
Relational Network-Service Clustering Analysis
with Set Evidences

Li Pu
Artificial Intelligence Laboratory

EPFL/IC/LIA, Station 14
Lausanne, Switzerland

li.pu@epfl.ch

Boi Faltings
Artificial Intelligence Laboratory

EPFL/IC/LIA, Station 14
Lausanne, Switzerland
boi.faltings@epfl.ch

Qiang Yang
CSE Department

Hong Kong University of Science and
Technology

Kowloon, Hong Kong

qyang@cse.ust.hk

Derek Hao Hu
CSE Department

Hong Kong University of Science and
Technology

Kowloon, Hong Kong

derekhh@cse.ust.hk

ABSTRACT

Network administrators are faced with a large amount of
network data that they need to sift through to analyze user
behaviors and detect anomalies. Through a network moni-
toring tool, we obtained TCP and UDP connection records
together with additional information of the associated users
and software in an enterprise network. Instead of using tra-
ditional payload inspection techniques, we propose a method
that clusters such network traffic data by using relations
between entities so that it can be analyzed for frequent
behaviors and anomalies. Relational methods like Markov
Logic Networks is able to avoid the feature extraction stage
and directly handle multi-relation situations. We extend
the common pairwise representation in relational models by
adopting set evidence to build a better objective for the net-
work service clustering problem. The automatic clustering
process helps the administrator filter out normal traffic in
shorter time and get an abstract overview of opening trans-
port layer ports in the whole network, which is beneficial
for assessing network security risks. Experimental results
on synthetic and real datasets suggest that our method is
able to discover underlying services and anomalies (malware
or abused ports) with good interpretations.

Categories and Subject Descriptors

K.6.5 [Management of Computing and Information
Systems]: Security and Protection—Invasive software (e.g.,
viruses, worms, Trojan horses); I.5.3 [Pattern Recogni-
tion]: Clustering—Algorithms

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
AISec’10, October 8, 2010, Chicago, Illinois, USA.
Copyright 2010 ACM 978-1-4503-0088-9/10/10 ...$10.00.

General Terms

Experimentation, Security

Keywords

network service, relational learning, clustering

1. INTRODUCTION
In an enterprise network, various applications that con-

nect from client machines to servers depict certain behavior
of the whole network. Administrators need to ensure the
security of the network based on in-depth understanding of
such behaviors. It is, however, very challenging to find out
the most important part that needs special attention from
the huge amount of network data.

A common method for investigating software behavior in a
network environment uses filters for automatically selecting
a small subset of the data, and then manually process the
selected data by experts. The anomaly detecting filters can
be implemented with various techniques [10, 6, 4, 26], but
many of them require expert knowledge of the entire network
status.

Another approach addressing the same problem reduces
the amount of human work by applying clustering techniques
so that only the suspicious clusters need to be inspected.
We call a cluster of connections of similar functionalities a
service. A typical method for identifying network services
exhaustively examines the transport layer ports. But in real
data there are too many connections and ports where most
of them are not used for their registered purpose (although
the Internet Assigned Numbers Authority tries to maintain
a list of port numbers and functionalities). Some software
also uses dynamic ports to bypass port number filters.

From the machine learning point of view, the second class
of methods first maps the raw data into a metric space and
then uses various clustering algorithms for classifying net-
work traffic. It relies on extracting feature vectors from each
connection or sequence of connections, e.g., type and length
of the connection, entropy of payload, existence of keywords
and other statistics, so the quality of selected features plays
an important role. After getting these features, one can

35

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/148004949?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

build a supervised or unsupervised classifier on the dataset
and assign each connection a class label [20, 27, 7, 5, 15].

Through collaboration with the company Nexthink (www.
nexthink. com), we obtained the TCP or UDP connection
records of all client machines in an enterprise network. For
each connection record, besides the commonly used TCP/UDP
5-tuple (protocol, source IP, source port, destination IP, des-
tination port), it is also associated with the user and appli-
cation name that initialized the connection. This additional
information allows us to combine the connections from all
client machines to make deeper inference about network sta-
tus. In this paper, we try to utilize only the relations be-
tween connections, ports, applications and servers (desti-
nations) for discovering underlying services, i.e., assign each
open port in the network to a cluster that describes its func-
tionality.

In our work, the goal is not to assign an optimal ser-
vice label to every TCP/UDP connection, but to create an
overview of port clusters for the whole network, which pro-
vides a better interface for in-depth inspection the adminis-
trator. For example, in Windows NT/2000/XP, file sharing
is implemented on top of NetBT (NetBIOS over TCP/IP,
port TCP/139) and directly on port TCP/445, so usually
both ports can be found on those servers that provide file
sharing service. If the administrator sees such ports cluster
in a server, he knows what is the role of this server and cor-
responding security risks. Table 1 shows the servers open
ports TCP/139 or TCP/445 in a real enterprise network in
which most of the servers open both ports. Our clustering
task is to assign the ports into several disjoint clusters by
the evidences that connections provide. Once the ports are
presented within clusters, the administrator would have a
clearer picture about the services running in the network
and their security risks.

TCP/139 10.201.0.2, 10.130.10.49, 10.130.10.69,

10.130.10.98, 10.130.10.107, 10.130.10.111,

10.130.10.113, 10.130.10.125, 10.130.10.159,

10.130.10.161, 10.130.10.222, 10.130.10.226

TCP/445 10.201.0.2, 10.130.10.69, 10.130.10.107,

10.130.10.111, 10.130.10.113, 10.130.10.125,

10.130.10.159, 10.130.10.222, 10.130.10.226

Table 1: Servers open ports TCP/139 and TCP/445
in an enterprise network.

