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Abstract

Transactional memory is an appealing paradigm for concur-

rent programming. Many software implementations of the

paradigm were proposed in the last decades for both shared

memory multi-core systems and clusters of distributed ma-

chines. However, chip manufacturers have started producing

many-core architectures, with low network-on-chip commu-

nication latency and limited support for cache-coherence,

rendering existing transactional memory implementations

inapplicable.

This paper presents TM2C, the first software Transac-

tional Memory protocol for Many-Core systems. TM2C ex-

ploits network-on-chip communications to get granted ac-

cesses to shared data through efficient message passing. In

particular, it allows visible read accesses and hence effec-

tive distributed contention management with eager conflict

detection.

We also propose FairCM, a companion contention man-

ager that ensures starvation-freedom, which we believe is

an important property in many-core systems, as well as an

implementation of elastic transactions in these settings. Our

evaluation on four benchmarks, i.e., a linked list and a hash

table data structures as well as a bank and a MapReduce-like

applications, indicates better scalability than locks and up to

20-fold speedup (relative to bare sequential code) when run-

ning 24 application cores.

Keywords Transactional Memory; Many-Cores; Concur-

rent Programming; Contention Management

General Terms Design, Languages, Performance

Categories and Subject Descriptors C.1.4 [Processor Ar-

chitectures]: Parallel Architectures—Distributed architec-

tures; D.1.3 [Programming Techniques]: Concurrent Pro-

gramming
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1. Introduction

Although not a silver bullet, Transactional Memory (TM) [20,

39] is an appealing paradigm to leverage the availability of

multi-processor systems. TM allows the programmer to de-

fine a sequence of commands, called a transaction, and then

to execute it atomically. In its software form, called STM, the

paradigm can be implemented without requiring any specific

hardware support [11, 12], at least in principle. Indeed, this

is not entirely true for STMs do typically assume multi-core

architectures and rely on an underlying cache-coherent sys-

tem. Recently, manufacturers have started producing many-

core processors [22], with the idea of increasing the num-

ber of cores placed on a single die while decreasing their

complexity for enhanced energy consumption [6]. Contem-

porary many-cores consist of up to 100 cores, but they are

soon expected to scale up to 1000. In such systems, provid-

ing full hardware cache-coherence is not affordable because

of memory and time costs [3].

In this many-core context, and since the programming

model is message passing, one might be tempted to ap-

ply what has been called Distributed Transactional Mem-

ory (DTM), namely, implementations of the transaction

paradigm on distributed clusters of machines. The com-

munication on such platforms being particularly expensive,

classical DTMs try however to enforce as much as possible

data and node locality. The setting is fundamentally differ-

ent from the network-on-chip one of many-cores: messaging

latencies among cores (and the memory) differ, but the size

of magnitude is insignificant compared to clusters.

Perhaps more importantly, existing DTMs fail to provide

strong progress guarantees. We argue that it is particularly

important to ensure starvation-freedom in a many-core TM

system, so that continuous contention does not repeatedly

abort the same transactions. In fact, such systems are usu-

ally foreseen to support cloud applications where each indi-

vidual client request, typically executed on a separate core,

must eventually complete. Starvation-freedom ensures that

the termination of a client request does not depend on the

termination of others and it avoids livelocks.

We present in this paper TM2C, the first TM system tai-

lored for non-coherent many-core processors. TM2C capi-

talizes the low latency of on-die message passing by being
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the first starvation-free DTM algorithm. To this end, TM2C

exploits visible reads and allows the detection of conflict

whenever a transaction attempts to override some data read

by another transaction, hence anticipating the conflict reso-

lution, otherwise deferred to the commit phase of the reading

transaction. In contrast with many-cores, high latency sys-

tems require generally to pipeline asynchronous reads (in-

herently invisible) to achieve reasonable performance. Vis-

ible reads allow us to utilize contention management in a

way similar to STMs, yet fully decentralized, to provide

starvation-freedom. TM2C comes with FairCM, a compan-

ion distributed contention manager that ensures the termina-

tion of every transaction and the fair usage of the TM system

by each core.

We exploit the large amount of cores by assigning the

transactional application and the DTM services of TM2C

to different partitions of the cores so that no more than a

single task is allocated per core. More precisely, two disjoint

groups of cores run each of these two services, respectively.

This decoupling benefits the communication load by limiting

message exchanges between cores of distinct groups only.

In addition and for a particular workload, TM2C reduces

communication further by trading read-access requests with

a lightweight in-memory read validation to implement a

weaker transactional model: elastic transactions [13].

We evaluate TM2C on the Intel R©’s Single-chip Cloud

Computer (SCC), a non-coherent message passing proces-

sor. The SCC is a 48-core experimental processor relying on

a 6 × 4 two-dimensional mesh of tiles (two cores per tile)

that is claimed to be “arbitrarily scalable” [29]. On a hash

table data structure and a MapReduce example application

TM2C performs up to 20 and 27 times better than the cor-

responding bare (non-transactional) applications running on

a single core. We also evaluated the importance of fair con-

tention management by comparing our FairCM scheme with

alternative ones on various workloads. Particularly, FairCM

performs up to 9 times better than the others on a workload

with a single core running long conflict prone transactions.

Last but not least, we also elaborate on the portability of

TM2C to cache-coherent architectures. We show that TM2C

is also efficient on multi-cores and we conjecture on the pos-

sible causes of performance difference when running it on

multi-cores and many-cores.

