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Abstract—Reliable packet delivery within stringent delay-
constraints is of paramount importance to industrial processes
with hard real-time constraints, such as electrical grid moni-
toring. Because retransmission and coding techniques counteract
the delay requirements, reliability is achieved through replication
over multiple fail-independent paths. Existing solutions such as
the parallel redundancy protocol (PRP) replicate all packets at
the MAC layer over parallel paths. PRP works best in local area
networks, e.g., sub-station networks. However, it is not viable
for IP-layer wide-area networks, a key element of emerging
smart grids. Such a limitation on scalability, coupled with lack
of security, and diagnostic inability, renders it unsuitable for
reliable data-delivery in smart grids. To address this issue, we
present a transport-layer design: IP parallel redundancy protocol
(iPRP). Designing iPRP poses non-trivial challenges in the form
of selective packet-replication, soft-state and multicast support.
In addition to unicast, iPRP supports multicast, widely used in
smart-grid networks. It replicates only time-critical UDP traffic.
iPRP only requires a simple software installation on the end-
devices. There are no other modifications needed to the existing
monitoring application, end-device operating system or to the
intermediate network devices. iPRP has a set of diagnostic tools
for network debugging. With our implementation of iPRP in
Linux, we show that iPRP supports multiple flows with minimal
processing-and-delay overhead. It is being installed in our campus
smart-grid network and is publicly available.

I. INTRODUCTION

Specific time-critical applications (found for example in
electrical networks) have such strict communication-delay con-
straints that retransmissions following packet loss can be both
detrimental and superfluous. In smart grids, critical control
applications require reliable information about the network
state in quasi-real time, within hard delay-constraints of the
order of approximately 10 ms. Measurements are streamed
periodically (every 20 ms for 50 Hz systems) by phasor mea-
surement units (PMUs) to phasor data concentrators (PDCs).
In such settings, retransmissions can introduce delays for
successive, more recent data that in any case supersede older
ones. Moreover, IP multicast is typically used for delivering
the measurements to several PDCs. Hence, UDP is preferred
over TCP, despite its best-effort delivery approach. Increasing
the reliability of such unidirectional (multicast) UDP flows is
a major challenge.

A. Problems with MAC-Layer Parallel Redundancy Protocol
The parallel redundancy protocol (PRP) IEC standard [1]

was proposed as a solution for deployments inside a local area
network (LAN) where there are no routers. Communicating
devices need to be connected to two cloned (disjoint) bridged
networks. The sender tags MAC frames with a sequence
number and replicates it over its two interfaces. The receiver
discards redundant frames based on sequence numbers.

PRP works well in controlled environments, such as a
substation LAN, where network setup is entirely up to the

substation operator, who ensures that the requirements of
PRP are met (e.g., all network devices are duplicated). At a
larger scale (for example, a typical smart grid communication
network that spans an entire distribution network) routers are
needed and PRP can no longer be used. Thus, a new solution
is needed for IP wide area networks (WANs).

In addition to extending PRP functionality to WANs, the
new design should also avoid the drawbacks of PRP. The most
limiting feature of PRP is that the two cloned networks need
to be composed of devices with identical MAC addresses.
This contributes to making network management difficult.
Furthermore, PRP duplicates all the traffic unselectively, which
is acceptable for use in a LAN, but which cannot be done
in a WAN, because links are expensive and unnecessary
traffic should be avoided. Moreover, PRP has no security
mechanisms, and multicasting to a specific group of receivers
is not natively supported. As a layer-2 protocol, PRP supports
multicast by way of broadcast, because multicast in layer 2 is
implemented as broadcast. This is acceptable in a LAN, but
not in a WAN. As modern smart grids use WAN for commu-
nication, supporting selective multicast, i.e. IP multicast, is a
key requirement for a parallel redundancy protocol.

Fig. 1: A typical iPRP use-case in the context of smart grids. Devices
(PDCs, PMUs) are connected to two overlapping network subclouds
(labeled A and B). Some devices use an additional LTE connection
providing a low latency cellular service [2]. Every PMU streams data
to all PDCs, using UDP and IP multicast.

Concretely, Fig. 1 depicts a smart grid WAN where PRP
cannot be directly deployed: devices are multi-homed and each
interface is assigned a different IP address. Most devices have
two interfaces connected to a main network cloud made of two
fail-independent network subclouds labeled “A” and “B”, while
some have a third interface connected to a 4G cellular wireless
service (labeled “Swisscom LTE backbone” in the figure). It
is assumed that paths between interfaces connected to the “A”
network subcloud stay within it (and similarly with “B”). The
“A” and “B” network subclouds could be physically separated,
however in practice they are most likely interconnected for
network management reasons.

A simple way to achieve the arrangement described before
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is to divide the network into two logical subclouds, A and B.
Then, by adjusting the routing weights of the links intercon-
necting the A and B subclouds, we can ensure that A→ A and
B → B traffic stays within A and B subclouds, respectively,
thereby giving rise to fail-independent paths. In such a setting,
the interconnections will be used only for A↔ B traffic.

We need a solution that, similarly to PRP, takes advantage
of network redundancy for increasing the reliability of UDP
flows, and that works in scenarios such as the one in Fig. 1.
The existence of fail-independent paths is fundamental for the
optimal operation of such a solution. However, in the event of
a network-component failure, the paths can partially overlap.
Then, the solution should reap the maximum possible benefits
by operating in a degraded-redundancy mode. In other words,
if complete end-to-end redundancy is no longer possible, the
solution should continue to work.

In order for our solution to be easily deployed, we also
require it to be transparent to both the application and network
layers: it should only require installation at end-devices and no
modifications to running application software or to intermedi-
ary network devices (routers or bridges).

In this paper we present the design and implementation
of iPRP (IP parallel redundancy protocol), a transport layer
solution for transparent replication of unidirectional unicast or
multicast UDP flows on multihomed devices.

B. iPRP
An iPRP host has to send different copies of the same

packet over different paths. With the current technology, a
device cannot control the path taken by an IP packet, beyond
the choice of a destination address, exit interface and a type-
of-service value. Other fields, such as the IPv6 flow label
or source routing header extensions, are either ignored or
rejected by routers. Also, the type-of-service field is used by
applications and should not be tampered with by iPRP. Hence,
we assume that a choice of the path is done at the sources by
choosing communication interface and the destination address.
The job of iPRP is then to transparently replicate packets over
the different interfaces for the UDP flows that need it, match
corresponding interfaces, remove duplicates at the receiver, and
do this in a way that is resilient to crashes (see Section IV-G).

Not all traffic requires replication, only certain devices and
certain UDP flows do (time-critical data). Hence, replication
needs to be selective: a failure-proof mechanism, transparent
to applications, is required for detecting and managing packet
replication. It needs to match well the interfaces, so that
independent paths are used whenever they exist. However, the
solution should continue to work if some paths are not disjoint.

The iPRP protocol design is such that it does not interfere
with the existing security mechanisms and does not introduce
any new security weaknesses (see Section V).

iPRP assumes that the network is traffic-engineered; the
critical UDP data streams receive enough resources and are not
subject to congestion. iPRP instantly repairs packet losses due
to failures or transient problems such as transmission losses. It
does not solve congestion problems due to under-dimensioned
network links. TCP flows are not affected.

Our iPRP implementation is for IPv6, as it is being installed
in our smart-grid communication network (smartgrid.epfl.ch),
that uses IPv6 (following the argument that new network

environments should avoid future transition problems and
embrace IPv6 from the start). Our implementation is available
at http://goo.gl/N5wFNt. Adaptation to IPv4 is straightforward.