Our clustering approach is based on a machine learning
technique called statistical relational learning (SRL). SRL,
more specifically Markov Logic Networks, encodes the prob-
ability distribution of possible states into a set of logic for-
mulas with weights, and takes full advantage of first-order
logic to achieve richer expressiveness [25, 9]. The problem
is written with first-order logic formulas that describe the
relations and truth values of observable ground predicates.
Markov Logic associates each formula with a certain weight
and computes probabilities by summing the total weight of
those satisfied formulas. But in the clustering problem, in-
stead of obtaining full probability distributions over all pos-
sible evaluations of unobservable ground predicates, we are
more interested in finding out the most probable evaluation
for all ground predicates, which exactly provides us the in-
formation of the underlying network services. Compared

to the vector space model methods (for example k-means,
support vector machine), the relational model allows us to
directly model relations between entities rather than embed
them into the features. And the user can directly specify
what are the clustering variables in the relational model,
which is sometimes not clear in the vector space model.

The rest of the paper is organized as follows. In Sec-
tion 2 we enumerate the related research topics and results.
Then the formal definitions of set evidence, modularity and
Markov Logic can be found in Section 3. Network-service
clustering problem is described with Markov Logic and im-
proved by considering set evidences in Section 4. In Section
5, we present details of synthetic and real enterprise network
datasets, experimental setup and discussions of the results.
Finally Section 6 concludes our work with future research
topics.

2. RELATED WORK
SRL has been widely used in many fields such as natural

language processing, social network analysis, and semantic
webs [18, 14, 16, 23]. Clustering applications like entity
resolution in relational data bring additional information to
the traditional feature vector space model methods [1, 23].
The unsupervised learning application for natural language
processing with Markov Logic Networks can be found in [23].
In this paper we extend it by adopting set evidences.

To incorporate the linkage information in the clustering
problem, people studied another class of methods, namely
community detection. The goal of the community detection
problem is to get the partition of connected objects into clus-
ters such that the intra-cluster connections are denser than
inter-cluster connections[22, 21, 3, 8]. In the community de-
tection literature, the problem is often modeled as a graph
where the nodes denote objects and the edges denote rela-
tions between objects. Our proposed greedy algorithm for
the clustering problem in Markov Logic with set evidence is
similar to the agglomerative algorithm in community detec-
tion [22]. But community detection algorithms usually allow
only one type of relation represented by the edges, while in
our work the relations are more diverse.

Moore [19] proposes an ensemble method for classifying
network applications. The authors report that more than
99% of the packages can be correctly identified. But this
work requires the software to look into the payload, which
is time consuming and becomes invalid in the case of an
encrypted payload. Karagiannis [13] develops an approach
called BLINC to classifying network flows according to the
traffic patterns at three different levels. This work is similar
to our work in the sense that it tries to associate hosts with
applications rather than solely classify applications. But
in our work the information about applications is in a fine
granularity and more complete.

Kandula [12] presents a system that takes information
from various sources in the enterprise network to perform
detailed diagnosis of performance problems. It provides an
evidence that combining network traffic and application in-
formation could bring a new perspective to the problem.
Homer [11] proposes a SAT-solving approach to obtain the
optimal configuration changes given current information se-
curity status, attacks, usability requirements and costs of
actions. This system allows the administrator to balance
the security and the usability of the network, but it assumes

36

that all the attacks, misconfigurations and vulnerabilities
are known.

3. PRELIMINARIES

3.1 Set Evidence
With the graph representation, relations between objects

are often described in a pairwise manner. This evidence
description method is not natural in cases where the evi-
dence refers to sets of objects, such as the fact that some
objects are probably in the same cluster. Taking the exam-
ple of ports connected from the same application to the same
server, we can infer they are probably in the same cluster.
But it is not justified to assume a relation between every
pair of ports, because there might exist some sub-clusters
structure, i.e., the ports actually belong to more than one
cluster.

Consider n ground-truth clusters Ci, (i = 1, 2, ..., n, Cp ∩
Cq = ∅, R = ∪Ci), m set evidences Gj ⊆ R, (j = 1, 2, ..., m),
and a partition T = {Ti} over R, the goal of our algorithm
is to recover the clusters from Gj such that Ti = Ci. In
the network service clustering problem, R is the set of all
ports, each set evidence Gj consists of some ports which is
indicated by the relation with application-destination pairs
(we will explain the details in the next section). We say a
partition T is consistent with a set evidence Gj if all mem-
bers of the set evidence are in the same cluster Ti, otherwise
Gj is inconsistent. For building port clusters, if all ports in
a set evidence Gj are assigned to the same cluster, it is con-
sistent. In practice it is hard to generate a partition which
is consistent with all set evidences if m is large. Therefore,
we would like to find out the optimal partition in the sense
that a minimal set evidence inconsistency is introduced.

In practice, set evidence can be found in many applica-
tions. If a group of people with similar interests always goes
to the same club, we can infer that they are in the same
community (cluster). If there are multiple clubs or insti-
tutions, we can introduce more set evidences. But it is im-
proper to assume a connection between every pair of persons
that appeared in the club, because there might exist a sub-
community structure, i.e., one person does not necessarily
know all other persons in the club. This is why we use the
set evidence relation instead of pairwise relations for clus-
tering. Another example naturally appears in recommender
systems, where a certain group of people buy the same item
have higher probability to fall into the same community.