The rest of the paper is organized as follows. Section 2

presents the many-core system model. Section 3 presents

the services at the core of TM2C and Section 4 describes

the contention management policies we applied to TM2C

to make it starvation-free. Section 5 presents the results ob-

tained on the Intel R©’s SCC and Section 6 illustrates how

the elastic transactions benefit TM2C when adequately im-

plemented. Section 7 introduces some preliminary work on

porting TM2C on a multi-core and Section 8 discusses pri-

vatization and portability. Section 9 positions TM2C to the

related work and Section 10 concludes the paper.

2. The Many-Core Model

We consider a many-core, a processor that embeds from tens

to thousands of simpler cores than a multi-core to maximize

overall performance while minimizing energy consump-

tion [6]. The backbone of the many-core is the network-on-

chip which interconnects all cores and carries the memory

traffic. Every core has a private cache, however, a many-core

has either a limited or no hardware cache-coherence at all.

Therefore, this on-die interconnection network provides the

programmer with efficient message passing. In order to in-

crease the memory bandwidth, a many-core is connected to

multiple memory controllers [1]. These controllers comprise

both the private and the non-coherent shared memory of the

cores.

The system is thus modelled as a fully distributed sys-

tem whose nodes, which represent cores, are fully connected

and can communicate with each other using asynchronous

messages. We assume that the communication links between

nodes are reliable: every message sent is eventually deliv-

ered and the links do neither duplicate nor forge new mes-

sages. In addition, we assume that nodes are non-faulty in

that they respect their code specification but do not crash,

and that each of them has a unique identifier. Note also that

this model is sufficiently general to capture both homoge-

neous and heterogeneous many-cores [6].

Our aim is to guarantee that a concurrent program execut-

ing in this model is consistent (i.e., safe) and can terminate

(i.e., live). To this end, we assume that a concurrent program

is correctly written as a transactional program in which re-

gions of sequential code that must appear as atomic are ad-

equately delimited within transactions and that there are no

infinite loops within a transaction.

Generally, a Transactional Memory (TM) protocol is re-

sponsible of ensuring the atomic consistency (i.e., opac-

ity [15]) of transactions by wrapping all accesses delim-

ited within the transactions and by detecting conflicts. Upon

conflict detection a Contention Manager (CM) is called to

resolve it by possibly aborting, delaying, or resuming the

conflicting transactions. Our model is weakly atomic [28]

in that transactional accesses are not isolated from non-

transactional accesses. We do not support side effects within

transactions, yet one could extend our code with irrevoca-

ble transactions that ask exclusive accesses to all responsible

nodes before executing pessimistically.

As described in the remainder, our TM protocol, namely

TM2C, wraps any of the shared memory accesses of a trans-

action into a communication protocol that requests the ac-

cess grant for the appropriate memory bytes. Our distributed

CM, namely FairCM, assigns a priority to each transaction

that totally orders them and eventually rotates the highest

priority among all cores. Hence, even if each core executes

an infinite amount of transactions our protocol is starvation-

free: every transaction is guaranteed to terminate.
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Figure 1. TM2C system’s architecture and communication

paths.

3. TM2C, Transactional Memory for

Many-Cores

This section introduces the first Transactional Memory for

Many-Cores (TM2C). TM2C allows programmers to exploit

the inherent parallelism of a many-core through a simple

interface. Its main novelty lies in guaranteeing starvation-

freedom without the need of an underlying hardware cache-

coherence, usually required to handle contention between

cores. The immediate benefit is the scalability to foresee-

able processors comprising a large number of cores, where a

chip-wide coherence is non-affordable due to false conflicts

and cache miss overheads. To achieve this result, TM2C ex-

ploits the low network-on-chip message latency to imple-

ment a distributed contention management arbitrating con-

tention cleverly between cores.

Specifically, TM2C provides two services as depicted in

Figure 1: (i) the application service (APP) interfaces the

transaction with the application and hosts the transactional

runtime; (ii) the Distributed TM (DTM) service grants a data

access to the requesting transactions through the distributed

locking (DS-Lock) which may call the contention manager

(CM) upon conflict detection. First we describe how the two

services can be deployed on the nodes, then we detail their

roles.

3.1 TM2C Deployment

The application and the DTM services are independent as

the former is responsible for executing the transaction by

requesting data accesses and the latter is responsible for

deciding whether an access can be granted. Both services are

fully distributed and could either be deployed on the same

cores, all exploiting each core but at different time slots, or

deployed on distinct cores, exploiting different cores but at

the same time. The former deployment strategy thus leads

to multitasking while the latter leads to dedicating roles to

cores.

Multitasking. Our initial design used multitasking to al-

low both the application and the DTM system to run on

every core. A user-space library, called libtask, was used

for this implementation. We preferred libtask over POSIX

threads (pthreads) because it has significantly cheaper con-

text switches. Libtask is a simple coroutine library that gives

Figure 2. Multitasking – An example where the scheduling

of node j affects the execution of node i.

the programmer the illusion of threads, but the operating sys-

tem sees only a single kernel thread. As a result, libtask does

not support preemption.

Yet, the multitasking still suffers from an important lim-

itation: the scheduling of node j can potentially affect the

execution of node i, where j 6= i. One such case is rep-

resented in Figure 2. Node j is executing some application

code while node i tries to execute a service request that in-

volves node j. The request cannot be served prior to j com-

pleting its local computation. Therefore, there is a waiting

period that increases the latency of the service operation.