II. RELATED WORK

As mentioned in Section I, iPRP overcomes the limitations
of PRP [1]. The authors of [3] are aware of the fact that PRP is
limited to LANs and suggest a direction for developing PRP in
an IP environment. Their suggestion is neither fully designed
nor implemented. Also, it requires that the intermediate routers
preserve the PRP trailers at the MAC layer, which in turn
requires changes in all of the routers in the networks. It does
not address all the shortcomings of PRP (diagnostic tools, lack
of multicast support, need of special hardware). In contrast, our
transport layer approach does not have these drawbacks.

MPTCP [4] is used in multi-homed hosts. It allows TCP
flows to exploit the host’s multiple interfaces, thus increasing
the available bandwidth for the application. Like MPTCP, iPRP
is a transport layer solution and is transparent to network and
application. Unlike MPTCP, iPRP replicates the UDP packets
on the parallel paths, while MPTCP sends one TCP segment
on only one of them. In a case of loss, MPTCP resends the
segment on the same path until enough evidence is gathered
that this path is broken. So, a lost packet is repaired after
several RTTs (not good for time-critical flows).

Similarly, link aggregation control protocol (LACP) [5] and
equal-cost multi-path routing (ECMP) [6] require seconds for
failover. LACP enables the bundling of several physical links
together to form a single logical channel. The failure of a link
is discovered through the absence of keep-alive messages that
are sent every 1−30 s. ECMP can be used together with most
routing protocols in order to balance traffic over multiple best
paths when there is a tie. In a case of failure, it relies on
the reconfiguration of the underlying routing protocol, that is
commonly detected by the absence of keep-alive messages.

Network coding exploits network redundancy for increas-
ing throughput [7], and requires intermediary nodes to recode
packets (specialized network equipment needed). Also, it is not
suitable for time-critical applications as typically packets are
coded across “generations” which introduces decoding delays.
Source coding (e.g. Fountain codes [8]) can be useful for the
bursty transmissions of several packets. However, it adds delay,
as encoding and decoding are performed across several packets
(not suitable for UDP flows with hard-delay constraints).

MPLS-TP 1 + 1 protection feature [9] performs packet
duplication and feeds identical copies of the packets in working
and protection path. On the receiver side, there exists a selector
between the two; it performs a switchover based on some
predetermined criteria. However, some time is needed for
fault detection and signaling to take place, after which the
switchover occurs. Hence, a 0-ms repair cannot be achieved.

Multi-topology routing extends existing routing protocols
(e.g. [10]) and can be used to create disjoint paths in a
single network. It does not solve the problem of transparent
packet replication, but can serve as a complement to iPRP in
the following way. On top of the underlying network (base
topology) additional class-specific topologies can be created
as a subset of base topology. We can use this feature to define
fail-independent A and B subclouds in order to ensure fail-
independent paths between sources and destinations.

smartgrid.epfl.ch
http://goo.gl/N5wFNt


Another method to ensure the discovery of fail-independent
paths is software-defined networking (SDN) [11]. Centralized
controler is aware of the overall network topology and can
impose routing rules in a way that guarantees independent
paths/trees between all the hosts.

III. OPERATION OF IPRP

A. How to Use iPRP
iPRP is installed on end-devices with multiple interfaces:

on streaming devices (the ones that generate UDP flows
with hard delay constraints) and on receiving devices (the
destinations for such flows).

Streaming devices (such as PMUs) do not require special
configuration. Streaming applications running on such devices
benefit from the increased reliability of iPRP without being
aware of its existence. iPRP operates as a modification to the
UDP layer.

On receiving devices the only thing that needs to be
configured is the set of UDP ports on which replication is
required. For example, say that an application running on a
PDC is listening on some UDP port for measurement data
coming from PMUs. After iPRP is installed, this port needs
to be added to the list of iPRP monitored ports in order to
inform iPRP that any incoming flows targeting this port require
replication. The application does not need to be stopped and
is not aware of iPRP.

Nothing else needs to be done for iPRP to work. In
particular, no special configuration is required for intermediary
network equipment (routers, bridges).

B. General Operation: Requirements for Devices and Network
iPRP provides 1 + n redundancy. It increases, by packet

replication, the reliability of UDP flows. It does not impact
TCP flows.

iPRP-enabled receiving devices configure a set of UDP
ports as monitored. When a UDP packet is received on any
of the monitored ports, a one-way soft-state iPRP session is
triggered between the sender and the receiver (or group of
receivers, if multicast is used). Soft-state means that: (i) the
state of the communication participants is refreshed period-
ically, (ii) the entire iPRP design is such that a state-refresh
message received after a cold-start is sufficient to ensure proper
operation. Consequently, the state is automatically restored
after a crash, and devices can join or leave an iPRP session
without impacting the other participants.

Within an iPRP session, each replicated packet is tagged
with an iPRP header (Section IV-D). It contains the same
sequence number in all the copies of the same original packet.
At the receiver, duplicate packets with the same sequence
number are discarded (Section IV-E). The original packet is
reconstructed from the first received copy and forwarded to
the application.

In multicast, all devices in the group of receivers need
to run iPRP. If by mishap only part of the receivers support
iPRP, these trigger the start of an iPRP session with the sender
and benefit from iPRP; however, the others stop receiving
data correctly. iPRP requires that the multicast communication
uses the an IP address that supports source-specific multicast
(SSM).

All iPRP-related information is encrypted and authenti-
cated. Existing mechanisms for cryptographic key exchange
are applied (security considerations in Section V) .

C. UDP Ports Affected by iPRP
iPRP requires two system UDP ports (transport layer) for

its use: the iPRP control port and the iPRP data port (in
our implementation 1000 and 1001, respectively). The iPRP
control port is used for exchanging messages that are part
of the soft-state maintenance. The iPRP data port receives
data messages of the established iPRP sessions. iPRP-capable
devices always listen for iPRP control and data messages.

The set of monitored UDP ports, over which iPRP repli-
cation is desired are not reserved by iPRP and can be any
UDP ports. UDP ports can be added to/removed at any time
from this set during the iPRP operation. Reception of a UDP
packet on a monitored port triggers the receiver to initiate an
iPRP session. If the sender is iPRP-capable, an iPRP session
is started (replicated packets are sent to the iPRP Data Port),
else regular communication continues.

D. Matching the Interconnected Interfaces of Different Devices
One of the design challenges of iPRP is determining an

appropriate matching between the interfaces of senders and
receivers, so that replication can occur over fail independent
paths. To understand the problem, consider Figure 1 where
the PMUs and PDCs have at least two interfaces. The A
and B network subclouds are interconnected. However, the
routing is designed such that, a flow originating at an interface
connected to subcloud A with a destination in A, will stay
in subcloud A. A potential problem can arise if a sender’s
interface, say SA, intended to be connected to the A subcloud,
is mistakenly connected to the B subcloud, and vice-versa.
Then one path from source to destination will go from SA
(on subcloud B) to the destination interface DB (on subcloud
B), and conversely on the other path. Following the routing
rules, these flows will use interconnecting links between A
and B subclouds. This is not desirable as these links can
be of insufficient capacity because they are not intended to
carry such traffic. Furthermore, it is no longer guaranteed that
such paths are disjoint. PRP avoids this problem by requiring
two physically separated and cloned networks. iPRP does not
impose these restrictions. Hence, iPRP needs a mechanism to
match interfaces connected to the same network subcloud.

To facilitate appropriate matching, each interface is asso-
ciated with a 4-bit identifier called iPRP Network subcloud
Discriminator (IND), which qualifies the network subcloud it
is connected to. The iPRP software in end-devices learns each
of the interfaces’ INDs automatically via simple preconfigured
rules. Network routers have no notion of IND. A rule can
use the interface’s IP address or its DNS name. In our
implementation, we compute each interface IND based on its
fully qualified domain name. In Figure 1, the rule in the iPRP
configuration maps the regular expression nw-a* to the IND
value 0xa, nw-b* to IND 0xb, and *swisscom.ch to IND
0xf, respectively.

