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Abstract. One way to evaluate and compare rival but potentially incompatible theories that ac-
count for the same set of observations is coherence. In this paper we take the quantitative notion of
theory coherence as proposed by [Kwok, et.al. 98] and broaden its foundations. The generalisation
will give a measure of the efficacy of a sub–theory as against single theory components. This also
gives rise to notions of dependencies and couplings to account for how theory components interact
with each other. Secondly we wish to capture the fact that not all components within a theory are of
equal importance. To do this we assign weights to theory components. This framework is applied to
game theory and the performance of a coherentist player is investigated within the iterated Prisoner’s
Dilemma.

1. Introduction

The core of scientific theories are laws. These laws often make use of theoreti-
cal terms, linguistic entities which do not directly refer to observables. There is
therefore no direct way of determining which theoretical assertions are true. This
suggests that multiple theories may exist which are incompatible with one another
but compatible with all possible observations. Since such theories make the same
empirical claims, empirical tests cannot be used to differentiate or rank such theo-
ries. Hawking very nicely summarised this positivist approach in the philosophy of
science: “A scientific theory is a mathematical model that describes and codifies the
observations we make. A good theory would describe a large range of phenomena
on the basis of a few postulates, and make definite predictions that can be tested”
[Hawking 2001]. One property that has been suggested for evaluating rival theo-
ries is coherence. This was investigated qualitatively in the philosophy of science
(see, e.g, summaries in [van Fraassen 80] and [Nagel 61]) until [Kwok, et.al. 98]
introduced a coherence measure based on the average use of formulas in account-
ing for observations. Prior to this measure, the qualitative approaches considered
properties of theories typified by informal notions like “tightness of coupling” of
the axioms, “brevity”, “predictive scope”, etc. Kwok et.al. (op.cit.) took these as
guides for their quantification. The idea was to identify highly coherent theories as
those whose formulas are tightly coupled in accounting for observations, while low
coherence theories contain many disjointed and isolated statements. It proved to
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be quite fruitful; for instance this provided a rebuttal to Craig’s method [Craig 53]
for the elimination of theoretical terms by showing that the method yields theories
with very low coherence.

Later work [Kwok, et.al. 03], [Kwok, et.al. 07] by the same authors gener-
alised the approach to better mirror scientific practice. For instance, a standard way
to use a theory is to design experiments with varying input and output sets. How-
ever, another way is to regard observations as inputs and explanations as outputs.
The generalisation accommodates both views, and in fact permits other interpre-
tations of input-output relations to test theories for coherence. It is also able to
explain notions like theory modularisation.

It is fair to say that this approach to reifying coherence is in effect a com-
binatorial grounding that relies on the widely understood concept of support sets
that plays an important role in artificial intelligence logic in areas as diverse as di-
agnoses, logic program semantics and abduction. One may question whether the
hitherto qualitative notion of coherence is appropriately captured by our quantita-
tive measure. Our response is that we propose a plausible way to fix the interpreta-
tion of coherence that can be tested by its efficacy in explicating some well-known
examples, with the awareness that other plausible methods may emerge in future
that capture variant qualitative interpretations.

In the current paper we take the above as starting points and widen the founda-
tions of coherence as defined through support sets. Two ideas are broached, based
on intuitions from scientific practice that were not considered in [Kwok, et.al. 98]
and [Kwok, et.al. 03]. The first widening derives from the observation that coher-
ence should also measure how well pairs, triples, etc. of formulas jointly account
for observations or outputs. This gives rise to the quantitative notion of dependency
in coherence. The second widening mirrors the practical fact that not all formulas
may be considered to be equal in importance. This is already acknowledged in
the works on belief revision, primarily the AGM approach [Gardenfors 88], where
varying commitments to particular beliefs goes by the name of entrenchment. The
possibilistic logicians’ fuzzy measures aimed at capturing the same intuition have
been shown to be equivalent to entrenchment. In our paper we use weights on for-
mulas to do this. This enhanced definition of coherence reduces to the previous
version when dependencies are among singletons and all weights are equal.

Numerous formal examples will illustrate the efficacy of the new definition,
but we also apply it to a domain not traditionally considered in the philosophy of
science which initially motivated our work. The domain is game theory, specifically
forms of the (in)-famous Prisoner’s Dilemma [Axelrod 81], where the one-time
game is classically represented as a matrix that displays the payoffs for each of the
two players depending on their choice of action (called strategy). Game theorists
then assume rational decisions by each player and analyse the action choices that
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must be entailed. Iterating the one-time game was then studied by a number of
researchers (see, e.g. Axelrod [Axelrod 81]). It is this iterated version to which
we will apply the notion of coherence. We will model a player’s reasoning (using
its beliefs, desires and intentions) as formulas, and the player’s adaptations during
the game is seen as attempts to maintain high coherence among these doxastic
qualities. Computer simulations of this approach are also described and analysed.

Finally we discuss future directions that this work may profitably take. It is
plausible that traditional norms of “rationality” in the evaluation of scientific the-
ories as well as economic and social behaviour may be modulated by current dis-
comfort with the policies that result from them. Wider notions of what it means for
these theories to be coherent can contribute to modifications of the existing norms.