Dedicated service cores. As a many-core provides the ap-

plication programmer with a large amount of simple cores,

assigning a dedicated role to each core better exploits paral-

lelism. As a follow-up to this observation, we engineered a

second deployment strategy in which disjoint sets of cores

are dedicated to hosting distinct services.

Such a dedicated strategy overcomes the above issue by

avoiding timing dependencies between the application and

the DTM services. In addition and as depicted in Figure 1,

this strategy presents another significant advantage. In fact,

the cores running the same service do not need to commu-

nicate with each other. This leads to complete decoupling

among the DTM cores and the application cores respectively.

The advantage is actually twofold. First, the number of mes-

sages in the system decreases. Second, the communication

paths among the application cores can be exploited by an

application that utilizes both the TM2C in addition to direct

messaging. Recall that TM2C supports weak atomicity [28],

hence the transactionally accessed data should not be con-

currently accessed by non-transactional code.

3.2 Distributed Lock Service

The distributed lock (DS-Lock) component is at the heart

of the DTM. It provides a service for acquiring multiple-

readers/single-writer revocable locks. The operations ex-

posed by the DS-Lock incorporate the transactional seman-

tics, and are thus non-blocking. The transactional semantics

comprises of Read After Write (RAW), Write After Read

(WAR), and Write After Write (WAW) conflicts. Whenever

the DS-Lock detects conflicts between two transactions ask-
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Algorithm 1 Read-lock acquire operation

1: dsl read lock(id , obj ):
2: enemy tx ← obj .writer

3: if enemy tx 6= NULL ∩ enemy tx 6= id then

4: // if there is a writer different than id, read after write conflict, call CM

5: cm ← contention manager(id , enemy tx ,RAW)
6: if cm = RAW then // CM aborted current transaction

7: return RAW

8: // no writer, or CM aborted enemy

9: add reader(obj , id)
10: return NO CONFLICT

ing for conflicting access grants, it calls the contention man-

ager (described in Section 4). The contention manager is

responsible for the conflict resolution.

The DS-Lock service is distributed amongmultiple nodes.

Consequently, each node running a part of the DS-Lock ser-

vice is responsible for controlling the accesses to a partition

of the shared memory. In this context, the DS-Lock service is

similar to some directory-based cache-coherence solutions

[24, 26]. Devising a sophisticated way of allocating the data

to the DS-Lock nodes is out of the scope of this work. A

memory location, which in the case of TM2C is a memory

byte, is mapped to its responsible DS-Lock node by hashing.

The operations the DS-Lock implements are basically

read-lock acquire/release and write-lock acquire/release.

Notice that these operations are not explicitly called by the

application code. The application calls the read and write

wrapper functions which perform the appropriate message

passing in order to implicitly trigger the corresponding DS-

Lock service operations.

Read-lock acquire/release. The read-lock acquire opera-

tion attempts to acquire the read-lock corresponding to the

input memory object for the requesting node identifier. It

may be unsuccessful due to a RAW conflict. Algorithm 1

illustrates the pseudo-code for this operation. The read-lock

release operation removes the corresponding node from the

readers set of the memory object.

Write-lock acquire/release. The write-lock acquire opera-

tion attempts to acquire the write-lock corresponding to the

input memory object for the requesting node identifier. It

may be unsuccessful due to a WAW, or a WAR conflict. Al-

gorithm 2 presents the pseudo-code for this operation. The

write-lock release operation simply resets the writer of the

memory object.

3.3 Transactions

A transaction is a delimited block of sequential code, whose

shared accesses are redirected through transaction wrap-

pers. Existing compilers wrap the shared accesses automati-

cally1. The programmer could potentially benefit from these

compilers as TM2C respects the simple standard TM inter-

1 The Intel R© C/C++ compiler and gcc support it.

Algorithm 2Write-lock acquire operation

1: dsl write lock(id , obj ):
2: enemy tx ← obj .writer

3: if enemy tx 6= NULL ∩ enemy tx 6= id then

4: // if there is a writer different than id, write after write conflict, call CM

5: cm1 ← contention manager(id , enemy tx ,WAW)
6: if cm1 = WAW then

7: return WAW

8: // no writer, or CM aborted enemy

9: enemy list ← obj .readers

10: if ¬is empty(enemy list) then
11: // write after read conflict, call CM

12: cm2 ← contention manager(id , enemy list ,WAR)
13: if cm2 = WAR then

14: return WAR

15: // no readers, or CM aborted enemies

16: obj .writer ← id

17: return NO CONFLICT

face [23], even though it hides the underlying complex mes-

sage passing implementation. Using the interface is the only

way an application can interact with the DTM system. We

discuss further interface extension to support elastic transac-

tions in Section 6.

The interface includes operations to start and commit a

transaction, which are the delimiters of the transaction. Start

simply creates a new transaction, while commit (txcommit)

tries to commit a transaction. The commit operation has to

acquire the necessary write-locks, persist the changes in the

shared memory, and finally release all the acquired locks.

The pseudo-code of txcommit is depicted in Algorithm 3.

The following paragraphs describe the operations to

transactionally read and write from/to a shared memory lo-

cation.