The receiver periodically advertises the IP addresses of its
interfaces, along with their INDs to the sender (via iPRP_CAP
messages). The sender compares the received INDs with its
own interface INDs. Only those interfaces with matching INDs
are allowed to communicate in iPRP mode. In our example,
IND matching prevents iPRP to send data from a PMU A
interface to a PDC B interface. Moreover, each iPRP data
packet contains the IND of the network subcloud where the
packet is supposed to transit (see Section IV-D). This eases the



monitoring and debugging of the whole network. It allows us
to detect misconfiguration errors that cause a packet expected
on an A interface to arrive on a B interface.

IV. PROTOCOL DESCRIPTION

The iPRP message exchange is divided into two planes:
control plane and data plane. The control plane is responsible
for exchange of messages required to establish and maintain an
iPRP session. The data plane is responsible for replication and
de-duplication of time-critical UDP flows. Note that, control
plane messaging is non-time critical and far less frequent than
data plane (data plane ∼ ms, control plane ∼ s).

The data plane operation is divided into two phases:
replication phase and duplicate discard phase. Next, we discuss
the operation of each plane and the description of key elements
of iPRP protocol in detail.

A. Control Plane
The control plane is used for exchange of messages to

establish and maintain an iPRP session. The iPRP session
establishment is triggered when a UDP packet is received
at some monitored UDP port p. In Fig. 3, UDP port p is
made monitored at t1 at the receiver, by adding it to the
list of monitored ports. When the iPRP session establishment
triggers, the receiver’s soft-state-maintenance functional block
(Fig. 2) adds the sender to the list of active senders (Alg. 1).
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Fig. 2: Overview of the functional blocks.

Algorithm 1: (At the receiver) Soft-state maintenance
(keeps the list of active senders up-to-date)
1 while true do
2 remove inactive hosts from the list of active senders

(last-seen timer expired);
3 for every packet received on one of the monitored

ports or on iPRP Data Port do
4 check if the source is in the list of the active

senders;
5 if yes then
6 update associated last-seen timer;
7 else
8 put sender in the list of active senders;
9 end

10 end
11 end

The iPRP-capability-advertisement functional block (Fig.
2) at the receiver, sends iPRP_CAP to the control port of
the sender every TCAP seconds (t2 in Fig. 3, Alg. 2). This
message informs the sender that the receiver is iPRP enabled
and provides information required for selective replication over
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Fig. 3: Message sequence chart for typical scenario when iPRP-
capable devices are starting iPRP operation.

Algorithm 2: (At the receiver) iPRP capability advertise-
ment
1 while true do
2 compute Tbackoff (Section IV-F);
3 listen for iPRP_ACKs until Tbackoff expires;
4 send iPRP_CAP messages to all hosts in the list of

active senders from which no iPRP_ACKs are
received;

5 sleep TCAP − Tbackoff;
6 end

alternative paths. It contains: (1) the iPRP version; (2) INDs
of the network subclouds to which the receiver is connected,
to facilitate IND matching (see Section III-D); (3) the source
and destination UDP port numbers of the packet that triggered
iPRP session establishment; (4) in multicast, the multicast IP
address of the group; (5) in unicast, IP addresses of all receiver
interfaces; (6) a symmetric, short-lived cryptographic key for
authentication and encryption of iPRP header (Section V)

On receiving the iPRP_CAP, the iPRP-session-
maintenance functional block (Fig. 2) at the sender
acknowledges it with an iPRP_ACK. The iPRP_ACK
contains the list of sender IP addresses which are used by
the receiver to subscribe to alternate network subclouds to



Algorithm 3: (At the sender) iPRP session maintenance
1 while true do
2 remove aged entries from the peer-base;
3 for every received iPRP_CAP message do
4 if there is no iPRP session established with the

destination then
5 if IND matching is successful then
6 establish iPRP session by creating new

entry in the peer-base;
7 send iPRP_ACK message;
8 end
9 else

10 update the keep-alive timer;
11 update peer-base;
12 end
13 end
14 end

receive data through SSM. In multicast, the receivers send
iPRP_CAP after a back-off period (Section IV-F) to avoid
flooding. The iPRP_ACK message also serves a terminating
message for impending iPRP_CAPs thereby preventing a
flood (Alg. 2).

To complete the iPRP session establishment, the iPRP-
session-maintenance functional block performs IND matching
(section III-D) and creates a peer-base entry (t3 in Fig. 3,
Alg. 3). The peer-base contains all information needed by the
sender for replication of data packets.

The second goal of control plane it to maintain an iPRP
session. To this end, the iPRP_CAP messages are used as
keep-alive messages (Alg. 3). iPRP session is terminated if
no iPRP_CAP message is received for a period of 3TCAP .
These messages are sent to a sender as long as it is present
in the list of active senders. The list of active senders is
maintained by the soft-state-maintenance functional block by
updating the last-seen timer (Alg. 1) when a new data packet
is received. Sessions that are inactive for more than Tinactivity
are terminated.

For each new iPRP session, a corresponding iPRP session
establishment is triggered. If any of the required steps could
not be completed due to message loss or iPRP incapability, an
iPRP session is not established and packets are not replicated.
B. Data Plane: Replication Phase

The replication phase occurs at the sender to send out
data plane messages once the iPRP session is established. The
replication functional block (Fig. 2) on the sender intercepts all
outgoing packets destined to UDP port p of the receiver. These
packets are subsequently replicated and iPRP headers (section
IV-D) are prepended to each copy of the payload. iPRP headers
are populated with the iPRP version, a sequence-number-space
ID, a sequence number, an original UDP destination port, and
IND. The 32-bit sequence number is the same for all the
copies of the same packet. The destination port number is set
to iPRP data port for all the copies. An authentication hash
is appended and the whole block is encrypted. Finally, the
copies are transmitted as iPRP data messages over the different
matched interfaces (see Alg. 4, t4 in Fig. 3.

If a new interface is added or removed at the sender or
receiver during the replication phase, the peer-base is updated

by the iPRP session maintenance functional block. When
the sender receives an IPRP_CAP with a new IND, it is
instantly added to the peer-base if successfully matched. On
the other hand, when it receives an IPRP_CAP without an
IND currently in use, the missing IND is removed from the
peer-base only after confirmation from multiple consecutive
IPRP_CAPs (to handle the feedback suppression effect of the
backoff algorithm in Section IV-F).

Algorithm 4: (At the sender) Packet replication
1 for every outgoing packet do
2 check the peer-base;
3 if there exists an iPRP session that corresponds to

the destination socket then
4 replicate the payload;
5 append iPRP headers incl. seq. number;
6 send packet copies;
7 else
8 forward the packet unchanged;
9 end

10 end

C. Data Plane: Duplicate Discard Phase
The duplicate discard phase occurs at the receiver once

an iPRP session is established to ensure that only one copy
of replicated packets is forwarded to the application. Upon
reception of packets on the iPRP data port, the associated
last-seen timer is updated (see Alg. 1) and the packets are
forwarded to the duplicate-discard functional block (Alg. 5).
It decrypts the iPRP header at the beginning of the payload
using the symmetric key used in iPRP_CAP message. Then,
function isFreshPacket (Section IV-E - Alg. 6) is called.
Based on the sequence-number-space ID and the sequence
number, the packet is either forwarded to the application or
discarded. The first received copy should reach the applica-
tion, subsequent copies are discarded. The replication is thus
rendered transparent to the sender and receiver applications.
In Fig. 3 we show two scenarios after the time t4; in one case
both copies are delivered, in the other, one packet is lost.