2. Internalist Coherence

This section reviews the previous contribution by [Kwok, et.al. 03], and suggests
innovations in areas that were not addressed up to this date, such as the utility of a
set of formulas, and the relationship between sets of formulas: how one may dom-
inate over another, and how tightly they have coupled to account for observations.
It can also be seen the other way round, as how closely they have been associated
when supported by empirical evidence. For the time being, we call these nominated
properties “Internalist Coherence”.

2.1. Support Sets

The building blocks of coherence are support sets. They describe how a theory
accounts for an observation from specific inputs. In this framework, a theory, an
input set and an output set are all sets of formulas from a first–order language
L. It is appropriate to motivate the setting assumed by the next definition. We
conceive of logical theories as formal models of selected aspects of the world that
interest us. In science the theories of a domain such as chemistry are often painfully
constructed over the course of time, and subject to much testing and revision. We
do not address the revision issue here, but as we shall see the testing is implicit.
A theory T can be used in many ways. It may help to visualise T as a blackbox
into which the “input” set I formulas is fed, and an “output” set of formulas O
is produced. The “directionality” suggested by these terms should not be taken
literally. The interpretation of I and O depends on how T is intended to be used.
For instance, O could be a set of observed outcomes of an experiment, in which
case I could describe the initial conditions of that experiment. If given certain
hypotheses, we interpret O as desired conclusions of T , I could be such a set
of hypotheses. Moreover, T itself can have atoms which say that we are only
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interested in models of T that satisfy those atoms. It is a matter of modelling to
decide which atoms (“facts”) to place in I , O or T , and different choices will yield
different coherence measures. To see that this flexibility is an advantage, consider
the following. Suppose someone proposes a theory T that purports to account for
some phenomena. If we wish to test T only in settings where conditions C hold,
one way to do that is to consider instead the theory T ∪ {C}. But if we already
have a set O of observations, and we wish to find conditions C under which T can
account for O, then C is part of I .

For brevity in the sequel we sometimes use the term axiom for an element of
T .

DEFINITION 1 (Support Sets[Kwok, et.al. 03]). Given input set I , output set O, a
subset of the theory T be Γ. Γ is an I-relative support set of O if

1. Γ ∧ I |= O and

2. Γ is minimal (wrt set inclusion).

Let S(T, I, O) denote the family of all I-relative support sets for O. As ex-
plained above different choices of input set I will result in different support sets.
This approach is designed to be “independent of any commitment to causality or
particular use of laws” [Kwok, et.al. 98]. This definition is intended to capture
the idea that Γ alone cannot account for O but it can do that with the help of I;
moreover we want I to be as small as possible, viz. no redundancy.

EXAMPLE 1 (Socrates is Mortal). Given the input I:

I : {man(Socrates)} − Socrates is a man

output O:
O : {mortal(Socrates)} − Socrates is mortal

the theory T :

T = {α1 : ∀(x) man(x) → mortal(x), α2 : ∀(x) deity(x) → ¬mortal(x)}

−all men are mortal,−all deities are not mortal

{α1} constitutes a support set for I and O, since it explains how O is derived from
I, whereas {α2} does not constitute a support for I and O.

EXAMPLE 2. Let T be the theory that geniuses would only pass if they are not
intoxicated; and if one is not a genius, then one would only pass after study:

¬genius(x) ∧ ¬study(x) → ¬pass(x)
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¬genius(x) ∧ study(x) → pass(x)
genius(x) ∧ intoxicated(x) → ¬pass(x)
genius(x) ∧ ¬intoxicated(x) → pass(x)
Suppose we wish to explain an output set O = {¬pass(john)}. Possible input

sets are:
I1 = {genius(john), intoxicated(john)} and
I2 = {¬genius(john),¬study(john)}.
Observe that we may re-interpret O as a prediction given the input information

I1 or I2. For this O the second and fourth formulas in T are not used. However,
should O be changed to {¬pass(john), pass(verana)} it can be seen that all the
formulas in T will be used to compute the input support sets.

2.2. Utility of a set of formulas

Recall the informal properties of coherence, such as “tightness of coupling” and
“work together”, that we wish to encapsulate in our formal quantitative framework.
One element missing from the previous approach [Kwok, et.al. 03] was the notion
of measuring the usefulness of a group of formulas, or a sub–theory. This is an
important concern as the utility of the sub–theory would reflect both the utility of
the components of the sub–theory, and the tightness of the coupling between the
components, and thus capture some of the desired properties of coherence in our
representation.

We wish to measure the contribution of not only one formula, but several for-
mulas in how they together have contributed to support observations. Building on
the [Kwok, et.al. 03] definition, we now examine how a set of formulas “work to-
gether”. For instance, in a theory T consisting of elements α, β and γ; we may
wish to consider not only the individual utilities of elements α and β, but their
synergistic qualities of working together, e.g. the utility of the set Θ = {α, β}.

The next definition formalises this intuition. A higher level of utility for a set
means that its formulas occur together often in support of observations.

DEFINITION 2 (Utility of a Set of Formulas). Given a theory T and a non-empty
set of formulas A ⊆ T , its utility is:

U(A, T, I,O) =
| {Γ : A ⊆ Γ and Γ ∈ S(T, I, O)} |

| S(T, I, O) |
if S(T, I, O) 6= ∅

This formal definition provides a measure of how well all formulas in the set
“work together” in supporting observations. It sees the formulas as equal, and does
not discriminate one over another. Informally the idea is as follows. To measure
the utility of the set A we do this: first count how many times it appears within the
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support sets for the given I and O; we then express this as a fraction of the total
number of those support sets — hence the more frequently A so appears the higher
its utility. If one formula does not work with the group, the utility for the group
will be rendered as zero. The connection between the utility of individual formulas
(singleton set) and the utility of sets of which it is a member is addressed in Lemma
1 below.