3.2 Modularity
Given a partition over the set of objects on which the

clustering algorithm is performed, we would like to have an
evaluation measure to assess the goodness of the result. If
the ground-truth is known, this can be done by comparing
differences between the algorithm output and the ground-
truth. But in many cases the ground-truth is not available
because it is exactly what we would like to discover. Many
measures are developed to evaluate the goodness of results
without knowing the ground-truth. For example, the modu-
larity on a graph G and a partition T counts the number of
actual edges in the cluster minus the expected edges in the
cluster as if the edges are randomly placed between nodes
with an expected probability [22, 21]. If the set of all nodes
is divided into k communities (clusters), a k × k matrix E
can be constructed where each entry eij denotes the fraction

of all edges in the graph that link nodes in cluster i to nodes
in cluster j. Modularity is defined as [21]

Q(G , T) =
∑

i

(

eii − (
∑

j

eij)
2

)

= Tr(E)− |E2|,

where |E2| indicates the sum of the elements of the matrix
E2. The modularity suggests stronger community structure
if it is close to 1, and usually ranges from 0.3 to 0.7 in
practice.

In this work, the evidence, however, is not expressed in a
pairwise way, but in the form of set evidence, so the defini-
tion of modularity needs to be modified. The first modifica-
tion adapts set evidence into a graph. The set of nodes of
the graph is the set of all elements in R. An edge between
node a and node b is added to the graph if both nodes are
contained in the same set evidence Gj . The modularity of
this induced graph is denoted as Q1. This procedure would
produce a relatively dense graph because all nodes in the
set evidences are fully connected even if they are actually
unrelated.

We also propose a second modification where the modu-
larity is directly computed from set evidences,

Q2(G, T) =
∑

i

(

ei − a2

i

)

, ai =
|{Gk|Gk ∩ Ti 6= ∅}|

m

ei =
|{Gk|Gk ∩ Ti 6= ∅ and ∀j 6= i, Gk ∩ Tj = ∅}|

m

ei is the fraction of set evidences that only intersects with Ti

and ai includes those set evidences also intersect with other
clusters. This modularity is denoted as Q2.

In this work, modularity is used as an evaluation measure
rather than an optimization objective. Since the ground-
truth of cluster labels for each object is unknown for real
data, higher modularity does not necessarily imply a bet-
ter clustering result because it only indicates that the result
better fits our assumption about community structure – the
intra-cluster connections are denser than inter-cluster con-
nections.

3.3 Markov Logic Networks
Markov Logic Networks (MLN) is a language that adopts

the expressiveness of undirected probabilistic graphical model
and first-order logic proposed by Richardson et al. [25] to
deal with both uncertainty and complexity in the applica-
tions. A MLN model is a set of first-order logic formulas
where each formula is associated with a real-valued weight.
The weighted formulas can be viewed as templates for build-
ing Markov networks. The joint distribution of the grounded
Markov network can be computed by

P (X = x) =
1

Z
exp

(

∑

i

wifi(x)

)

=
1

Z
exp

(

∑

i

wini(x)

)

where x is the truth value vector of atom vector X, wi is the
weight of formula i, fi(x) denotes the satisfiability vector of
formula i, and ni(x) is the number of true groundings of
formula i with evaluation x. Efficient inference of MLN is
implemented by Markov chain Monte Carlo methods, e.g.
MC-SAT and the“lazy”version Lazy-MC-SAT [24]. In Lazy-
MC-SAT, the predicates are grounded when needed, so it
is more efficient in memory. Please refer to [25] for more
details.

37

Vector space model methods like k-means, k-nearest neigh-
bor and unsupervised support vector machine can be also
applied for finding the partitions to the relational data, but
they all require a feature extraction stage where the feature
values are computed from the relations. In a multi-relation
dataset, one has to normalize all relations into different scale
so that all the dimensions can be considered with different
weights, while relational models like MLN directly handle
multi-relation situations and perform the clustering algo-
rithm.

4. NETWORK-SERVICE CLUSTERING
We assume the following network traffic and related infor-

mation are recorded in the dataset: connection ID, source
IP address, destination IP address, port of TCP/UDP con-
nection, and the name of process running in a client machine
that initiates the connection. The only observations we have
are connection records from an application to a destination
with a port. Four types of entities from the observations are
considered: connection that represents a TCP/UDP session;
application that denotes the process of the same executable
filename; destination is a server of an unique IP address that
open some ports to the applications; and port is a combi-
nation of port type (TCP or UDP) and port number. The
source IP address and source port information are omitted
because we treat the same application on different client
machines equally.

4.1 MLN representation for Network-Service
Clustering

Now we describe the service-clustering problem with the
MLN language. First, one more type of variables called ser-
vice needs to be introduced. A service is a cluster that con-
sists of one or more ports. Then the predicates are defined
for modeling the problem and describing relations between
different objects. connApp(conn, app) means that the con-
nection is initialized by the application. connDest(conn,

dest) indicates that the connection points to the destina-
tion. connPort(conn, port) means that the port is used
by the connection. haveService(dest, service) suggests
that the service is hosted in a destination. appUseSer-

vice(app, service) is true if and only if the application
uses the service. And finally servicePort(service, port)

denotes that the port is included in the service.
Although the ports are not always used for the registered

purpose, we find in the real dataset that the functionality
of one port is quite stable within the enterprise network.
It is reasonable to assume that one port only belongs to
one service. For this assumption, we impose the constraint
on predicate servicePort(service!, port). The symbol !
means mutually exclusive and exhaustive in the MLN syn-
tax. It is worth mentioning that this constraint could largely
reduce the number of possible worlds (value assignments to
ground predicates) in the problem, since all instantiations of
service are unknown and treated equally. The search space
can be reduced if we break the symmetry worlds where the
same value assignment is applied to servicePort with per-
muted service names. To do this, Poon et al. [23] give a
unique name to each new cluster when it is created. In this
paper, we identify equivalent classes by sorting the services
with the smallest member id contained in each service.

