p < k′n < k ∧ dir = 0}
if(dir != 0)

return false;

{φ(Root,−∞) ∧ (gp 7→ ( , k′gp, , ) ∗ p 7→ ( , k′p, , ) ∗ n 7→ ( , k′n) ∗ true) ∧ k′gp < k′p < k′n < k ∧ dir = 0}
atomic{

if(gp.isParentOf(p)&& p.isParentOf(n)&& gp!= marked ){

{φ(Root,−∞) ∧ (NI
1 (gp, k′gp, , p) ∗NI

1 (p, k′p, , n) ∗NL
1 (n, k) ∗ true) ∧ k′gp < k′p < k′n < k ∧ dir = 0}

p.marked = true;

{(∃km1,m1, km2,m2•
Tr0(−∞, Root, gp) ∗NI

1 (gp, k′gp,m1, p) ∗ Tr1(km1,m1) ∗NI
2 (p, k′p,m2, n) ∗ Tr1(km2,m2) ∗ Tr1(n, k′n))

∧k′p < k′n < k ∧ dir = 1}
n.marked = true;

{(∃km1,m1, km2,m2•
Tr0(−∞, Root, gp) ∗NI

1 (gp, k′gp,m1, p) ∗ Tr1(km1,m1) ∗NI
2 (p, k′p,m2, n) ∗ Tr1(km2,m2) ∗NL

2 (n, k′n) ∗ T (n, k′n))
∧k′p < k′n < k ∧ dir = 1}

gp.changeChild(p,p.getOtherChild(n));

{(∃km1,m1, km2,m2•
Tr0(−∞, Root, gp) ∗NI

1 (gp, k′gp,m1,m2) ∗ Tr1(km1,m1) ∗NI
2 (p, k′p,m2, n) ∗ Tr1(km2,m2) ∗NL

2 (n, k′n) ∗ T (n, k′n))
∧k′p < k′n < k ∧ dir = 1}
{(∃km1,m1, km2,m2 • Tr0(−∞, Root, gp) ∗NI

1 (gp, k′gp,m1,m2) ∗ Tr1(km1,m1) ∗ Tr1(km2,m2))
∧k′p < k′n < k ∧ dir = 1}
{φ(Root,−∞)}

return true;

}

}

}

}

{φ(Root,−∞)}
}

Listing 7: Proof of Remove

26