LEMMA 1 (Joint Utility). Let a set of formulas A consist of two proper subsets B
and ∆, i.e. A = B ∪∆. The following properties hold:
(i)

U(A, T, I,O) = U(B ∪∆, T, I, O)

(ii) if S(T, I, O) 6= ∅, then

U(A, T, I,O) =
| {Γ : B ⊆ Γ ∧ ∆ ⊆ Γ ∧ Γ ∈ S(T, I, O)} |

| S(T, I, O) |

since
{Γ : B ∪∆ ⊆ Γ} = {Γ : B ⊆ Γ ∧∆ ⊆ Γ}

This will be useful in subsequent proofs where sets of axioms appear together.

2.3. Dependencies between formulas

The “tightness of coupling” between elements of a theory can be reflected in two
ways. We shall elaborate the two different senses of “tightness” over the next two
sections. First, this property can be exhibited in the reliance of one set of formulas
upon another. For example, to account for the observation “Socrates is mortal”,
the axiom “Socrates is a man” would not make sense without the other axiom “all
men are mortal”. However, if there are two independent explanations of Socrates’
mortal nature based on he is a man, then the axiom “Socrates is a man” would
be less dependent on each of the set of formulas that amounts to the respective
explanations.

Formally, we wish to see how dependent a specific set of formulas is upon an-
other. It may be that this set in isolation is not a support set, but that in combination
with another set it is one; then informally the first set can be regarded as depen-
dent on the second. More precisely, if set Φ is contained in most of the support
sets that contain another set Θ, then Θ would have a high dependency on Φ. This
dependency is generally asymmetric.

DEFINITION 3 (Dependency Coefficient).

D(Θ,Φ, T, I, O) =
| {Γ : Γ ∈ S(T, I, O) and Θ ⊆ Γ and Φ ⊆ Γ} |

| {Γ : Γ ∈ S(T, I, O) and Θ ⊆ Γ} |
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This defines the dependency of Θ on Φ.

The dependency above also reflects the importance of the set Φ. Consider a
formula α in T that not only occurs in most support sets, but where other formulas
are dependent on it to make a support set, this then makes α important in T . This
can be captured as the weight of a formula which we discuss later. Section 2.3
discusses the use of dependencies.

Dependency is related to utility. Given two sub–theories Θ and Φ, the depen-
dency of Θ to Φ measures the proportion of support sets that contain both Θ and
Φ against those that contain Θ. The higher the dependency, the more support sets
that contain Θ also contain Φ.

COROLLARY 1 (Dependency-Utility Connection).

D(Θ,Φ, T, I, O) =
U(Θ ∪ Φ, T, I, O)

U(Θ, T, I, O)

Proof Recall:

D(Θ,Φ, T, I, O) =
| {Γ1 : Θ ⊆ Γ1 and Φ ⊆ Γ1 and Γ1 ∈ S(T, I, O)} |

| {Γ2 : Θ ⊆ Γ2 and Γ2 ∈ S(T, I, O)} |

Divide numerator and denominator by | S(T, I, O) |:

D(Θ,Φ, T, I, O) =
|{Γ1:Θ⊆Γ1 and Φ⊆Γ1 and Γ1∈S(T,I,O)}|

|S(T,I,O)|
|{Γ2:Θ⊆Γ2 and Γ2∈S(T,I,O)}|

|S(T,I,O)|

Then from Lemma 1, translate the numerator and denominator back to utility:

D(Θ,Φ, T, I, O) =
U(Θ ∪ Φ, T, I, O)

U(Θ, T, I, O)

2.4. Coupling of formulas

The second way to encapsulate the “tightness of coupling” property is to see how
elements of a theory mutually need each other. That is, how much they “work
together” in proportion to the total amount of work they do in forming I–relative
support sets. The greater the ratio, the “tighter” the elements coupled together. This
is different to the previous definition of dependency, as this looks at how much both
sub–theories take part in accounting for observations.

We wish to formalise a notion of mutual dependency between two sub–theories.
Intuitively, this will measure the degree to which the sub–theories need each other
in accounting for observations. The following symmetric definition formalises this
intuition.
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DEFINITION 4 (Coupling Coefficient).

CP (Θ,Φ, T, I, O) =
| {Γ1 : Θ ⊆ Γ1 and Φ ⊆ Γ1 and Γ1 ∈ S(T, I, O)} |
| {Γ2 : (Θ ⊆ Γ2 or Φ ⊆ Γ2) and Γ2 ∈ S(T, I, O)} |

This coupling coefficient represents how two sub–theories mutually need each
other. The higher the coupling, the more they work together, reflecting the proper-
ties of coherence as stated from the informal definition proposed
by [Kwok, et.al. 98].