Algorithm 5: (At the receiver) Duplicate discard
1 for every packet received on iPRP data port do
2 get sequence number space ID (SNSID);
3 get sequence number (SN);
4 if it is the first packet from this SNSID then
5 SNSID.HighSN← SN; // Bootstrap

6 forward to application;
7 else
8 if isFreshPacket(SN, SNSID) then
9 remove iPRP header;

10 reconstruct original packet;
11 forward to application;
12 else
13 silently discard the packet;
14 end
15 end
16 end

D. The iPRP Header
Fig. 4 shows the position and the fields of the iPRP header

used in data packets. The Sequence-number-space ID (SNSID)



is used to identify an iPRP session. This identifier is unique
across all iPRP sessions terminating at the same receiver,
thereby allowing multiple iPRP sessions on the same machine.
In our implementation, it is chosen as a concatenation of the
source IPv6 address, the source UDP port number of the socket
to which the application writes the packet and a 16-bit reboot
counter.

The SNSID is used by a receiver to tie the packets with
different source IP addresses that belong to the same iPRP
session together. When a new receiver joins a multicast group
with already established iPRP session, it uses the source IP
address in the SNSID to uniquely identify the sender of the
packets and the source port number in the SNSID to uniquely
identify the streaming application on the sender. However,
in case of a crash and reboot of the sender, the sequence
number is reset. Then, a new reboot counter in the iPRP header
differentiates packets belonging to the new iPRP session from
those of the old iPRP session, thereby ensuring a seamless
recovery at the receiver.

To maintain the format of the iPRP header for an IPv4
implementation, we suggest repeating source IPv4 address
four times at the place of source IPv6 address. The original
destination UDP port number is included to allow for the
reconstruction of the original UDP header. The iPRP header is
placed after the inner-most UDP header. So, iPRP works well,
even when tunneling is used (e.g., 6to4).

Fig. 4: Location and fields of iPRP header.

Like many protocols (such as DTLS, VPN, VXLAN, 4in6,
etc.), iPRP adds its own header to the packet payload. In order
to avoid packet fragmentation, we adopt the same solution
as any tunneling protocol: at the sender, iPRP reduces the
interface MTU size to the minimum of 1280 bytes required
by IPv6. In practice, typical MTU values are closer to the
IPv6-recommended 1500 bytes. This leaves a margin for the
inclusion of the iPRP and other tunneling protocol headers.

E. The Discard Algorithm
The redundant copies of a packet are eliminated by a

discard algorithm running at the receiver. In scenarios where
the packets are received out-of-order, the discard algorithm
proposed for PRP [12] delivers several copies of the same
packet to the application. The function isFreshPacket
(Alg. 6) avoids this issue. It is used by Alg. 5 to decide if
a packet sequence number corresponds to a fresh packet. We
use 32-bit unsigned integer sequence numbers, large enough
to avoid the wrap-around problem.

Alg. 6 tracks the following variables per iPRP session,
identified by a sequence number space ID (SNSID):

• HighSN – highest sequence number of a packet received
before the current packet,

• ListSN – sequence-number list of delayed packets.

Algorithm 6: Function to determine whether a packet
with sequence number CurrSN corresponds to a fresh
packet in the sequence number space ID SNSID.
The test “x follows y” is performed for 32-bit un-
signed integers using subtraction without borrowing as
“(x-y)>>31==0”.
1 function isFreshPacket(CurrSN, SNSID)
2 if CurrSN==SNSID.HighSN then
3 return false ; // Duplicate packet

4 else if CurrSN follows SNSID.HighSN then
5 put SNs [SNSID.HighSN+1, CurrSN-1] in

SNSID.ListSN;
6 remove the smallest SNs until SNSID.ListSN has

MaxLost entries;
7 SNSID.HighSN← CurrSN ; // Fresh packet

8 return true;
9 else

10 if CurrSN is in SNSID.ListSN then
11 remove CurrSN from SNSID.ListSN;
12 return true ; // Late packet

13 else
14 return false; // Already seen or very late

15 end
16 end

ListSN is bounded to a maximum of MaxLost < 231

entries. MaxLost is the maximum sequence-number differ-
ence accepted by the application. In practice, we can take
MaxLost > R × Tlate, where R is an upper bound on
packet rate of the streaming application that corresponds to
an iPRP session and Tlate is the time after which packets are
deemed out-of-date, thus irrelevant. Consequently, if a packet
is received with a sequence number that precedes HighSN by
more than MaxLost, it is deemed “very late” and dropped.

The value of MaxLost is configurable and depends on the
targeted application. For example, in our smart-grid setting,
there is a hard delay-constraint of 20 ms (any packet older
than this can be safely discarded). To be conservative, we
allow packets with the delays of up to Tlate = 50 ms. We
set MaxLost to 1024, high enough to support any realistic
PMU streaming rate.

iPRP and its discard algorithm are able to recover after
unexpected events (crashes and reboots). A problem can occur
if, after a reboot of a sender, the same sequence numbers
are reused. Then, fresh packets can be wrongly discarded
as the receiver would be deceived into believing that it had
already delivered such packets. This problem can be fixed by
imposing handshakes between senders and receivers. However,
such a solution is not appropriate if multicast is used and,
furthermore, it would violate soft-state property. Our solution
is to have a sender maintain a reboot counter that defines
different sequence-number spaces within the same sender
machine (see Section IV-D). Therefore, when a new reboot
counter is encountered, the receiver creates a new SNSID,
thereby resetting HighSN. Following a reboot of a receiver,
all the receiver’s counters are initialized upon the reception of
the first iPRP data packet.

As mentioned earlier, the algorithm keeps track of one
variable and of one list per iPRP session. The most expensive
operation is searching the list (line 10). However, in practice,



ListSN is limited to few entries. The algorithm can be further
optimized for a O(1) time complexity by using a hash table
implementation for ListSN. Additionally, the algorithm is
designed to have a fixed memory usage of 4×ListSN bytes.

Before stating the correctness of the algorithm, we need to
introduce some definitions. We say that a received packet is
valid if it arrives in order or if it is out-of-order but not later
than Tlate. Formally, this means that a packet received at time
t with SN = α is not valid if some packet with SN = β >
α+ MaxLost was received before t.

Furthermore, let ∆ be an upper bound on the delay jitter
across all network subclouds. Formally, for any two packets
i, j sent over any two network subclouds k, l: ∆ ≥

(
δki − δlj

)
,

where δ denotes the one-way network latency. Also, recall
that Tinactivity is used to terminate inactive sessions (Section
IV-A).

Theorem 1 (Correctness of the discard algorithm). If R×∆ <
231 and R × (Tinactivity + ∆) < 231, then Alg. 6 guarantees
that: (1) no duplicates are forwarded to the application and (2)
the first received valid copy of any original packet is forwarded
to the application.

The proof is lengthy and is given in the Appendix A. To
understand the practicality of the conditions in the theorem,
note that Tinactivity is in the order of seconds and is much
larger than ∆. Therefore, the only condition to verify is R ×
(Tinactivity + ∆) < 231, which for, say Tinactivity = 10s and
∆ = 100ms, requires R < 2 × 108 packets per second – a
rate much higher than ever expected.

F. The Backoff Algorithm

The soft-state in a multicast iPRP session is maintained
by periodic advertisements (iPRP_CAP) sent to the source
by each member in the multicast group of receivers. We want
to prevent “message implosion” at the source for groups of
receivers ranging from several hosts to millions. Failing to do
so can have a similar effect as a denial-of-service attack. The
source would be overwhelmed with processing iPRP_CAPs
if all the multicast group members would send them. Never-
theless, if the source waits too long before receiving at least
one iPRP_CAP, the start of the iPRP operation would be
delayed. This is why we also require the source to receive
an iPRP_CAP within at most D = 10s after the start of the
loop in Alg. 2 (executed periodically every TCAP = 30s).