The first formula in Figure 1 states that if more than one
connection is associated with the same application-destination

pair, the services of the ports of the connections are likely
to be the same. This rule helps to merge similar ports into
one cluster and actually defines a group of sets where each
set evidence can be named by the application-destination
pair. In first-order logic, set evidence is often represented
in a pairwise way like in Figure 1, but this representation is
not efficient and sometimes not appropriate in the cluster-
ing settings. We will discuss this issue and refine MLN to
directly incorporate set evidence later.

The second and third formulas (with weights w2 and w3)
suggest that if the port of a connection belongs to a service,
the application and destination associated with this connec-
tion are likely to use or host this service. If two ports that
originally belong to the same service are assigned to two
services, one more instantiation can be satisfied for each
formula and a bigger weight is obtained. So these two rules
encourage more clusters and the total weight of these two
rules is proportional to the number of services. The last two
formulas set the prior on appUseService and haveService

to prevent them from being always true.
As long as we have these formulas and weights, the goal of

clustering is to maximize a posterior probability P (A|Y) ∝
P (A, Y) = P (A)P (Y |A) where A is the cluster assignment
vector and Y is the vector of observed values. In our prob-
lem, A = servicePort(s,p) and Y = {connApp(c,a), conn
Dest(c,d), connPort(c,p)}. The best cluster assignment
vector is the one that maximizes the total weight of satisfied
ground formulas or minimize the total weight of unsatis-
fied formulas. The prior distribution P (A) and conditional
distribution P (Y |A) is encoded into the MLN formulas. Ex-
act inference in MLN is NP-hard, so Monte Carlo method
or heuristics are usually adopted to find the solution. In-
tuitively the first formula tends to gather ports into less
clusters while other formulas prefer more clusters. By tun-
ing the weights, we can control the final number of clusters.
The weights are learned from a subset of the dataset by the
alchemy software [17].

4.2 Refinement with Set Evidence
Consider three set evidences that intersect with one an-

other as shown in Figure 2 (a). If the final cluster assign-
ments divide a set evidence into more than one part, some
ground formulas will not be satisfied so that the total weight
will decrease. It is shown in Figures 2 (b) and (c) that with
pairwise representation the weight loss depends on the size
of set evidence and the partition (the filled polygons). If we
add edges to all pairs of objects in a set evidence, the parti-
tion in (b) breaks 9 edges and another partition in (c) breaks
5 edges. The two partitions introduce different weight losses,
but in principle the weight losses under these two partitions
should be the same because the elements in set evidence are
equally treated. In other words, there should be no pref-
erence between evenly dividing a set evidence or unevenly
dividing it. Another problem with pairwise representation
is that violating a large set evidence is much harder than
separating elements from a small set evidence, because the
former brings larger weight loss. To deal with these prob-
lems, we propose a set evidence function as an extension to
the standard MLN. This function takes the form as follow-
ing,

wf = w · SetE(e, z, f).

It maps a first-order formula f to a real valued total weight

38

w1; (connApp(c1,a) ∧ connDest(c1,d) ∧ connPort(c1,p1)) ∧ (connApp(c2,a) ∧ connDest(c2,d) ∧ connPort(c2,p2))⇒

(servicePort(s,p1) ∧ servicePort(s,p2))

w2; (∃c,p(connApp(c,a) ∧ connPort(c,p) ∧ servicePort(s,p))) ∧ appUseService(a,s)

w3; (∃c,p(connDest(c,d) ∧ connPort(c,p) ∧ servicePort(s,p))) ∧ haveService(d,s)

w4; appUseService(a,s)

w5; haveService(d,s)

Figure 1: MLN formulas for network service clustering.

(a) (b)

(c) (d)

Figure 2: The unsatisfied formulas introduced by
inconsistent set evidences.

wf , and includes another two arguments. The the first ar-
gument e is the set of variables representing set evidence
and the last argument z denotes the variable needs to be
clustered (partition variable) in f . And w is the base weight
of formula f . The set of variables in f other than e and
z is denoted as v. For specific constants te instancing the
variables in e, we can define how SetE computes the total
weight. Following the idea shown in Figure 2, it can be
defined as,

SetE1 (e, z, f) =
∑

te

(|{tz|∃tv, f(te, tz, tv) = true}| − 1) .

For each te, SetE1 computes the number of clusters in the
final result that intersect with te minus 1. The total weight
can be seen as a penalty of breaking set evidences, so the
weight w should be a negative value. By this refinement, the
position of the partition boundary will have no influence on
the weight contribution of formula f as long as the partition
has the same number of subsets (as shown in Figure 2 (d)).
Another SetE function considers the strength of set evidence,
in which bigger set evidence introduces larger penalty.

SetE2 (e, z, f) =
∑

te

∑

z16=z2

(|{tv|f(te, tz1, tv) = true}|+ |{tv|f(te, tz2, tv) = true}|) .

But in practice, SetE2 would generate big clusters in some
cases, because it repeatedly adds more objects to the cluster
if it is much larger than others. To deal with this problem,
the third function is defined as,

SetE3 (e, z, f) =
∑

te

∑

z1 6=z2

min (|{tv|f(te, tz1, tv) = true}|, |{tv|f(te, tz2, tv) = true}|) ,

which takes the minimal value of strength from different
clusters. Now the first formula in Figure 1 can be rewritten
as w; SetEk ([a, d], s, f) where k = {1, 2, 3} and f is defined
as

f =(connApp(c,a) ∧ connDest(c,d) ∧ connPort(c,p))

⇒ servicePort(s,p).

The set evidence variables are a and d, and the partition
variable is s.