2.5. Example - Socrates is wise

EXAMPLE 3 (Socrates is wise). Consider the proposal that Socrates is wise be-
cause he had a wise student named Plato. Plato, apart from being wise, was also
a prolific writer in philosophy. Therefore, we may have two possible ways of ac-
counting for the fact that Socrates is wise, being either “The teacher of a wise man
is also wise”, or “The teacher of a prolific writer is wise”. The theory can be for-
malised as:

I = ∅
T = {α1: ∀x∀y teacher(y, x) ∧ wise(y) → wise(x),
α2: teacher(Plato, Socrates),
α3: wise(Plato),
α4: prolificWriter(Plato),
α5: ∀x∀y teacher(y, x) ∧ prolificWriter(y) ∧ philosopher(y) → wise(x),
α6: philosopher(Plato) }
O = {wise(Socrates)}

As the theory itself is sufficient to account for the observations, we therefore
do not require inputs in this example. However, we still consider support sets to
be I–relative as we still consider the input set together with the theory to account
for observations, and in this case the input set just happens to be empty. This for-
malised theory enables us to investigate the utility of formulas and sub–theories,
the dependencies of one component of the theory to another, and the coupling be-
tween the components. Hence we find a measure for “usefulness” of components
of the theory and how they are “tightly coupled”.

2.5.1. Utility of sets

The two I–relative support sets for O are: {α1, α2, α3}, and {α2, α4, α5, α6}.
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Hence the utility of formulas {α5, α6} as a set would be 1
2 , since they appear

together in only one of the two possible support sets; the set {α1, α4} have the
utility value of 0 since they do not work together at all; and the utility of {α2} is 1
due to the fact that it appeared in all support sets.

2.5.2. Dependencies

Case 1: High Dependency
A formula α would have high dependency on a set Γ if {α} ∪ Γ occurs in most
support sets that contain α. So in the support sets and the theory illustrated above,
the formula α1 has a high dependency on both α2 and α3. Because without either
formula, α1 would not be able to account for the observation. In a theory where
only one explanation is possible, the dependencies of all formulas in the support
set relative to each other would be 1.

Case 2: Moderate/Low Dependency
A formula α would have a moderate/low dependency on a set Γ if α occurs in mul-
tiple support sets. This way the formulas in Γ may not always occur in support sets
containing α. In the example above, α2 has a moderate dependency on other for-
mulas. This is because α2 is contained in two support sets, and no other formula in
T also occurs in the same two support sets. However, occurring in multiple support
sets does not necessarily guarantee a moderate/low dependency to other formulas,
for there could be another formula δ which occurs in the same support sets, thus
having a high coupling coefficient. This is examined later in the section on cou-
plings.

Case3: Zero Dependency
Formulas will have zero dependency if they have nothing to do with each other.
In the current theoretical context it means that they do not share any support sets.
Here axioms α1...3 are totally disjointed from axioms α4...6, thus any pairs selected
with one from each set would yield zero dependence to each other.

2.5.3. Couplings

Case 1: High Coupling
High coupling occurs when two formulas (sets) often appear in the same support
sets. In our example, α5 and α6 are required in the same support sets, since Plato
needed to be both a prolific writer and a philosopher. Together, they have a cou-
pling value of 1. However, this is different to dependency. If there were another
formula α that also occurs across both support sets, then α and α2 would have a
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high coupling value of 1 despite being spread across more than one support set.

Case 2: Moderate/low Coupling
Moderate/low coupling happens when two formulas (sets) appear in some support
sets together, but in other support sets only one formula (set) is required. With our
example, α1 and α2 have a coupling value of 1

2 . This value reflects the fact that
both α1 and α2 appear in one support set, but only α2 appears in the other support
set. The coupling value between sets A and B is greater than 0 as long as they
appear together in one support set. Formally:

CP (A,B, T, I,O) > 0 if and only if, for some Γ ∈ S(T, I, O), A ∪B ⊆ Γ

Case 3: Zero Coupling
Like dependency, two formulas (sets) have zero coupling when they have nothing
to do with each other; they do not ever work together to account for an observation.
In our example, α1 and α5 have zero coupling.

2.6. Formulas with weights

Within a theory T , some axioms may be considered more important than others.
This quality is described in the AGM framework [Gardenfors 88]. The importance
of an axiom can either be innate, judgemental or could be determined from its
usage in accounting for observations (its occurrence in support sets). Although
some axioms are not frequently used, they may still be essential to the integrity of
the theory. The measure of utility will be generalised to take into account an innate
or judgemental weighing of axioms. In AGM entrenchment a logically weaker
statement entailed by a stronger one will have an entrenchment at least as high as
the latter. The analog of this for utility is the following: a weaker statement would
account for at least as many input-output sets as a stronger one. This property is
preserved by the definitions below of observational and natural weights. However,
if weights are just subjective judgements then the analog of AGM entrenchment
may not hold.

DEFINITION 5 (Weight of a Formula). Let T be a finite theory {α1, . . . , αn}, the
weighing coefficient W : T 7→ R is the subjective distribution of weights in T .
W (αi) reflects the innate weight of formula αi.

However, it is possible to abuse the weighing process by arbitrarily adding
weight to make the theory carry a high degree of coherence. Socrates may say:
“My theory has half the coherence of your theory, so I just give each formula three
times the weight, then mine would be more coherent!” To avoid this, and to make
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different theories comparable, weighing should be normalised in order to reflect
the proportionate importance of formula αi to the theory T .