A similar problem was studied in the literature on reliable
multicast, where ACK implosion at the source needs to be
avoided. To our knowledge, the solution that best fits our sce-
nario was proposed by Nonnenmacher and Biersack [13]. We
adopt it in our design: each receiver performs a random backoff
before transmitting an iPRP_CAP. The source acknowledges
each iPRP_CAP by an iPRP_ACK. The reception of an
iPRP_ACK before the expiry of the backoff timer inhibits
any receiver from sending its iPRP_CAP. The backoff timer
follows a flipped truncated exponential distribution (inaptly
called “exponential” in [13]), defined by a PDF on [0, D] that
increases toward D, fD(x;λ)

def.
= λeλx(eλD−1)−1 ·1{x∈[0,D]}.

We implement the backoff computation of [13] by CDF
inversion. A uniform random variable U ∈ [0, 1] is obtained
via a random number generator. Next, the backoff is set to

Tbackoff = λ−1 ln(1 + (eλD − 1)U) (Alg. 2, line 2). We pick
λ = 25/D. See Appendix B for a further discussion.

G. Robustness and Soft-state
iPRP is a soft-state protocol that is robust against host

failures and supports joining or leaving the hosts from the
network at any time, independently of each other. In a multicast
case, it is expected that a new iPRP-capable receiver can show
up (or simply crash and reboot) after an iPRP session with
other receivers was established. Then, the new receiver will
immediately be able to process packets received at the iPRP
data port without the need to exchange control messages.

iPRP control message exchange does not rely on the avail-
ability of any particular network subcloud, making our protocol
robust to network failures. Once the soft-state maintenance
functional block learns about alternative network subclouds,
iPRP_CAP messages are sent over all of them. Furthemore,
the control plane communication to the reserved iPRP control
port is secured (see Section V). The security algorithm for
iPRP header protection can be chosen as part of the configu-
ration.

V. SECURITY CONSIDERATIONS

The iPRP protocol design is such that it does not interfere
with upper-layer security protocols. However, in addition, we
needed to provide security for the iPRP layer itself, as there
are attacks that can stay undetected by upper-layer security
protocols. Concretely, if an attacker manages to alter the
sequence-number field of iPRP packets transmitted over one
(compromised) network subcloud, the discard algorithm can be
tricked in a way that the packets from both (compromised and
non-compromised) network subclouds are discarded. Note that
similar attacks exist for PRP, where an attacker, with access to
one network, can force the discard of valid frames on another
network. For example, say an attacker has access to network
subcloud A. A PRP frame is represented as A5, where A is the
network subcloud it belongs to and 5 is the sequence number.
If A5 and B5 were received and the attacker retransmits the
frame A5 by altering the sequence number as A6, then the
actual A6 and B6 frames will both be discarded. In other
words, an unsecured PRP or iPRP could weaken the network
instead of making it more robust. Yet another argument for
protecting the iPRP layer is that by doing so we minimize the
exposure for prospective attacks in the future.

The iPRP control messages are encrypted and authenti-
cated. This guarantees that the security of replicated UDP flows
is not comprimised by iPRP and that it does not interfere with
application layer encryption/authentication.

Specifically, iPRP_CAP messages and the corresponding
iPRP_ACK messages are transmitted over a secure channel.
The iPRP header inserted in the data packets is authenticated
and encrypted with a pre-shared key. Thus, replay attacks and
forged messages insertion are avoided.

We establish the secure channel for the transmission of
iPRP_CAP messages depending on the type of communica-
tion, unicast or multicast. Details follow below.

Unicast: In unicast mode, a DTLS session is maintained
between the sender and the receiver. It is initiated by the
receiver upon the arrival of the first UDP datagram from
the source. iPRP_CAP messages are transmitted within this
session. So, the iPRP capabilities of the receiver are transmitted



only to an authenticated source. iPRP_ACKs are not required
in unicast (since message implosion can occur in multicast
only).

Unicast iPRP_CAP messages contain a symmetric key
used to authenticate and encrypt the iPRP header. This key
is updated periodically during a unicast iPRP session. Hosts
keep a small fixed number of valid past keys to prevent losing
the iPRP session because of delayed receiption of a new key.
The oldest key is discarded upon reception of a new one.

Multicast: In multicast, iPRP relies on any primitive that
establishes a secure channel with the multicast group. For
example MSEC can be used for group key management and
for establishing a group security association.

In this setting, both iPRP_CAP and iPRP_ACK messages,
as well as the iPRP headers inserted in the replicated packets,
are authenticated and encrypted with the group key. Thus, there
is no need to include an additional key in the iPRP_CAP .

VI. IPRP DIAGNOSTIC TOOLKIT

As iPRP is designed to be IP friendly, it facilitates the
exploitation of the diagnostic utilities associated with TCP/IP.
The diagnostics include verification of connectivity between
hosts and the evaluation of the corresponding RTTs (similar
to ping), the discovery of routes to a host (similar to
traceroute), etc. Furthermore, the toolkit also adds some
more tools that are specific to iPRP and it gives iPRP a
significant edge in network diagnostics and statistics collection
over PRP. The toolkit comprises the following tools:

iPRPtest <Remote IP Address> <Port>
<Number of packets> <Time period>

iPRPping <Remote IP Address>
iPRPtracert <Remote IP Address>
iPRPsenderStats <IP Address>
iPRPreceiverStats <IP Address>.

Imagine a typical scenario where an application on an
iPRP enabled host that is subscribed to a particular mul-
ticast group (G) experiences packet losses. To troubleshoot
this problem, the user at the receiving host would use the
iPRPreceiverStats tools to consult the local list of
active senders, to check for the presence of an iPRP session
associated with any host sending multicast data to group G. If
an iPRP session exists, then the tool returns the statistics of
packets received over different networks in the iPRP session.
Then, to understand if the problem is caused by multicast
routing or lossy links, the user moves to the sending host.

First, with iPRPtest and by using the remote IP address
of the receiver, the user establishes a temporary, unicast iPRP
session with the host. If successful, the iPRPping tool is used
to obtain the packet loss and RTT statistics over the multiple
networks. Also, the iPRPtracert tool is used to verify the
hop-by-hop UDP data delivery over multiple networks. For any
iPRP session between two hosts, the iPRPsenderStats is
used by the sending host to query the remote host about the
statistics of the packets accepted and dropped by the duplicate
discard functional block on that remote host. The operation of
each tool is described in detail in Appendix C.

VII. IMPLEMENTATION AND PERFORMANCE
EVALUATION

We opted for a Linux-based user-space implementation
that has the following properties: (1) Allow for the selective

filtering of IP packets so that the iPRP sequence of operation
can be applied; (2) Allow for packet mangling: iPRP header
can be inserted and packets can be replicated at the sender,
duplicates can be discarded and original packet can be restored
at the receiver; (3) Minimal CPU overhead.

To this end, we use the libnetfilter_queue
(NF QUEUE) framework from the Linux iptables project.
NF QUEUE is a userspace library that provides a handle
to packets queued by the kernel packet filter. It requires
the libnfnetlink library and a kernel that includes the
nfnetlink_queue subsystem (kernel 2.6.14 or later). It
supports all Linux kernel versions above 2.6.14. We use the
the Linux kernel 3.11 with iptables-1.4.12. More details on the
implementation can be found in Appendix D.

We are deploying iPRP on our EPFL smart-grid commu-
nication network (smartgrid.epfl.ch). Also, we setup a lab test
bed to evaluate iPRP performance. We use a sender and a
receiver (Lenovo ThinkPad T400 laptops) interconnected with
three networks (nwA, nwB and nwC below). We generate
packet losses and delays in these networks to simulate different
scenarios summarized in Table I. The packet losses and delays
are emulated using the Linux tc-netem [14] tool.