4.3 Clustering Algorithm
Similar to MLN, the refined problem is NP-hard. A ran-

dom walk algorithm (e.g. MaxWalkSAT or LazySAT) is of-
ten adopted in previous works [17, 23]. We propose another
approach for MLN which is similar to the greedy algorithm
used in community detection [2]. In the context of network-

Algorithm 1 GreedyClustering(maxSteps, threshold,
formulas, e, z)

InCluster(zi, obji)← true, i = 1, 2, ...|{obj}|.
for k ← 1 to maxSteps do

mergePair ← null, maxGain← −inf
for (i, j)← i, j ∈ {1, 2, ..., |{z}|}, i > j do

if (gain = WGain(formulas, e, z, i, j, InCluster)) >
maxGain then

maxGain← gain, mergePair ← (i, j)
end if

end for
if maxGain < threshold then

break
end if
(p, q)← mergePair
InCluster(zp, obj) ← true, if InCluster(zq, obj) ==
true.

end for
return InCluster(z, obj)

service clustering, the algorithm initializes the partition in
which each port forms one cluster by assigning each port a
different service. Then it iteratively chooses two services and
merge their corresponding ports into one service such that

39

the total weight gain is maximized. Because in each step, we
only change the values of the predicates in two different ser-
vices, the total weight gain can be computed efficiently. We
repeat the above step until no more weight improvement can
be made or step number limit is reached. A general form of
this procedure is shown in Algorithm 1. The predicate In-

Cluster(z,obj) denotes the cluster assignment where obj is
the variable on which the clustering is performed, e.g. ports.
To move to the next iteration, a minimal weight gain (usu-
ally a positive real number) is required, which is denoted
by the parameter threshold. The function WGain takes
current cluster assignment and two candidate clusters, then
computes weight gain by merging them.

5. EXPERIMENTAL RESULTS
In this section, we apply our network service clustering

model and algorithm to a network traffic dataset. Since
the real enterprise dataset does not have labels for evalu-
ation, the algorithms are first tested on synthetic datasets
and then applied to the real data collected by Nexthink. As
explained in Section 4, each dataset consists of a number of
records and each record is a tuple {connection, application,
destination, port}. For synthetic dataset, there is one more
column service in each record indicating the label of the
port.

We use a supervised pairwise F-measure (PWF) [28] to
evaluate the results. Let T denote the pairs of objects that
have the same cluster label, and S denote the pairs of objects
assigned to the same cluster in the result. PWF is computed
from the pairwise precision and recall.

precision = |T ∩ S|/|S|, recall = |T ∩ S|/|T |

PWF =
2× precision× recall

precision + recall

Higher PWF indicates better clustering result. The unsu-
pervised community structure measures Q1 and Q2 are also
computed for both synthetic and real datasets.

The k-means algorithm is taken as the baseline. Feature
vectors are constructed from the relations between application-
destination pairs and ports. For each port there is a feature
vector of length Nv that equals to the number of unique
application-destination pairs. The entry corresponding to
application-destination pair (a,d) for port p is set to 1
if ∃c, (connApp(c,a) ∧ connDest(c,d) ∧ connPort(c,p)) =
true, otherwise 0. The number of desired clusters k for k-
means algorithm is set to be the same as the true number of
clusters, preferring that the k-means algorithm will achieve
the best possible performance. In every experiment, the k-
means algorithm is repeated 30 times with randomly chosen
initial clusters and then the average performance is com-
puted.

5.1 Synthetic Dataset
The process of generating a synthetic dataset simulates

the software and service behaviors in a real network. Each
port is first associated with a service. The ratio of maxi-
mum service size over minimum service size is denoted as
α, which indicates the degree of unbalance among services
(clusters). Samples of application-destination pairs using
the same service are uniformly drawn from all possible pairs,
and a service name is assigned to each pair. Then some con-
nections are generated by adding ports in the corresponding

Synthetic dataset Nexthink dataset

connections 8000 13774

applications 80 320

destinations 40 840

ports 180 474

services 40 n/a

Table 2: The size of synthetic and Nexthink dataset.

services to application-destination pairs. To compare the
performance of relational clustering algorithms using set ev-
idence to the baseline, unbalanced clusters are introduced.
α is set to 10 and 20 in another two datasets.

To test the performance of the algorithm under noise, the
ports of a fraction β of connections are chosen from a ran-
dom service, which introduces incorrect set evidences into
the dataset. We set β to 0.05 in one dataset. The size of
synthetic dataset is shown in Table 2.

0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
0.4

0.5

0.6

0.7

0.8

0.9

1

precision

recall

PWF

p
re

ci
si

o
n
,
re

ca
ll
,
P

W
F

r

Figure 4: The PWF curve for different weight ratio
r = |w1|/|w2| on the same dataset.

Figure 3 shows the performance of different algorithms on
synthetic datasets. In the the three datasets where β equals
0, the PWF score of SetE1 is always better than k-means
and other two relational methods. But methods SetE2 and
SetE3 do not have significant improvement compared to k-
means in synthetic datasets. In the case of noisy data, the
performance of all relational methods decreases a lot. It is
unusual to observe that the PWF score of k-means is better
with noisy data. This is the consequence of our method
of adding noisy data which makes a bridge between feature
vectors in the same cluster and brings better results for k-
means. In the k-means algorithm, the choice of the metric
defined between ports makes a big difference on the final
result. We use the cosine distance in this work since the
data points have large dimensionality, which shows better
performance than the Euclidean distance in the experiments
with synthetic data. From Figure 3 we can also observe
the correlation between PWF and modularity. Q1 and Q2

decrease when the PWF score is lower, so the modularity
can be used to evaluate the goodness of the partition when
the ground-truth is unknown.