DEFINITION 6 (Normalisation Criterion). Let T be a finite theory {α1, . . . , αn},
the normalisation criterion states that:

n∑
i=1

W (αi) = n

Ontologically it does not make sense to give any formula a negative weight, for
at worst it plays no part in support sets. Hence we assume:

ASSUMPTION 1 (Positivity Assumption). Let T be a finite theory {α1, . . . , αn}

W (αi) > 0 for every i : 1 ≤ i ≤ n

2.6.1. Observational Weights

Thus far, utility has been defined relative to an individual input set I and output
set O. The pair (I,O) can be thought of as a single experiment or application of
theory T . However, a theory is typically applicable and testable under many situa-
tions. It is therefore natural to consider what utility might mean across a vector of
experiments or applications. Consider vectors (or sequences) of input and output
sets, I= (I1, I2, . . . , Im) and O= (O1, O2, . . . , Om). One may interpret this vec-
tor as a sequence of experiments, e.g., a pair (Ik, Ok) being the k-th experiment
with Ik being the initial conditions and Ok being the observation that results; other
interpretations are of course possible, including Ok being an observation and Ik

being the explanation. However, some observations may be considered more im-
portant than others, e.g., as in “crucial” experiments that may undermine a theory.
To reflect this, experiments can be associated with a rank or weight that represents
its judged significance. (In subsection 2.6.2 we propose a rather more objective
assignment of weights.) The weight can then be “shared” by formulas that support
this observation.

First we define a notion of support weight (SW). For each Oj in O = (O1, . . . ,
Om), we associate a payoff P (Oj). Then the support weight SW (αi, T, Ij , Oj)
can be the “share” of the payoff for αi.

DEFINITION 7 (Support Weight).

SW (αi, T, Ij , Oj) =
P (Oj)

| S(T, Ij , Oj) |
∑

Γ∈S(T,Ij ,Oj) and αi∈Γ

1
| Γ |
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Hence from the support weight we define the observational weight that eventu-
ally reflects the importance of a formula.

DEFINITION 8 (Observational Weight). For a theory T = {α1, . . . , αn}, with input
I : (I1, . . . , Im) and output O : (O1, . . . , Om), the Weight Share (WS) of axiom αi

in T is:

WS(αi) =
1
m

m∑
j=1

SW (αi, T, Ij , Oj)

and the observational weight (OW) is:

OW (αi) = n
WS(αi)∑n

j=1 WS(αj)

2.6.2. Natural Weights

By the original definition, weighing is a subjective measure of “importance” of
formulas in a theory. However, it is possible to define a scheme of weighing from
the dependency coefficient as defined before, since intuitively, if a formula is more
needed by others, then it is more important.

For every formula αi in T , we can define a dependency weight from how each
formula in T depends on αi. This represents an implicit weight of the specific
formula.

DEFINITION 9 (Dependency Weight). For an axiom αi in a theory T : {α1, . . . ,
αn} with input I : (I1, . . . , Im) and output O : (O1, . . . , Om)

DW (αi, T, I,O) =
n∑

j=1

m∑
k=1

D(αj , αi, T, Ik, Ok)

Just as before, we could derive a measure of Natural Weight (NW) from the
building block of dependency weights from the axioms.

DEFINITION 10 (Natural Weight). So for a theory T = {α1, . . . , αn} with input I :
(I1, . . . , Im) and output O : (O1, . . . , Om)

NW (αi) = n
DW (αi, T, I,O)∑n

j=1 DW (αj , T, I,O)

In this way the ranking of axioms is accomplished by how other components
of the theory depend on this component, and thus its weight is proportional to its
importance in the theory. The advantage of this approach is that the weight of an ax-
iom is no longer a subjective distribution given by the user, either by entrenchment
or weights of observations. The natural weighing takes advantage of the natural
properties of dependency, and thus weighing becomes an automated process.
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2.7. Weighted Utility and Coherence

From this framework of weighted axioms, we can adopt a new and feature–rich
definition of weighted utility. This makes utility useful in its own right, for we are
able not only to compare between different theoretical systems, but components
within a theoretical system. One possible application of this newly found role is in
game theory, which shall be further investigated in this paper.

DEFINITION 11 (Weighted Utility of a Formula). The Weighted Utility of a for-
mula α in a theory T with respect to an input set I and an output set O, and a
weight function W is:

WU(α, T, I,O) = U(α, T, I,O)W (α)

Notice that we have introduced two weight functions: observational weight
and natural weight. Observational weight is based on a subjective value placed on
input/output (I,O) pairings while natural weight is based on dependency calcula-
tions. Both weighing functions are valid instances of W in the above definition.

The generalisation of coherence to weighted formulas will follow the intuition
from [Kwok, et.al. 98], as the average of weighted utilities.

DEFINITION 12 (Coherence of a Weighted Theory).

C(T, I,O) =
1

mn

n∑
i=1

m∑
j=1

WU(αi, T, Ij , Oj)

This culminating definition of coherence allow rival and possibly incompatible
theories with weighted axioms to be evaluated and compared in a quantitative fash-
ion. The evaluation is based on the brevity of the theory and the weighted utility
of each of the theory components. It provides a perspective of how a theory can
be judged based on inputs and observations, while taking into account the varying
weights of different axioms in the theory.