Algorithm 3 Transaction commit (txcommit) operation

1: txcommit():
2: tx metadata ← get metadata()
3: // try to write-lock all objects in the write-buffer

4: while (item ← get item(write buffer)) 6= NULL) do
5: // node responsible for obj locking

6: nId ← get responsible node(item.obj )
7: // similar to an RPC-like call on node nId, but uses message passing

8: response ← write lock(nId , id , tx metadata, item.obj )
9: if response 6= NO CONFLICT then

10: // conflict and CM aborted current

11: txabort(response)

12: append(item,writes locked)

13: // all locks acquired, persist the write-set to the memory

14: writeset persist(writes locked)
15: // release all locks and update metadata

16: wlock release all(id ,writes locked)
17: rlock release all(id , read buffer)
18: update metadata(tx metadata)
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Algorithm 4 Transactional read (txread) operation

1: txread(obj ):
2: obj buf ← get buffered(obj )
3: if obj buf 6= NULL then

4: // if memory object is in write or read buffer

5: return obj.value

6: // node responsible for obj locking

7: nId ← get responsible node(obj )
8: tx metadata ← get metadata()
9: // similar to an RPC-like call on node nId, but uses message passing

10: response ← read lock(nId , id , tx metadata, obj )
11: if response = NO CONFLICT then // acquired the read-lock

12: value ← shmem read(obj )
13: add read buffer(obj , value)
14: return value

15: else // else conflict and CM aborted current

16: txabort(response)

Visible reads. The transactional read (txread) is the oper-

ation used to read a memory object within the context of a

transaction. Algorithm 4 contains the pseudo-code describ-

ing the steps taken for this operation.

Transactional reads work with early lock acquisition and

therefore the system operates with visible reads. Early ac-

quisition suggests that a transaction has to acquire the cor-

responding read-lock before proceeding to the actual read.

The visibility of reads is an outcome of the early acquisi-

tion: every transaction is able to “see” the reads of the others

because of the read-locks. The motivation behind this design

decision is twofold.

Firstly, every many-core processor provides a fast mes-

sage passing mechanism. Taking this into account, the over-

head from performing synchronous read validation is ac-

ceptable. On a cluster, the messaging latency is significantly

higher, hence such a synchronous solution would be pro-

hibitive. Additionally, visible reads are often cited as prob-

lematic for affecting the cache behavior of the system. In

TM2C this is not the case due to the message passing. The

visibility of reads does not require changing some local

memory objects (e.g., locks), but using the locking service

to acquire the corresponding locks by communicating with a

remote node.

Secondly, visible reads are necessary for contention man-

agement. Without the read visibility, the WAR conflict de-

tection is deferred to a validation phase typically before the

commit. If a conflict is detected, it is too late to perform

conflict resolution, since the writing transaction has already

committed the new values.

Deferred writes. Transactional write is the operation used

to write to a memory object within the context of a trans-

action. Transactional writes work with lazy lock acquisition

and deferred writes2. Every write operation is buffered and

only in the commit phase the actual locks are acquired.

We chose lazy write acquisition for one main reason. If

two transactions conflict, one has to be writing on the mem-

ory object. Therefore, if a transaction holds a write-lock for

a long time, it increases the possibility that a conflict3 may

appear. Lazy write acquisition helps reducing the time that

the write-locks are being held. For an experimental compar-

ison of lazy against eager write acquisition see Section 5.2.

Moreover, it allows the implementation of write-lock batch-

ing: requesting the locks for multiple memory objects in a

single message, which can significantly reduce the number

of messages.

4. Distributed Contention Management

In this section we present Contention Managers (CMs) that

are fully decentralized and ensure transaction termination in

the message passing model. Existing contention managers

are generally centralized [14, 37, 38] and not applicable

to our model as they either rely on a global counter (e.g.,

Greedy, PublishedTimestamp, Timestamp), randomization

(e.g., KinderGarten), or on constantly changing priorities

that become inaccurate when conflict resolution gets prop-

agated in an asynchronous system (e.g., Eruption, Karma,

Polka).

Our aim is to guarantee starvation-freedom so that each

transaction eventually commits, hence precluding situations

in which two transactions block each other (deadlocks) or

where some transactions get repeatedly aborted (livelocks).

Many-cores are foreseen to support cloud applications where

independent client requests may contend on accessing the

same service and it is highly desirable that a client request

does not get repeatedly restarted because of concurrent re-

quests from other clients. Existing DTMs usually target

weaker progress properties than starvation-freedom, like

lock-freedom, as it is easier to guarantee that at least one

request progresses at any time.

4.1 Preliminaries

Each transaction is assigned a priority ∈ Z × I allowing

the contention manager to compare concurrent transactions

using some identifier in I as a tie-breaker. Upon conflict be-

tween multiple transactions, the contention manager com-

pares the priority of the conflicting transactions and aborts

all of them but the highest priority one. The status of such

an aborting transaction is atomically switched from pending

to aborted by the contention manager. An aborted transac-

tion is immediately restarted if not specified otherwise by

the contention manager. The transaction’s lifespan captures

the period between the time the transaction starts and the

time it commits, be it aborted several times in between.

2 The strategy of deferring writes is also known as write-back.
3 This conflict can be of type RAW or WAW.
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The following property indicates a sufficient set of rules

a CM should adhere to provide starvation-freedom on the

TM2C system.

PROPERTY 1. On TM2C, a contention manager satisfying

the three following rules:

a. the priority of a transaction does not change during its

lifespan,

b. the priorities define a total order on the set of current

transactions and

c. the priority of a transaction should be strictly lower than

the priority of the preceding committed transaction ini-

tialized by the same node

ensures termination of every transaction.