Figure 4 illustrates the relationship between performance
and weight ratio on the same noisy dataset. The ratio
r = |w1|/|w2| (w2 = w3) indicates the relative strength of

40

0

0.5

1

0

0.2

0.4

0.6

0

0.5

1

0

100

200

300

α = 1, β = 0 α = 1, β = 0.05 α = 10, β = 0 α = 20, β = 0

P
W

F
Q

1
Q

2
IS

E

k-
m

ea
ns

k-
m

ea
ns

k-
m

ea
ns

k-
m

ea
ns

Se
tE

1

Se
tE

1

Se
tE

1

Se
tE

1

Se
tE

2

Se
tE

2

Se
tE

2

Se
tE

2

Se
tE

3

Se
tE

3

Se
tE

3

Se
tE

3

Figure 3: Performance of different algorithms on synthetic datasets (results are shown as mean and standard
deviation). “ISE” is short for inconsistent set evidences.

gathering less clusters over the strength of generating more
clusters. The result shows that our model is robust w.r.t. the
weight change and maintains a stable performance within a
weight ratio range.

5.2 Nexthink Dataset
Some features of the dataset collected by Nexthink from

July 2008 to September 2008 in a real enterprise network are
shown in Table 2. All connections are recorded in Windows
systems. The connections with destinations outside the en-
terprise network are omitted, because we only care about
the services inside the local network. For the real data, we
find many ports are not used as the registered function in
IANA, so it is hard to label the functions for all ports. In
this case, only the unsupervised measures Q1 and Q2 are
used for evaluation.

The relational algorithm usually outputs about 70 to 85
services (clusters) where the exact number depends on the
terminal point of the algorithm. From the results, two main
types of services can be found: ports range and ports func-
tion. Ports range is a service that contains consecutive ports
uniquely used by a specific application. Service (cluster) 1
in Table 3 is an example of ports range. Service 2 to 5
are examples of ports function. Service 2 contains the two
file sharing ports that we mentioned in the introduction.
It provides the list of all file sharing servers without any
prior knowledge about functionalities of ports in Windows
system. The applications in service 3 actually belong to
the same software package “Novadigm Radia software deliv-
ery and management tools”. With this information, we can
also find out which servers are hosting the Radia service,

which helps the administrator to manage the software. Ap-
plications in service 5 are products of “Symantec AntiVirus
Suite”.

We also identified some groups of malware in the dataset,
which is shown in services 6, 7 and 8 in Table 4. The mal-
ware in service 6 and 7 randomly changes its executable file-
name and sends UDP broadcast packages to communicate
with other infected machines in the local network. With
the service information, it is easy to query from the dataset
about the infected source machines. Service 8 shows another
group of malware using port TCP/50000 hosted in the same
server (IP address 10.21.49.7). When using the k-means al-
gorithm (services k1, k2 and k3), TCP/2638 and UDP/2638
are mixed with other ports in the result, so the suspicious
applications can not be easily identified as malware. This
result shows that our relational clustering method is able
to discover the unknown network traffic groups and auto-
matically present them to the administrator with clear in-
terpretations. In practice, however, it is hard to tell which
relational clustering algorithm would produce the best re-
sult without labels, the best strategy is to try different al-
gorithms and look into the results for some reasonable in-
terpretations (e.g. applications from the same company, or
ports with the same known service).

Another observation from the results is the fact that only
a few servers provide more than one type of service. 81%
of the servers host only one service, and 94% of the servers
only belong to at most 2 services. This indicates that the
servers in the enterprise network are usually dedicated to
one or two functionalities. The similar observation can be
found for applications, 80% of the applications use only one

41

Ports, applications, destinations

1

UDP50758, UDP50760, UDP50767, UDP50769,

UDP50770, UDP50771, ...

snmp.exe

10.0.0.20

2

TCP139, TCP445

system

10.130.10.111, 10.130.10.107, 10.130.10.226,

10.130.10.98, 10.130.10.222, ...

3

TCP3464, TCP3466

nvdkit.exe, radconct.exe, radstgms.exe, radstgrq.exe

10.130.10.94, 10.144.0.5, 10.136.0.5, 10.60.15.5,

10.140.1.5, 10.20.3.8, ...

4

TCP5008, TCP5009, TCP5011

vau.exe, workstation.exe

10.21.49.176

5

TCP2967, UDP1281, UDP2967, UDP38293

rtvscan.exe,savroam.exe

10.130.10.98, 10.144.0.5, 10.136.0.5, 10.2.0.5,

10.60.15.5, 10.20.3.8, ...

Table 3: Examples of services generated from Nex-
think dataset.

service. Figure 5 shows the histogram of number of ports,
applications and destinations in all services.

0 5 10 15 20 25 30
0

20

40

60

0 10 20 30 40 50 60 70 80
0

20

40

60

0 10 20 30 40 50 60 70 80 90 100
0

20

40

60

#
se

rv
ic

e
#

se
rv

ic
e

#
se

rv
ic

e

#port

#application

#destination

Figure 5: Histogram of number of ports, applica-
tions and destinations in services.

The Nexthink dataset has little noise, so the final results
of different SetE functions are the same if the algorithm ter-
minates by the threshold equals to 0. But the intermediate
steps are different. Figure 6 shows the differences between
relational clustering algorithms. SetE2 and SetE3 have sim-
ilar intermediate results, while SetE1 has larger difference
with other two methods. The same comparison between dif-
ferent relational clustering algorithms and k-means is shown
in Figure 7. The k-means result differs a lot from the results
of relational algorithms, since we can observe that the curves
keep decreasing when the clusters are forming. But SetE1

presents less different clusters with the k-means method, be-

Ports, applications, destinations

6

TCP2638

novoterm.exe, tpmeritve.exe, vlaknagl.exe,

vlaknagl1.exe, frichi2.exe, ...