2.8. Examples - Socrates is Wise 2

EXAMPLE 4 (Socrates is wise).
T = {α1: ∀x∀y teacher(y, x) ∧ wise(y) → wise(x),
α2: teacher(Plato, Socrates),
α3: wise(Plato),
α4: prolificWriter(Plato),
α5: ∀x∀y teacher(y, x) ∧ prolificWriter(y) ∧ philosopher(y) → wise(x),
α6: philosopher(Plato) }
O = {wise(Socrates)}
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Recall the above “Socrates is Wise” example. It contains two support sets for
the same observation. They are {α1, α2, α3}, and {α2, α4, α5, α6}. The first
support contain three axioms, where the second contained four. In this example we
denote {α1, α2, α3} as the first support set and {α2, α4, α5, α6} as the second
support set. The common element is α2, which is featured in both support sets.
The other axioms would be called exclusive members of their support sets.

2.8.1. Example - Observational Weight

Suppose we assign the payoff of 100 points to the observation wise(Socrates).
Since both support sets adequately explain the observation, they deserve an equal
share of the payoff, i.e., each support set will be apportioned 50 points. Each axiom
that belong strictly to the first support set (of size 3) such as α1 would receive an
equal share of the payoff given to that support set, i.e., 1

3 × 50 = 162
3 . Axiom α4,

belonging strictly to the second larger support set of size 4, would get a lesser share
at 1

4 × 50 = 121
2 .

Axiom α2, contained in both support sets will have the greatest support weight
at 1

3×50+ 1
4×50 = 291

6 . Hence its observational weight would be 6
100×291

6 = 13
4 ,

which is also its weighted utility, since it appears in all support sets of O. The utility
of the other formulas would be half of their observational weight, since there is only
one observation and they belong strictly to one of the two support sets. It would be
1
2 for the exclusive members of the first support set and 3

8 for exclusive members
of the second support set. Hence the weighted coherence value would be 31

48 . This
value reflects the degree of coherence of the given theory with respect to a set of
observations with weights.

2.8.2. Example - Natural Weight

For the given support set, the dependency weight of the exclusive member of sup-
port sets would be 21

2 and 31
2 respectively. Since this definition values the sup-

port from other axioms, the members of the larger support set would receive more
weight. The common element α2 would receive a dependency weight of 6.

Therefore the natural weight of α2 would be 72
43 . The exclusive members of the

first support set would receive a natural weight of 30
43 , and the second support set

42
43 . This is also their utility value since there is only one observation. The weighted
coherence value is 55

86 . This value reflects the degree of coherence with respect
to the internal structure of the theory, thus the value is different to that derived
from observational weights. We consider both to be valid, but different measures
of coherence. The user would make the choice in selecting which measure to use
depending on its applications.
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Further examples of this new weighted system of coherence, particularly in
observational weights, are illustrated in the following section with an application
in Game Theory.

3. Application to Game Theory

3.1. Concept

Coherence, once quantified, can be used as a comparator between any two theo-
retical systems. In typical agent interactions, all of an agent’s beliefs, desires and
intentions (BDI) can be represented in formal semantics [Rao and Georgeff 91].
These enable us to assess a systemic coherence in one’s belief, and the process of
interaction can be seen as an effort by each agent to modify its own system in order
to achieve a satisfactory outcome with respect to the other agents while maintaining
a high level of its internal coherence. The intuition is that the agent will choose an
action that is most coherent with its set of beliefs, desires and intentions.

3.2. Prisoner’s Dilemma Simulation

3.2.1. Background

The Prisoner’s Dilemma was originally formulated by mathematician Albert W.
Tucker. The iterated version of the game was proposed in [Axelrod 81]. It has
since become the classic example of a “non-zero sum” game in economics, political
science, evolutionary biology, and of course game theory. So that the exposition
below may be independently understood, we briefly recount the set-up. In the
game, two prisoners are interrogated separately in different cells. The two prisoners
can either choose to cooperate (keep silent) or defect (blame the other). If they both
cooperate, they receive a sentence of 2 years in prison. If one cooperates but the
other betrays, the first gets 10 years in prison, and the second gets 1 year. If both
betray, each will get 4 years. The payoff (years in prison) of an action is dependent
on the action of the other player. It is therefore in the interests of a player to
minimise this payoff. The way the payoff is set out means that whatever a player
chooses to do, the other player can reduce its payoff by defecting, so in a one-time
game both players will defect, resulting in 4 years for each. A better result will be
for both to cooperate, suffering a sentence of only 2 years each; but they cannot
communicate to negotiate, and even if they can, lack of trust may enter the picture.
This “bad” solution of both defecting can intuitively be ameliorated if the game is
played repeatedly, whence each player understands that if it defects now the other
player can retaliate in the next iteration. Thus, in the iterated version, the players
repeatedly play the game and have a memory of their previous encounters. We set
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out to test the application of our coherence calculations in this scenario, and how it
behaves in an iterated game with evolution of populations.

3.2.2. The Coherentist Agent

In coherence-based evaluative simulations in game theory, we set out to play the
game repeatedly, and the histories of past games are recorded by each player. This
history then forms the Belief in what had happened in the past, which can be seen
as the theory T in the calculation. The player’s Desire (D) is to maximise its payoff
(or minimise it if interpreted as a penalty). This desire can be seen as a mode of
evaluating payoff as weights of each outcome. The beliefs (B), together with the
criterion of selection (D), will lead to the calculation of the utility of each of the
actions that the player may take. A selection of the action according to its utility
will lead the player to formulate the intention to act upon this decision.