The intuition of Property 1 is that every CM node has al-

ways (upon a conflict) up to date information about the con-

flicting transactions. Assume that a conflict of transactions

t and t′ is detected on node i. If t′ performed the operation

that caused the conflict, then node i has the correct data for

t′ since they were piggybacked in the request. Moreover, t

has earlier performed an operation on node i. Node i has

the correct data for t, because t’s priority can only change

if t has committed (rule (a)), in which case it would have

already released the lock. Consequently, whenever there is a

conflict the CM of the corresponding node will have up-to-

date priorities for all the conflicting transactions. This im-

plies that even if there are simultaneous conflicts of two (or

more) transactions, the distributed CM will take a coherent

decision.

Due to rule (b) it is guaranteed that at least one of the i’s

conflicting transactions, say a transaction on node j, will be

able to commit its transaction, thus reducing the priorities

of j’s next transactions (rule (c)). After a finite number of

transactions, transactions on j will stop having the highest

priority and some other node becomes the highest priority

one. This process repeats a finite number of times until node

i has the highest priority among the conflicting nodes.

We now consider four contention managers in addition to

the default policy, denoted by no-CM, that simply consists of

aborting and restarting a transaction that detects a conflict.

We first present two contention managers that are livelock-

prone before presenting two contention managers that ensure

starvation-freedom.

4.2 Back-off-Retry

The Back-off-Retry contention manager lets the transaction

that detects the conflict abort and wait a period of time whose

expected duration increases. More precisely, the waiting du-

ration is chosen by tossing an integer that is lower than a

upper bound that increases exponentially each time the same

transaction aborts. When this transaction commits and a new

transaction starts, the upper bound is reset to its initial value.

Using TM2C with the Back-off-Retry contention manager

may lead to livelock as the same transaction may repeatedly

detect all the conflicts it is involved in, yet in practice trans-

actions often terminate thanks to its randomization.

4.3 Offset-Greedy

We now describe a distributed CM, namely Offset-Greedy,

as an adaptation of an existing centralized CM, called

Greedy [14], to illustrate the difficulty of ensuring starvation-

freedom in a distributed system. Greedy prioritizes a trans-

action using a timestamp, representing the time it started.

In case of conflict, the youngest conflicting transactions are

aborted in favor of the oldest one.

In a distributed system, the lack of a global clock prevents

us from implementing Greedy since different nodes of the

system do not have a way of taking consistent timestamps.

Typically, the transaction with the most advanced clock may

obtain the lower priority even though it starts first.

To bypass this limitation we introduced Offset-Greedy

that estimates timestamps based on time offsets. Offset-

Greedy takes the following steps whenever a node performs

a transactional operation:

1. The transaction uses the node’s local clock in order to

calculate the time offset since the beginning of the trans-

action.

2. The transaction sends the request to the responsible DTM

node, piggybacking the offset calculated in step 1.

3. The DTM uses the offset from the request and its local

clock to estimate the timestamp of the transaction accord-

ing to its own local clock.

4. The request is normally processed.

However, Offset-Greedy does not guarantee starvation-

freedom. Although it ensures rules (a) and (c) of Property 1,

it does not guarantee rule (b). The offset calculation tech-

nique does not take into account the message delay in com-

puting the offset. As the DTM load impacts the message

delay, nodes may happen obtaining inconsistent views of

timestamps. As a result, if a conflict emerges concurrently

on the two nodes with inconsistent views, both transactions

might abort. This scenario could lead to livelocks, however,

we did not experience such an issue in our experiments.

4.4 Wholly

To address the starvation problem of the above contention

managers, we propose Wholly. Wholly guarantees that the

nodes progress altogether. The priority is the inverse of the

number of transactions that each application node has al-

ready committed. Upon a conflict, the node that has com-

mitted the most transactions is aborted. If two nodes have

the same number of committed transactions, then their iden-

tifiers are used as tie-breakers.

PROPERTY 2. Wholly guarantees starvation-freedom.

Property 2 follows from the fact that Wholly satisfies the

three rules of Property 1. Wholly clearly ensures rule (a).
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The combination of the number of committed transactions

and the node identifier (if there is a tie) define a total order

on the priorities, thus satisfying rule (b). Finally, Wholly

satisfies rule (c) because whenever a transaction commits, it

reduces its priority. Consequently, according to Property 1,

Wholly guarantees the termination of every transaction.

Unfortunately, Wholly does not promote short transac-

tions over longer ones, hence, long transactions may reduce

the overall throughput by causing a large amount of aborts

due to numerous restarts.

4.5 FairCM

To promote short transactions over longer ones we propose a

last contention manager, called FairCM, that is fair regarding

the effective transactional time of each node. Instead of

using the number of committed transactions, FairCM uses

the cumulative time spent on successful transaction attempts

(in addition to the identifier). So, if a transaction proceeds as

follows:

Start→Abort1 →Restart1 →Abort2 →Restart2→Commit

then only the duration from Restart2 to Commit will be

added to the cumulative time. Upon a conflict, the trans-

action with the less cumulative time has higher priority.

According to Property 3, FairCM guarantees starvation-

freedom.

As described in Section 5.3, the particularity of promot-

ing short transactions over longer ones may prove very im-

portant for the performance of the system. In particular,

when some nodes tend to run long conflict-prone transac-

tions. Without fairness, these nodes would degrade the over-

all throughput of the system.

PROPERTY 3. FairCM guarantees starvation-freedom.