10.21.49.7

7

UDP2638

novoterm.exe,tpmeritve.exe,vlaknagl.exe

10.255.255.255

8

TCP50000

commonupdt.exe, corporateebank.exe,

initeformsmandb.exe, commonupdate.exe, ...

10.21.49.7

k1

TCP2638, TCP8290, TCP16384

hpqscnvw.exe, novoterm.exe, tpmeritve.exe,

vlaknagl.exe, agentservice.exe, ...

10.136.10.2, 10.21.49.7, 10.0.21.105, 10.130.11.86,

10.100.0.15

k2

UDP138, TCP2869, UDP2638

system, svchost.exe, explorer.exe, wmpnetwk.exe,

novoterm.exe, tpmeritve.exe, ...

10.136.0.36, 10.200.21.74, 10.200.255.255,

10.140.20.105, 10.255.255.255, 10.136.0.30, ...

k3

TCP40000, TCP50000, TCP1233

mmc.exe, java.exe, corporateebankmain.exe,

commonupdt.exe, corporateebank.exe, ...

10.130.10.111, 10.150.31.8, 10.21.49.7

Table 4: Examples of malware detected from Nex-
think dataset. Services 6, 7 and 8 are generated by
relational clustering methods, while services k1, k2
and k3 are generated by k-means algorithm. The
italic items are the intersecting parts between ser-
vices from relational clustering methods and services
from k-means.

cause the feature vectors used in k-means essentially ignore
the strength of relations as in SetE1 (i.e. the number of
connections associated with each relation is neglected).

Figure 8 shows the performance over all steps of relational
algorithms. SetE1 and SetE3 have almost the same modu-
larity Q2 curve, where the maximal Q2 is reached at about
50 steps before the algorithm terminates, while the maxi-
mal modularity Q2 of SetE2 is reached at the very end of
the algorithm. In fact this maximal Q2 point suggests the
best clustering solution in the whole process. For example,
after the maximal Q2 step of SetE1, service 2 in Table 3
is absorbed into a bigger cluster, which is obviously unde-
sirable in Nexthink dataset. We can also observe that the
maximal Q2 of SetE2 is larger than that of SetE1 and SetE3.
This indicates that in the Nexthink dataset, relational clus-
tering algorithm gets better results if the strength of the set
evidence is considered. The max gain curve of SetE2 oscil-
lates a lot with several peaks. They actually suggest the
points where new clusters are found. The performance of

42

0

50

100

0

0.2

0.4

0.6

0.65

0.7

0.75

0.8

0

200

400

0

100

200

300

0

0.2

0.4

0.6

0.65

0.7

0.75

0.8

0

200

400

0 200 400
0

20

40

60

80

iteration

0 200 400
0

0.2

0.4

0.6

iteration

0 200 400
0.65

0.7

0.75

0.8

iteration

0 200 400
0

200

400

iteration

max gain (SetE1) modularity Q1 (SetE1) modularity Q2 (SetE1) ISE (SetE1)

max gain (SetE2) modularity Q1 (SetE2) modularity Q2 (SetE2) ISE (SetE2)

max gain (SetE3) modularity Q1 (SetE3) modularity Q2 (SetE3) ISE (SetE3)

Figure 8: Performance of the relational algorithms on Nexthink dataset. Dashed lines are performance of
k-means algorithm. “ISE” is short for inconsistent set evidences.

0 50 100 150 200 250 300 350 400 450
88

90

92

94

96

98

100

P
e
rc

e
n
ta

g
e
 o

f
c
o
m

m
o
n
 p

a
ir
s
 (

%
)

iteration

SetE1-SetE2

SetE2-SetE3

SetE1-SetE3

Figure 6: Comparison of intermediate steps for dif-
ferent relational clustering algorithms on Nexthink
dataset. The percentage of common pairs is the per-
centage of port pairs that have the same in-cluster
relation (“in the same cluster” or “in different clus-
ters”) among all possible port pairs.

k-means on the Nexthink dataset (dashed lines in Figure 8)
is not satisfactory because it leaves too many set evidences
inconsistent.

6. CONCLUSION AND FUTURE WORK
In this paper, a relational clustering model is proposed for

discovering network services. It takes the advantage of rich
expressiveness of first-order logic and encodes a prior and
conditional probabilities into the formulas and weights of
MLN. If more relations are available, this model can be easily
extended by adding more formulas. To efficiently represent
the set evidences, we adopt a special function SetE into the
problem and extend the MLN for computing total weights.
Experiments on synthetic dataset show that our method is
relatively robust to weight disturbance and achieved better

0 50 100 150 200 250 300 350 400 450
80

85

90

95

100
P

e
rc

e
n
ta

g
e
 o

f
c
o
m

m
o
n
 p

a
ir
s
 (

%
)

iteration

SetE1-k-means

SetE2-k-means

SetE3-k-means

Figure 7: Comparison of intermediate steps be-
tween different relational clustering algorithms and
k-means on Nexthink dataset.

performance than the baseline method. The clusters gener-
ated from Nexthink data provide us an abstract overview of
the services in the whole enterprise network, which is very
helpful for network management and information security
assessment.

In this work, only connectivity information is considered
for clustering. In the result from real data, we do find 1 to 2
big clusters that contain many ports and applications. They
are the results of some “universal” applications that employ
many services (like explorer.exe). Other relations like the
interactions between applications and users can be used in
the future work to eliminate the influence of the “universal”
applications.

Since the network traffic is generated by users day after
day, it is also desired to have an online version of the cluster-
ing algorithm. The main difficulty for an online algorithm
is that relational clustering results usually depend on the
order of adding new records.