More specifically, the inputs (I) describes the rules of what the player knows
about the nature of the game. This includes actions of the player, consequences of
these actions, states (in a finite-state game) and payoffs associated with a particular
state. The observations (O), whether a result, consequence or state, is the corre-
sponding payoff. The desire of the player will be driven by the ranking of these
payoffs. Hence the Support Set consists of the list of axioms, which together with
the given input, will make a particular observation true.

In the iterated game of Prisoner’s Dilemma, the prisoner evaluates the history
played against the respective player to reach a rational decision. Each history ele-
ment consists of the player’s move at that iteration, and the returned value / payoff
from that particular move. The returned value can be seen as the weight of that
observation, and hence the support weight for that particular action.

The coherentist agent uses the paradigm of the observational weight as dis-
cussed in Section 2.6.1. This way the weight of a formula is reflected by the obser-
vations that it supports. The weight of an action can be evaluated from the history
of payoffs for a given opponent.

The Input (I) for a particular iteration are the rules of the game, and the move of
other players. Below is a summary of the rules, expressed logically. The proposi-
tions Betray and otherBetray mean respectively that a player betrays and the other
also betrays; Cooperate and otherCooperate have corresponding meanings. The
numbers are the payoffs for a player, depending on the move of the other player;
recall that these are the years in prison, and hence a penalty to be minimised.
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I =


Betray ∧ otherBetray → 4,
Betray ∧ otherCooperate → 1,
Cooperate ∧ otherBetray → 10,
Cooperate ∧ otherCooperate → 2


This input set will remain fixed for each game of the Prisoner’s Dilemma.

For each move of a player the other player has the choices otherBetray or oth-
erCooperate. The theory, to be evaluated, are the rival options the player could
adopt. viz., Betray or Cooperate, bearing in mind that in any iteration the moves of
both players are to be made simultaneously.

T = {Betray, Cooperate}

For instance, consider a history (Action, Penalty) of (Cooperate, 2), (Betray,
1), (Betray, 4), (Betray, 4). This implies that at the same time the other player had
made the corresponding choices of otherCooperate, otherCooperate, otherBetray
and otherBetray. Hence the sequence of output observation set is:

O =(O1 : {otherCooperate ∧ 2},
O2 : {otherCooperate ∧ 1},
O3 : {otherBetray ∧ 4},
O4 : {otherBetray ∧ 4})

In section 2.7 we associated a payoff to each output set. This payoff was a
measure of the importance of the output set. For our application to the Prisoner’s
Dilemma, we wish to measure how advantageous each output is to an agent. This
would be inversely proportional to the prison sentence. In our simulation studies,
we simply used the length of the prison sentence as the payoff and chose the option
with the smaller Observational Weight. With the above example, the Weight Share
of Betray is (1+4+4 )÷ 3 = 3, whereas the Weight Share of Cooperate is 2 ÷ 1 = 2.
Hence the Observational Weight is evaluated at 3

4 for Betray, and 2
4 for Cooperate.

Therefore, in a system where lower weight (penalty) is favoured, Cooperate is the
preferred strategy. This was the approach adopted in the experiments. However,
for the analogous approach where the system favours higher weights, the payoff
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can be taken as the inverse of the penalty. Therefore the agent’s choice of an axiom
of higher weighted utility reflects its pursuit of a higher degree of coherence.

The problem of course is that it is difficult to predict what the other player
will do at any iteration. In the tournament organised by Axelrod [Axelrod 81] the
system pitted many players together and simulated the iterations, looking for the
best performing players. In the simulations we ran, we investigated how coherentist
players performed against other kinds of players, including the best performing
player in Axelrod’s tournaments.

3.2.3. Simulation

We define five types of agents in the simulation. They are reckless, cooperative,
tit–for–tat, suspicious and trusting. The last two types are the same coherentist
agent with different initial conditions. A reckless player is one who always defects,
whereas the cooperative player is one who always cooperates (does not defect). The
“tit–for–tat” strategy was traditionally regarded as the best deterministic strategy
developed by Anatol Rapoport, which cooperates in the first turn, and subsequently
plays the opposing player’s previous move. The coherentist agents are divided into
two groups, one being suspicious, for its members would betray at the initial phase,
whereas the other group, the trusting agents, would cooperate.

To initialise simulation, the user specifies how many of each type of agent there
are in the game. The user also specifies how many iterations are to be simulated.
In each iteration a player will play a round–robin tournament, playing once with
every other player in the simulation. When two players meet, they have the option
to either betray or cooperate. The move and the payoff will be recorded, and the
agent can review this as a history element when playing this opponent in the next
iteration.

After a specified number of iterations, the old players will die and a new gen-
eration of players will replace them. They will be free of the history from previous
players. However, their proportions, according to agent type, will be inversely pro-
portional to the average time the particular type of agent spent in jail. The result
is then normalised to maintain the population size. Although rounding error is al-
lowed, the overall population size will only decrease due to rounding, and increases
are prohibited.

3.2.4. Trends and Behaviours

Initially, we set 20 iterations per generation with an equal proportion of each player
type. It turns out that the coherentist player performs well compared to other agent
types. As predicted the cooperative agents perish rather quickly in the simulation.
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Figure 1. All five players with equal initial population, 20 iterations per generation

Figure 2. All five players with equal initial population, 50 iterations per generation
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In the end it was the “suspicious” coherentist agents that took over the population,
while others struggled to hang on. (Figure 1)

The suspicious and trusting agents only differ in their initial response when
they have no previous history of playing against the other player. Yet the impact
is significant as the suspicious player takes over the population after a brief initial
period when both coherentist agents perform well. Both the coherentist agents gain
an edge over tit–for–tat, as they exploit the cooperative agents while tit–for–tat is
only nice to them.