Property 3 follows the exact same reasoning as Wholly’s,

using the effective transactional time for the priority instead

of the number of committed transactions.

5. Evaluating TM2C

In this section we evaluate TM2C on the Intel R©’s Single-

chip Cloud Computer (SCC) (described in Section 5.1).

More precisely, we use TM2C with FairCM, its companion

contention manager, to run a concurrent hash table bench-

mark (Section 5.2), and two concurrent applications: bank

(Section 5.3) and MapReduce (Section 5.4). In addition,

we compare the obtained performance against the one us-

ing Back-off-Retry, Offset-Greedy and Wholly. The elastic

transaction evaluation is deferred to Section 6.

5.1 The Target Platform: Intel R©’s SCC

The Single-chip Cloud Computer (SCC) [22] is an ex-

perimental many-core platform developed by Intel R© that

embeds 48 non-cache-coherent cores on a single die. Its

architecture is designed to “scale, in principle, to 1,000

Figure 3. The SCC layout

cores” [29] and represents a 6 × 4 2D mesh of tiles, each

tile comprising two P54C x86 cores. Figure 3 provides an

overview of SCC’s architecture.

Every core has 32KB of L1 cache (16KB instruc-

tion/16KB data), a separate on-tile 256KB L2 cache, and

provides one globally accessible atomic test-and-set regis-

ter. In addition, each tile has 16KB of SRAM, called the

Message Passing Buffer (MPB), intended to be used for im-

plementing message passing. Finally, the SCC processor in-

cludes 4 DDR3 Memory Controllers (MC), with a default

of 4 ∗ 8 = 32GB of memory. Every core uses a partition of

this memory as its local RAM and the remaining can be allo-

cated as shared memory. An important characteristic of the

SCC is the lack of any hardware cache-coherence protocol.

The coherence of the shared memory and the MPB should

be handled by software.

Settings. The SCC has the following five performance set-

tings:

Setting Tile Mesh DRAM

0 533 800 800

1 800 1600 1066

2 800 1600 800

3 800 800 1066

4 800 800 800

The different columns refer to the tile, the mesh, and the

memory speed frequency settings (in MHz) respectively.

Using a setting other than 0 proved problematic in some

cases. Moreover, Intel R© recommends using setting 0, con-

sequently the data collected for this section were taken under

this setting.

Except for the experiment comparing the multitasking

and the dedicated DTM versions, all other measurements

used the dedicated DTM TM2C. Specifically, unless explic-

itly mentioned, the benchmarks use a 24 DTM / 24 applica-

tion cores setting (the reasoning behind this allocation can

be found on Section 5.3).

5.2 Hash Table

The hash table benchmark belongs to the synchrobench suite

and supports three operations: a contains operation checks

if an element exists in the hash table, an add inserts an el-
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Figure 4. The hash table benchmark

ement in the hash table, and a remove deletes an element

from the hash table. We designed two versions of the opera-

tions, a transactional and a sequential.

All operations are given a random value and the update

ratio indicates the amount of operations effectively modify-

ing the hash table, while the failed updates count as read-

only transactions. In addition, we tested different load fac-

tors that indicate the number of elements divided by the

number of buckets.

Deployment strategies. Figure 4(a) indicates the perfor-

mance of the TM2C deployment strategy against the mul-

titasking strategy as described in Section 3.1: unlike the de-

fault strategy that dedicates disjoint sets of nodes to run the

application and the DTM, the multitasking strategy runs the

application and the DTM on the same nodes. We tested these

two deployment strategies for load factors 2 and 8 and up-

date ratio 20%. The results outline the performance benefit

of using dedicated cores for the DTM, thus confirming our

initial thoughts.

Sequential speedup. Figure 4(b) depicts the improvement

of TM2C running the hash table over the bare sequential

implementation for 20% to 50% update ratios. The trans-

actional implementation runs on 48 cores, including 24 ap-

plication cores and 24 DTM cores, and performs up to 20

times faster than its sequential counterpart running on a sin-

gle core. Interestingly, we notice that the speedup decreases

for higher load factors. The reason is that a higher load factor

raises the duration of hash table operations, thus increasing

the probability of conflicts.

Furthermore, a higher update ratios leads to lower perfor-

mance, for both the sequential and the TM2C versions. This

is due to the additional contention induced by update op-

erations. The performance drops for the sequential version

is however more important than for the transactional one.

The initial hash table resides only in one of the four mem-

ory controllers of the SCC, thus utilizing 25% of the mem-

ory bandwidth. During the benchmark execution, each core

adding a new element stores it in its closest memory con-

troller leading to a better balancing of the load as the update

ratio increases.

Eager vs. lazy write-lock acquisition. Figure 4(c) corre-

sponds to the throughput and the commit rate of the hash ta-

ble benchmark using eager and lazy write-lock acquisition.

As described in Section 3.3, we decided to use lazy write-

lock acquisition on TM2C. With eager acquisition a transac-

tion asks for the write-lock of the memory location on-time,

when the transactional write operation is called. For these

tests we implemented a fourth operation on the hash table,

namely move, which removes an element and inserts a new

one. We ran our tests with 30% total updates, 20% of which

were move operations. We picked this workload because it

includes some write operations in the middle of the transac-

tion, thus making the two schemes performing differently.