43

7. REFERENCES
[1] I. Bhattacharya and L. Getoor. Collective entity

resolution in relational data. ACM Transactions on
Knowledge Discovery from Data, 1(1):5, 2007.

[2] V. Blondel, J. Guillaume, R. Lambiotte, and
E. Lefebvre. Fast unfolding of communities in large
networks. Journal of Statistical Mechanics: Theory
and Experiment, 2008.

[3] U. Brandes, D. Delling, M. Gaertler, et al. On
modularity clustering. IEEE Transactions on
Knowledge and Data Engineering, 20(2):172–188,
2007.

[4] V. Chandola, A. Banerjee, and V. Kumar. Anomaly
detection: A survey. ACM Computing Surveys
(CSUR), 41(3):15, 2009.

[5] M. Crotti, M. Dusi, F. Gringoli, and L. Salgarelli.
Traffic classification through simple statistical
fingerprinting. ACM SIGCOMM Computer
Communication Review, 37(1):16, 2007.

[6] N. Duffield, P. Haffner, B. Krishnamurthy, and
H. Ringberg. Rule-based anomaly detection on IP
flows. In IEEE INFOCOM, 2009.

[7] J. Erman, M. Arlitt, and A. Mahanti. Traffic
classification using clustering algorithms. In
Proceedings of the 2006 SIGCOMM Workshop on
Mining Network Data, 2006.

[8] S. Fortunato. Community detection in graphs. Physics
Reports, 2009.

[9] L. Getoor and B. Taskar. Introduction to statistical
relational learning. The MIT Press, 2007.

[10] J. Gómez, C. Gil, N. Padilla, R. Baños, and
C. Jiménez. Design of a Snort-Based Hybrid Intrusion
Detection System. Distributed Computing, Artificial
Intelligence, Bioinformatics, Soft Computing, and
Ambient Assisted Living, pages 515–522, 2009.

[11] J. Homer and X. Ou. SAT-solving approaches to
context-aware enterprise network security
management. IEEE JSAC Special Issue on Network
Infrastructure Configuration, 2009.

[12] S. Kandula, R. Mahajan, P. Verkaik, S. Agarwal,
J. Padhye, and P. Bahl. Detailed diagnosis in
enterprise networks. In Proceedings of the 2009
conference on ACM SIGCOMM 2009 conference, 2009.

[13] T. Karagiannis, K. Papagiannaki, and M. Faloutsos.
BLINC: multilevel traffic classification in the dark.
ACM SIGCOMM Computer Communication Review,
35(4):240, 2005.

[14] C. Kemp, J. Tenenbaum, T. Griffiths, T. Yamada, and
N. Ueda. Learning systems of concepts with an infinite
relational model. In Proceedings of the National
Conference on Artificial Intelligence, 2006.

[15] H. Kim, K. Claffy, M. Fomenkov, D. Barman,
M. Faloutsos, and K. Lee. Internet traffic classification
demystified: myths, caveats, and the best practices. In
Proceedings of the 2008 ACM CoNEXT conference,
2008.

[16] S. Kok and P. Domingos. Statistical predicate
invention. In Proceedings of the 24th international
conference on Machine learning, 2007.

[17] S. Kok, P. Singla, M. Richardson, P. Domingos,
M. Sumner, H. Poon, and D. Lowd. The Alchemy
system for statistical relational AI. Dept. of Computer
Science and Engineering, Univ. of Washington,
Technical Report.
http://www.cs.washington.edu/ai/alchemy, 2007.

[18] B. Long, Z. Zhang, and P. Yu. A probabilistic
framework for relational clustering. In Proceedings of
the 13th ACM SIGKDD, 2007.

[19] A. Moore and K. Papagiannaki. Toward the accurate
identification of network applications. Passive and
Active Network Measurement, pages 41–54, 2005.

[20] A. Moore and D. Zuev. Internet traffic classification
using bayesian analysis techniques. In Proceedings of
the 2005 ACM SIGMETRICS, 2005.

[21] M. Newman. Modularity and community structure in
networks. Proceedings of the National Academy of
Sciences, 103(23), 2006.

[22] M. Newman and M. Girvan. Finding and evaluating
community structure in networks. Physical review E,
69(2), 2004.

[23] H. Poon and P. Domingos. Joint unsupervised
coreference resolution with Markov Logic. In
Proceedings of the Conference on Empirical Methods
in Natural Language Processing, 2008.

[24] H. Poon, P. Domingos, and M. Sumner. A general
method for reducing the complexity of relational
inference and its application to MCMC. In Proceedings
of the National Conference on Artificial Intelligence,
2008.

[25] M. Richardson and P. Domingos. Markov logic
networks. Machine Learning, 62(1):107–136, 2006.

[26] M. Thottan, G. Liu, and C. Ji. Anomaly detection
approaches for communication networks. Algorithms
for Next Generation Networks, pages 239–261, 2010.

[27] N. Williams, S. Zander, and G. Armitage. A
preliminary performance comparison of five machine
learning algorithms for practical IP traffic flow
classification. ACM SIGCOMM Computer
Communication Review, 36(5):16, 2006.

[28] T. Yang, R. Jin, Y. Chi, and S. Zhu. Combining link
and content for community detection: a discriminative
approach. In Proceedings of the 15th ACM SIGKDD,
2009.

44

	Introduction
	Related Work
	Preliminaries
	Set Evidence
	Modularity
	Markov Logic Networks

	Network-Service Clustering
	MLN representation for Network-Service Clustering
	Refinement with Set Evidence
	Clustering Algorithm

	Experimental Results
	Synthetic Dataset
	Nexthink Dataset

	Conclusion and Future Work
	References