When the number of iterations per generation is raised from 20 to 50, the re-
sults are slightly different. One feature is that the reckless agents performed much
more badly, while the tit–for–tat agents played better, though not as well as the
coherentist agents. (Figure 2)

In both simulations the coherentist agents came out on top. This may be asso-
ciated with the coherentist agent’s flexible approach of punish reckless behaviour,
cooperate with rational, nice agents, and exploit the overly nice and vulnerable
agents. In particular the latter characteristic is absent in the behaviour of tit–for–tat
agents. However, this positive outcome may not necessarily be associated with sim-
ply a coherentist behaviour. Instead, it may be the case that the macro-environment
of the game in this situation enabled the coherentist agents to be the fittest. For a
different environment with different rules, coherentist agents may not perform as
well as agents of the “simple faith”, such as the reckless or tit–for–tat agents.

What emerges from these results is that coherence alone as a property of agents
is an aid to their performance, but external factors and initial conditions (such as the
first move) also matter. A way to think of the role of coherence is that it constrains
agent choices in such a way that its use of its theory aligns those choices well with
its observations.

4. Summary and Discussion

We aim to establish basic principles governing the coherence of laws within the-
oretical systems. Such principles provide a means for evaluating and comparing
different systems. By defining a measure of how a sub–theory contributes to a the-
ory, in terms of Group Utility, Dependency and Coupling, the formalism captures
a number of important properties of coherence. Specifically, the formalism pro-
vides a rendering of informal characteristics of coherence, viz. how axioms “work
together” and are “coupled tighter”. The framework has also been significantly en-
hanced by the introduction of weights to axioms and observations. By relativising
one axiom’s weight, either in terms of the weight of observations or the dependency
to other axioms, we derived an account of the importance and rank of axioms in a
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theory.

Our proposed framework of coherence serves as a useful treatment of an old
problem in the philosophy of science, namely the evaluation of rival, but possibly
incompatible theories. It also provides a perspective on the development of sci-
entific theories, where anomalies found in observations contribute to the degree of
incoherence of a theory, and scientific developments to account for these anomalies
can be viewed as the pursuit of a greater coherence.

This measure of coherence is not only useful for the domain of the philosophy
of science, it is also useful for describing reasoning, deliberation and interaction in
agents. The example of Prisoner’s Dilemma illustrated how coherence can be used
in game theory. When an agent chooses the option that is most coherent with its
beliefs, the agent has a rational basis for reasoning and acting.

Acknowledgements. We would like to thank Dr. Anika Schumann, Dr. Anthony
J. Flynn and the three anonymous reviewers for their proof–reading and their com-
ments on the paper, and National ICT Australia for supporting this research under
its knowledge representation and reasoning program.

References

[Axelrod 81] R. Axelrod. The Evolution of Cooperation, Science, 211(4489):1390-6
[Craig 53] W. Craig. On axiomatizability within a system. In The Journal of Symbolic Logic, 18,

pages 30–32, 1953.
[van Fraassen 80] B. van Fraassen. The Scientific Image, pp 14-19, Clarendon Press, Oxford, 1980.
[Gardenfors 88] P. Gardenfors. Knowledge In Flux. MIT Press, Cambridge, MA, 1988.
[Hawking 2001] S. W. Hawking. The Universe in a Nutshell. New York: Bantam Books, 2001.
[Kwok, et.al. 98] R. B. H. Kwok, A. C. Nayak, N. Foo. Coherence Measure Based on Average

Use of Formulas. Proceedings of the Fifth Pacific Rim Conference on Artificial Intelligence,
553-564, LNCS v.1531, Springer Verlag, 1998.

[Kwok, et.al. 03] R. B. H. Kwok, N. Foo, A. C. Nayak. The Coherence of Theories. Proceedings of
the 18th Joint International Conference on Artificial Intelligence, IJCAI03, Acapulco, Mexico,
August 2003.

[Kwok, et.al. 07] R. B. H. Kwok, N. Foo, A. C. Nayak. Coherence of Laws UNSW Computer
Science and Engineering Technical Report Number: UNSW-CSE-TR-0719. October 2007.
ftp://ftp.cse.unsw.edu.au/pub/doc/papers/UNSW/0719.pdf

[Nagel 61] E. Nagel. Structure of Science, Harcourt 1961.
[Rao and Georgeff 91] A.S. Rao and M.P. Georgeff Modeling Rational Agents within a BDI-

Architecture. Proceedings of the Second International Conference on Principles of Knowledge
Representation and Reasoning (KR’91), pp 473-484, 1991.



22

JASON JINGSHI LI

Research School of Information Science and Engineering
Australian National University
Canberra, ACT0200, Australia
jason.li@anu.edu.au

REX BING HUNG KWOK

School of Computer Science and Engineering
University of New South Wales
Sydney, NSW2032, Australia
rkwok@cse.unsw.edu.au

NORMAN Y. FOO

School of Computer Science and Engineering
University of New South Wales
Sydney, NSW2032, Australia
norman@cse.unsw.edu.au