Scenario tc-netem delay : loss nature
nwA nwB nwC

0 S:IL S:IL S:IL
1 Z:IL S:IL not used
2 Z:BL S:BL not used
3 Z:IL L:IL not used
4 Z:BL L:BL not used
5 S:IL S:IL not used

TABLE I: Scenarios used for performance evaluation. tc-netem
added delay : “Z” means 0 , “S” means small uniform 10ms±5ms,
and “L” means large uniform 1s±0.2s. Loss nature: “IL” means 5%
independent and “BL” means 5% bursty losses.

A. iPRP Behavior in the Presence of Asymmetric Delays and
Packet Losses

Our goal here is to validate the design and implementation
of iPRP by quantifying the packet losses and delays perceived
by an application. We stress-test the discard algorithm with
heavy losses and asymmetric delays and compare the perfor-
mance with that in theory.

In Table II, we show the measurement results. We assume
that the losses on different networks are independent. We
compare the observed effective losses (iPRP column) with
the expected effective loss percentage that is the product
of observed loss percentages on different networks (theory
column). A deviation would mean anomalies in the iPRP
protocol and implementation. The accordance between the last
two columns in Table II shows that iPRP performs as expected
in significantly reducing the effective packet losses.

In Fig. 5 we show the CDF of one-way network latency
(dIPRP ) for Scenario 5. In theory, it should be diPRP =
min(dnwA, dnwB) and what is measured matches the theory
very well. CDFs are not shown for Scenarios 1-4 as, by
construction, it is almost deterministic which network has the
shortest latency. For example, in Scenario 1 most of the times
diPRP = min(dnwA, dnwB) = dnwA.

smartgrid.epfl.ch


Scen. nwA nwB nwC iPRP theory
0 5.061 4.913 5.1537 0.0126 0.0128
1 5.057 5.002 not used 0.253 0.254
2 5.132 5.059 not used 0.259 0.254
3 5.014 5.013 not used 0.251 0.249
4 5.022 4.981 not used 0.247 0.249
5 5.051 5.002 not used 0.251 0.253

TABLE II: Loss percentages in various scenarios
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Fig. 5: iPRP side benefit: the delays perceived by the application are
improved when iPRP is used, compared to those when only one of
the individual networks is used.

B. Processing Overhead Caused by iPRP
In this subsection, we evaluate processing delays and the

additional CPU load when iPRP is used. We conduct several
runs of Scenario 1 (see Table I) and use GNU gprof to
assess the average processing delay incurred by an iPRP
data packet. In a sender, a data packet encounters only the
replicator function which adds the iPRP header and replicates
packets over multiple interfaces. This operation takes 0.8 µs on
average. On the receiver side, a data packet encounters three
functions. The packet handler copies a packet into user-space,
verifies the fields of the iPRP header and prepares a packet
for the duplicate discard function which indicates if a packet
is to be dropped or forwarded. These operations take 0.8 µs
and 0.4 µs on average respectively. Lastly, if a packet is to
be forwarded, the iPRP header is removed and checksum is
recomputed in 2.4 µs. On average, a data packet incurs a delay
overhead of 4.4 µs due to iPRP.

In order to assess the additional CPU load when iPRP is
used, we perform two experiments in which we record the
CPU usage on the sender and on the receiver. The results are
summarized in Table III and lead to the conclusion that the
implementation presented in this paper is efficient.

VIII. CONCLUSION & FUTURE WORK

We have designed iPRP, a transport layer solution for
improving reliability of UDP flows with hard-delay constraints,
such as smart grid communication. iPRP is application- and
network-transparent, which makes it plug-and-play with exist-
ing applications and network infrastructure. Furthermore, our
soft-state design makes it resilient to software crashes. Besides
unicast, iPRP supports IP multicast, making it a suitable solu-
tion for low-latency industrial automation applications requir-
ing reliable data delivery. We have equipped iPRP with diverse
monitoring and debugging tools, which is quasi impossible
with existing MAC layer solutions. With our implementation,
we have shown that iPRP can support several sessions between
hosts without any significant delay or processing overhead.

We have made our implementation publicly available and are
currently installing it in our campus smart-grid [15]. In the
future, we intend to do extensive measurements on our smart-
grid and study the performance of iPRP in real networks.

Number
Exper. 1: Aggregate Exper. 2: pps

of
of pps for all sessions per session kept
kept constant to 1000 constant to 10

sessions Send. [%] Rec. [%] Send. [%] Rec. [%]
0 (Idle) 3.7 0.9 3.7 0.9

1 14.5 11.8 4.5 2.2
2 14.1 11.9 5.6 2.4
4 15 11.3 5.7 2.3

10 15 12 7.3 3.2
20 15 12 10 5.2

TABLE III: CPU usage with iPRP and varying loads
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APPENDIX A
PROOF OF THEOREM 1

To prove the statement of Theorem 1, we need the follow-
ing lemmas.
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Lemma 1. If R×∆ < 231 and R× (Tinactivity + ∆) < 231,
then the wrap-around problem does not exist.

Proof: The wrap-around problem can arise in two scenar-
ios.

Case 1: A late packet arrives with CurrSN < HighSN−
231. As R×∆ < 231, the time required by the source to emit
231 packets is longer than ∆. Hence, HighSN cannot precede
CurrSN for more than 231 and this scenario is not possible.

Case 2: A fresh packet is received with CurrSN >
HighSN + 231. This means that from the point of view of
the receiver, there were more than 231 iPRP packets lost in
succession. As R × (Tinactivity + ∆) < 231, the time for
more than 231 consecutive packets to be sent is greater than
(Tinactivity + ∆). Hence, the time between reception of any
two packets differing by SNs more than 231 is greater than
(Tinactivity). Therefore, during this time the iPRP session
would be terminated and a new session will be initiated when
the fresh packet is received. Hence, this scenario is also not
possible.

Therefore, in the rest of the proof, we can ignore the
wrap-around problem and do as if SNs of received packets
were integers of infinite precision. Also, a notation such as
HighSNt− [resp. HighSNt+ ] denotes the value of HighSN
just before [resp. after] time t.
Lemma 2 (Monotonicity of HighSN). If at time t, a
packet with SN = α is received, then HighSNt+ =
max(HighSNt− , α). Therefore, HighSN increases monoton-
ically with time.

Proof: From Alg. 6, when α > HighSNt− (line 4) then
the value of HighSN is changed to α (line 7). Otherwise, when
HighSNt− ≥ α (lines 2 and 9), HighSN is unchanged, i.e.,
HighSNt+ = HighSNt− . The two cases combined together
give HighSNt+ = max(HighSNt− , α).
Lemma 3 (Fresh packet is never put in ListSN). If at time
t, a packet with SN = α is forwarded to the application then
α /∈ ListSNt′+∀ t′ ≥ t.

Proof: Let us prove by contradiction. Assume that ∃ t′ > t
such that α ∈ ListSNt′ . Hence, ∃ t1 ∈ (t, t′] when α was
added to ListSN. As t1 > t, from Lemma 2, we conclude
that HighSNt1− ≥ HighSNt+ ≥ α. Now, from Alg. 6, we
know that only SNs > HighSNt1− can be added to ListSN.
Hence, α cannot be added to ListSN at time t1. Therefore,
we have a contradiction.
Lemma 4. At any time t, HighSNt− is equal to SN of a packet
received at some time t0 < t or no packet has been received
yet.

Proof: HighSN is modified only at line 7, where it takes
the value of the SN received. Hence, HighSN cannot have a
value of a SN that has not been seen yet.

Now, we proceed with the proof of the theorem. First, we
prove statement (1). Assume we receive a duplicate packet with
SN = α at time t. It means that a packet with SN = α was
already seen at time t0 < t. Then, from Lemma 2 it follows
that α ≤ HighSNt− . Then, either α = HighSNt− (line 2) or
α < HighSNt− (line 10).