The results follow our expectations: both schemes per-

form similarly under low contention, however, when the

number of conflicts increases, lazy acquisition outperforms

eager. Lazy acquisition has the advantage of keeping the

write-locks for a smaller amount of time, hence decreasing

the number of detected conflicts and increasing the commit

rate, as one can notice on the right graph of Figure 4(c).

5.3 Bank

Bank is an application consisting of operations for trans-

ferring and computing the balance of bank accounts (1024

accounts, unless specified). It was first used to evaluate

shared memory STMs [18] and is especially suited to eval-

uate the effect of livelocks on performance [17]. We com-

pare TM2C to locks using a single global lock as the SCC

provides a limited number of test-and-set registers (one per

core) which prevents us from using fine-grained locks. We

saw two alternatives to this issue: either implementing lock-

striping (medium-grained locks) or a hierarchical form of

fine-grained software locks. Yet comparing TM, which is

easy-to-use, to these approaches, which are difficult to use

in non-cache-coherent machine, is unfair.

Contention management benefits. The left and right

graphs of Figure 5(a) illustrate the TM2C’s throughput and

commit rate, respectively, when each core performs 20%

balance operations and 80% transfers with and without CM.

Without any CM, the performance drops because of a

livelock. In fact, each balance operation acquires a read-lock

on every account thus conflicting with concurrent update

transactions. Such conflicts emerge either due to a balance

operation (RAW conflict), or due to a transfer operation

(WAR conflict). Using any of the four CMs performs and

scales significantly better because they avoid livelocks.

Comparing different number of service cores. Due to the

reasons described in Section 3.1, dedicating some cores to

358



 0
 1
 2
 3
 4
 5
 6
 7

24 8 16 32 48

T
h

ro
u

g
h

p
u

t 
(O

p
s
/m

s
)

#Cores

Wholly
Offset-Greedy

FairCM
Back-off-Retry

No CM

 0

 20

 40

 60

 80

 100

24 8 16 32 48

C
o

m
m

it
 R

a
te

 (
%

)
#Cores

(a) With vs. Without Contention Manager

 0

 1

 2

 3

 4

 5

 6

12 4 8 16 24

T
h

ro
u

g
h

p
u

t 
(O

p
s
/m

s
)

#Service Cores

 50

 100

 150

 200

 250

 300

 350

12 4 8 16 24

T
h

ro
u

g
h

p
u

t 
(O

p
s
/m

s
)

#Service Cores

(b) Various number of service cores

 0
 25
 50
 75

 100
 125
 150
 175

4 8 16 32 48

T
h

ro
u

g
h

p
u

t 
(O

p
s
/m

s
)

#Cores

 20
 30
 40
 50
 60
 70
 80
 90

 100

4 8 16 32 48

C
o

m
m

it
 R

a
te

 (
%

)

#Cores

(c) Back-off-Retry vs. Offset-Greedy vs. Wholly vs. FairCM

 0
 50

 100
 150
 200
 250
 300
 350
 400

28 32 36 40 44 48

T
h

ro
u

g
h

p
u

t 
(O

p
s
/m

s
)

#Cores

lock, transfers
tx, transfers

lock, 1 reader
tx, 1 reader

(d) Locks vs. Transactions

Figure 5. The bank application

host the TM service is advisable on a many-core. This design

decision generates the interesting question of how many

cores should be allocated for the service. On TM2C this is a

system’s parameter. We used the bank application to evaluate

the performance of TM2C under different number of service

cores.

Figure 5(b) depicts the performance of the bank with 20%

balance and 80% transfer operations (left) and with 100%

transfer operations (right). The label on the x-axis indicates

the number of the service cores, all remaining cores are

hosting the application.

Both results explain why we selected to dedicate half

of the cores for hosting the TM service in most of our

experiments. The results are explained as follows. Firstly,

bank4 does not contain any actual local computations since

4 The same applies to the hash table and linked list benchmarks.

it consists only of transactional operations. Therefore, the

request load produced is very high. Secondly, the message

passing on the SCC does not scale particularly well. As

an example consider the average latency for a round-trip5

message. In the case of 2 cores the latency is 5.1µs, while
with 48 it increases to 12.4µs (for more details see Section

7). Consequently, increasing the number of service cores

does not entail a linear increase of the system throughput.

Comparing contention managers. Figure 5(c) illustrates

in more detail the performance of TM2C when running with

each of the four CMs, presented in Section 4. All cores

perform transfers, except one which runs balance operations

repeatedly.

Offset-Greedy and Wholly exhibit similar performance:

the balance and the transfer transactions are prioritized the

same, hence the “balance core” degrades the overall through-

put. By contrast, FairCM prioritizes the transactions based

on the transactional time they consume, therefore the bal-

ance operations are significantly more expensive than the

transfers. Consequently, FairCM scales well by keeping the

abort rate lower than 10%, even for 48 cores, and performs

up to 12 and 9 times better than Wholly and Offset-Greedy,

respectively.

Back-off-Retry performs similarly to Offset-Greedy and

Wholly, but exhibits an interesting behaviour. Up to 16 cores

the commit rate drops, but for more than 16 it increases.

This is because the core performing balance operations tends

to starve. Increasing the number of cores performing trans-

fers, increases the probability that while the “balance core”

is scanning the bank will find a RAW conflict. Interest-

ingly, FairCM diminishes the performance of one core to

the benefit of the system’s throughput by committing 44 bal-

ance operations per second as opposed to the 81 of Offset-

Greedy. The performance difference of FairCM to the others

increases as we increase the number of bank accounts.