Case 1: When α = HighSNt− , the packet is discarded
according to line 3.

Case 2: When α < HighSNt− , line 10 is evaluated as false
due to Lemma 3. Hence, the packet is discarded by line 14.

Next, we prove statement (2) by contradiction. Assume we
receive a first copy of a valid packet with SN = α at time t
but we do not forward it. This can happen either due to line
3 (case 1) or due to line 14 (case 2).

Case 1: Statement from line 2 was evaluated as true, which
means that α = HighSNt− . As SN = α is seen for the first
time, Lemma 4 is contradicted. Hence, this case is not possible.

Case 2: Statement from line 10 was evaluated as false,
which means that α < HighSNt− and α /∈ ListSNt− . We
show by contradiction that this is not possible, i.e., we now
assume that α < HighSNt− and α /∈ ListSNt− . Now, there
are three cases when α /∈ ListSNt− can be true:

(i) SN = α was added to and removed from ListSN
before time t because it was seen (line 11) which is impossible
as the packet is fresh.

(ii) SN = α was added to ListSN and later removed
at time t0 < t because the size of ListSN is limited to
MaxLost entries (line 6). This means that at time t0 < t
a packet with SN = β was forwarded and β −α > MaxLost
(line 6). However, this means that the packet with SN = α
was not valid at time t0 and therefore is also not valid at time
t > t0.

(iii) SN = α was never added to ListSN. Consider the
set T = {τ ≥ 0 : HighSNτ+ > α}. T is non-empty because
t ∈ T, by hypothesis of our contradiction. Let t0 = inf T.
Then, necessarily HighSNt0− ≤ α < HighSNt0+ (say, = β).
β is the SN of a packet received at time t0. Since α is valid,
β − α < MaxLost. Otherwise, α would be invalid at time
t0, therefore at time t, which is excluded. Then we have two
subcases possible:

a) HighSNt0− < α. Then, by line 5, α is added to
ListSN, which is a contradiction.

b) HighSNt0− = α. But, by Lemma 4 a packet with SN =
α must have been received before t0 which is a contradiction
because α is a fresh packet at t ≥ t0.

APPENDIX B
DETAILS OF THE BACKOFF ALGORITHM

A. Backoff Evaluation

In this section we consider that D = 1, for the sake of
simplifying the presentation.

The flipped truncated exponential distribution with param-
eter λ>0 is then a distribution with density f :[0, 1]→R and
CDF F :[0, 1]→[0, 1]:

f(x;λ)
def.
=

λeλx

eλ − 1
; F (x;λ) =

∫ x

0

f(x;λ) dx =
eλx − 1

eλ − 1
.

In Figure 6 we plot PDFs of the flipped truncated expo-
nential for various values of λ. This distribution is designed to
ensure that the few transmissions that occur in the beginning
of the interval silence with high probability the majority of
the transmissions scheduled in the end of the interval. In what



follows, we show that λ = 20 or λ = 25 are suitable when
n . 106.
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Fig. 6: The PDF of flipped truncated exponential distributions for
various values of λ.

B. Backoff Analysis

For the sake of analysis, we make the simplifying assump-
tion that the RTT from the source to any member of the group
is the same: RTT = r, r ∈ [0, 1]. Zn(r) denotes how many
IPRP_CAP messages are received by the source during an
interval of length TCAP . We want to choose a parameter λ
that ensures a small Zn(r) in most realistic scenarios. Hence,
we show the following result that overlaps with the one in [13]:

Theorem 2. In a lossless network, for a multicast group of
size n, the expected number of messages received by the source
is

EZn = Φn(r;λ) = n
eλr − 1

eλ − 1
+ eλr

[
1−

(
1− e−λr

1− e−λ

)n]
.

In particular, for a fixed choice of λ, the probability that
Zn exceeds a number of messages δ > 0 is upper bounded by
P[Zn > δ] ≤ Ψn(δ, r;λ), where

Ψn(δ, r;λ) =
1

δ2
eλr − 1

eλ − 1

[
n+ 2neλr − n(n− 1)

eλr − 1

eλ − 1

]
+
eλr

δ2

{
2eλr − 1− (2eλr + 2n− 1)

(
1− e−λr

1− e−λ

)n}
.

a) Proof: Denote the backoff drawn by receiver i by Xi

and denote the smallest one by X̂n := minni=1Xi. For a fixed
value of r denote Yin(r) = 1{Xi≤X̂n+r}. Then the source
receives Zn(r) =

∑n
i=1 Yin(r) messages before the receivers’

transmissions are canceled.

Since the Yin are exchangeable, EZn = nEY1n:

EYin(r) = P(Xi ≤ X̂n + r) = P(X1 ≤ X̂n + r)

= P

(⋂
n

{Xn ≥ X1 − r}

)

=

∫ 1

0

[P(X2 ≥ x1 − r)]n−1f(x1)dx1

=

∫ 1

0

[1− F (x− r)]n−1f(x)dx.

Hence

EZn = n
eλr − 1

eλ − 1
+ eλr

[
1−

(
1− e−λr

1− e−λ

)n]
= Φn(r;λ)

The second part is an application of Chebyshev:

P[Zn > δ] ≤EZ
2
n

δ2
=

1

δ2
{n(n− 1)E[Y1nY2n] + nEY1n}.

For this we need the second moment. We have that

E[Y1nY2n] = P[X1 < X̂n + r and X2 < X̂n + r]

=

∫
{x,y∈[0,1]:
|x−y|<r}

f(x)f(y)[1− F (max(x, y)− r)]n−2 dx dy

= 2

∫ 1

0

dx f(x)

∫ x+r

x

dy f(y)[1− F (y − r)]n−2.

�

C. Parameter Selection

We explore values of r ranging from 0.001 to 0.03.
For D = 10 seconds, this corresponds to the RTT rang-
ing from 10 ms to 300 ms. For a given n, we compute
numerically λ that guarantees the best average performance:
λ∗ ∈ arg minλ Φn(r;λ). We find that λ=20 is an acceptable
value for a wide parameter range that guarantees an expected
number of messages below 3 when there are up to 1000000
members in the group. Since the optimum λ∗ increases with
n, and since the the expectation as a function of λ shows a
slow increase toward the right of the optimal value λ∗ (i.e.,
for λ > λ∗), an even safer choice is λ = 25.

We now consider the case when the first k acknowledge-
ments are lost in the network. This can lead to a dramatic
increase in the number of received IPRP_CAP messages.
We perform 106 independent runs for various values of λ,
n, k, and r and we record the empirical distribution of the
number or received capability messages (in addition to the
first k). When λ = 25, the largest observed number of received
capability messages is around 50 when the 20 first consecutive
acknowledgements are lost for a group of 1000000 receivers
in a network with r = RTT/D = 0.03.

We depict our findings in Figure 7 together with the
theoretical upper bound in the lossless case for the 0.999 and
0.9999 quantiles. We conclude that λ = 20/D or λ = 25/D
are judicious choices.

APPENDIX C
IPRP DIAGNOSTIC TOOLS

A. IPRPtest

iPRPtest tests the unicast iPRP operation between the
local and remote hosts. Firstly, it checks for the presence of
an iPRP session between the two machines by querying the
local peer-base and returning the peer-base entry corresponding
to the iPRP session identified by the inputted IP address. This
entry consists of a list of the interfaces (and their IP addresses)
of the remote host connected to the networks identified by the
INDs. Here is an example output if an iPRP session exists:

$ iPRPtest aa::1 1234 10 5
Interface Remote IP address IND

eth0 aa::1 0xa
eth3 cc::1 0xc
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Fig. 7: The expected number of received capability messages EZn

(close to 2 in all cases), an upper-bound on the 0.999 quantile
δ(10−3), and an upper-bound on the 0.9999 quantile δ(10−4) com-
puted using Ψn from Theorem 2 as a function of λ for 100, 1000,
and 1000000 receivers when RTT/D = r. We indicate the optimum
λ∗ for which EZn is minimized. We simulate a lossy environment
where the first k acknowledgements are lost. We give boxplots of
the empirical distribution (obtained after 106 runs) of the received
capability messages in addition to the first k for all scenarios above
and for values of λ ranging from 10 to 30.

If it does not exist, iPRPtest tries to establish one.
It communicates the UDP port number to the iPRP-session-
maintenance functional block on the remote machine, which
is then added temporarily to the set P. After the temporary-
iPRP-session establishment, iPRPtest sends periodic probe
packets to the remote host along multiple paths, depending
on the parameters number of packets and time period. Finally,
the iPRP session is closed and the corresponding UDP port is
removed from set P on the remote machine. If an iPRP session
could not be established, an appropriate message is generated.

B. IPRPping

iPRPping evaluates the end-to-end connectivity over
multiple paths, to a remote host with an iPRP session with
the local host. It exploits the ICMP ping and does not
exercise iPRP that operates on UDP. iPRPping queries the
local peer-base for the remote IP addresses associated with
the the inputted IP address and uses the native ping to check
connectivity over multiple paths in a round-robin fashion.
iPRPping can also be used to obtain the path MTUs along
all paths to a host by varying the size of the ICMP echo request
packets. Finally, it reports the packet loss and RTT statistics
for all the available paths. In the case of absence of an iPRP
session, an appropriate message is generated.

C. PRPtracert

iPRPtracert enlists the routes taken by IP packets over
all the paths to the remote host with the inputted IP address.
It queries the local peer-base for the remote IP addresses used
during an iPRP session. Then, it uses the traceroute from
the TCP/IP suite to trace the routes over multiple paths in a
sequential manner. If the remote host does not have any iPRP
session with the local host, iPRPtracert does not attempt
to establish an iPRP session and generates an appropriate
message.

D. IPRPsenderStats

iPRPsenderStats queries the remote IP address for
packet delivery statistics associated with its iPRP session. For
unicast, the argument is the IP address of the remote host
with an iPRP session. In multicast, the argument is a multicast
group IP address. iPRPsenderStats queries the remote IP
address of one of the subscribers of the multicast group, for
its statistics. If iPRP session does not exist, an appropriate
message is generated. The reported statistics are

• PktCtrX: Total number of packets successfully re-
ceived over the network with IND X.

• LastTimeSeenX: UTC time stamp of last received
packet over the network with IND X.

• WrongINDX: Number of non-IND X packets received
over the IND X network. This can happen due to
a common link between multiple networks or faulty
cabling at the hosts. The iPRP self-configuring prop-
erty makes it immune to such faults, thus enabling
detection without disrupting the normal data delivery.

• AccINDX: Number of packets received over the IND X
network and forwarded to the application. The highest
AccINDX corresponds to the fastest network.

E. IPRPreceiverStats

This tool is used to locally obtain the statistics PktCtrX,
LastTimeSeenX, WrongINDX and AccINDX at the receiver. In
a unicast operation, the argument is the IP address used by
the sender to establish the iPRP session with local machine.
In multicast operation, it is the used multicast IP address.
iPRPreceiverStats queries the locally stored statistics
table to report the above mentioned fields.

Only iPRPsenderStats and iPRPreceiverStats
can be used to diagnose or obtain information from multicast
iPRP sessions. The dearth of diagnostic tools for the multicast
iPRP operation is attributed to the low number of diagnostic
tools for IP multicast.

APPENDIX D
IMPLEMENTATION DETAILS

Our implementation comprises four daemons and the map-
ping between them and the functional blocks introduced in
Section IV is as follows:

• iPRP control daemon (ICD): Algorithms 2 and 3

• iPRP monitoring daemon (IMD): Algorithm 1



• iPRP sender daemon (ISD): Algorithm 4

• iPRP receiver daemon (IRD): Algorithm 5.

We explain the structure and function of each daemon by
giving a walk-through of normal iPRP operation. First, a host is
configured as iPRP enabled by the initialization of the ICD. It
comprises a client that generates control messages and a server
which expects them from other ICDs on the iPRP control
port (1000). ICD has to be started on two machines for an
iPRP session to be established between them. The ICD itself
does not use NF QUEUE but creates an NF QUEUE instance
(IMD). This means that all packets filtered by iptables’ rules
are handled by the corresponding IMD. The IMD maintains
the list of active senders on a receiving host and remains idle
on a sending host.

In the absence of any iPRP sessions and the set P being
initially empty, the ICD and IMD are idle on both the sender
and the receiver. When port p1 is put to set P on a receiving
host, the local ICD creates a packet filtering rule in iptables to
filter incoming UDP traffic destined to p1. This is repeated
for each additional port added to the set P. When traffic
is encountered at the port p1, it enters queue qmon and the
IMD puts the source IP address into the list of active senders
(Algorithm 2). Then, it creates an iptables rule to handle
incoming UDP traffic destined to iPRP data port (1001), into
the queue qrecv. Furthermore, this being the first entry in the
list of active senders, the IMD creates an NF QUEUE instance
(IRD) to handle packets in qrecv .

Then, the ICD on the receiver does a backoff (Section IV-F)
to establish a secure DTLS session with the ICD on the sender.
It communicates unicast iPRP_CAP messages that advertise
the available IP addresses, INDs, the multicast IP address and
the cryptographic key for authenticating the iPRP header. The
IND in our implementation is calculated from the interface
names.

On receiving an iPRP_CAP message, the sending-machine
ICD sends an iPRP_ACK (omitted in unicast) to avoid further
iPRP_CAPs. Then, it performs IND matching (Section III-D)
to create a peer-base entry and the cryptographic key is stored
locally. Next, it creates an iptables rule to filter the outgoing
traffic to the multicast group and port p1 into the queue qsend.
Also, it creates an NF QUEUE instance (ISD) to inspect all
in qsend.

For packets in qsend, the ISD uses information from the
peer-base entry associated with the multicast group to create
an iPRP header (Section IV-D). The HMAC trailer is formed
using the locally stored pre-shared cryptographic key and
the openssl sha-1 cryptographic hash function. Finally,
the newly formed packet is encrypted using openssl aes
function and sent to the destination port 1001 over the available
networks.

The IRD receives the packet with an iPRP header, authenti-
cates it and updates the list of active senders (Alg. 1). Depend-
ing on the decision of the discard algorithm (Section IV-E) the
packet is either dropped, or forwarded to the application in its
original form. The ListSN is realized with an array of size
MaxLost so that updation and deletion always occurs at the
(CurrSN % MaxLost) location. This facilitates an O(1)
execution time.

When the IRD stops receiving data from a particular
multicast group, the corresponding entry in the list of active
senders is erased and the corresponding iptables filtering rule
is removed. Hence, the ICD stops sending iPRP_CAPs to
the sending host, ISD is terminated and the associated iptables
filtering rule is deleted. The IRD is terminated when the list
of active senders becomes empty. Also, for each deleted entry
from the set P, the associated iptables filtering rule is removed.

All state information is locally stored with a time stamp,
and aged state information is periodically removed. The pe-
riodic exchange of iPRP_CAPs and iPRP_ACKs serves as
a keep-alive mechanism for soft-state property. To reduce the
operating footprint of iPRP on the operating system, system
calls not directly in the path of a data packet are batched. For
instance, gettimeofday() system call is scheduled every
second instead of each packet arrival. As a consequence, the
granulatity of time used for soft-state maintenence is increased
to 1 s instead of 20 ms. This increase only delays the start and
end of an iPRP session but does not effect the time-critical
data packets.
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