Comparing against locks. Figure 5(d) indicates the

throughput of the bank implementation based on TM2C and

on locks under two different workloads. These experiments

use 2048 bank accounts.

The first workload consists in every core executing trans-

fer operations. Up to 28 cores, the lock-based version (lock,

transfers) performs better than the transactional version (tx,

transfers). This is not surprising as the sequential implemen-

tation of a transfer performs only four accesses to the shared

memory. However, for more than 28 cores, the performance

of the lock-based version degrades due to the contention on

the lock, while the transactional version keeps scaling.

The second workload comprises a core that repeatedly

performs balance operations, while all others transfer. In this

case, the transactional implementation (tx, 1 reader) per-

forms and scales better than the lock-based one (lock, 1

reader), regardless of the number of cores. This is expected

5A round-trip consists in a request followed by a response.
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Figure 6. The MapReduce application

since in the lock-based implementation the core that exe-

cutes the balance operations delays all other cores from ex-

ecuting the lighter transfer operations, while TM2C handles

this case properly.

5.4 MapReduce

To test TM2C under a heterogeneous workload combin-

ing transactional and local computations, we developed a

MapReduce-like application. The application takes a text file

as an input and counts the number of occurrences of each

letter in the file. Typical MapReduce implementations use a

master node to coordinate the map and reduce phases. TM2C

takes here the role of allocating chunks of the file to cores

and of updating the total statistics atomically thus removing

the need for a master node.

Scalability and sequential speedup. Figure 6(a) indicates

the experiment duration as the number of cores increases.

Figure 6(b) indicates the speedup of TM2C over the sequen-

tial implementation for different chunks sizes (4, 8, and 16

KBytes). Since the transactional load is low, only one core

is dedicated to run the DTM service so that the 47 remaining

cores run the application. Our evaluation reveals that using

an 8KB chunk size leads to the best performance. This can

be explained by the L1 cache size of each core. Each core

has a 16KB data cache, but since it is shared between the

operating system and the application it is not fully available

to the latter.

6. Distributed Elastic Transactions on TM2C

The elastic transaction model [13] is a variant of the clas-

sical transactional model particularly efficient when imple-

menting search structures. Elastic transactions complement

the classical transactions and can be optionally used instead

to provide higher performance. They ensure atomicity of

some high level operations while ignoring their false low

level conflicts. An elastic transaction relaxes the atomicity

between all the shared read accesses of its read-only pre-

fix by requiring only that consecutive read accesses remain

atomic. Consider the following sorted linked list example:

head → n1 → n2 → n3 → n4 → tail
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Figure 7. The linked list benchmark

when a searching transaction reaches node 3, node 1 is no

more relevant to the search, because even if it is modified

by a concurrent transaction (producing a WAR conflict),

the search will not be semantically affected. By ignoring

these false conflicts, elastic transactions enable higher con-

currency.

6.1 Implementations of the Elastic Transaction Model

The elastic transactional model can be implemented in var-

ious ways. We designed two implementations and a linked

list data structure to evaluate it.

Our first implementation (elastic-early) employs an ex-

plicit release action, similar to the one used in DSTM [19],

in order to discard a read entry from the transaction read

set prior to commit time. In our case, this release action is

used by a transaction to release one of its acquired read-

locks immediately after acquiring new ones on subsequent

data. Using such an early release, we can ensure that only

consecutive read accesses are atomic as required by elastic

transactions.

Our second implementation (elastic-read) was designed

using read-validation. Instead of acquiring the relevant read-

locks, the transaction performs read validation. This tech-

nique relies on the fact that if a concurrent transaction com-

mits an update, the new value will be visible to a read valida-

tion, since the committed transaction can only write new/d-

ifferent values to the altered fields. For example, for the

contains operation it is important to validate node i after

stepping to node i+1. If the value of node i did not change,
then the transaction proceeds normally, otherwise it has to

be aborted.

6.2 Evaluating the Two Implementations

The linked list benchmark also comes from the syn-

chrobench suite and exports the same operations as the hash

table (Section 5.2). We used a 2048 element sorted linked

list for this test. Each core performs 20% update operations

(add, remove) and 80% contains.

Figure 7(a) depicts the improvement of the elastic-early

version over normal transactions. The elastic transactions di-

minish the abort rate to less than 1%, even for 48 cores, so

one would expect a better performance improvement. The
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Figure 8. TM2C performance on many-core (SC-

C/SCC800) vs. multi-core (Opteron)

reason for the limited speedup is that each early release op-

eration requires an extra message to the DTM, thus signifi-

cantly increasing the communication load of the system and

producing extra transactional overheads.

Figure 7(b) depicts the speedup of the elastic-read imple-

mentation over the other two. Similarly to the elastic-early,

elastic-read diminishes the abort rate. However, elastic-read

additionally reduces the number of messages sent by in-

creasing the number of accesses to the shared memory. On

the SCC, a memory access is faster than a message delivery,

therefore the read validation significantly increases the per-

formance. The speedup drops for more than 8 cores due to

memory congestion.

7. TM2C on a Cache-Coherent Multi-Core

In order to verify the portability of TM2C and evaluate

its performance and scalability on a different platform we

ported it on a cache-coherent multi-core machine.

7.1 Porting TM2C to Multi-cores

The underlying message passing communication paradigm

makes TM2C easily portable to different architectures, in-

cluding multi-core machines with cache-coherence support.

We also ported the simple Back-off-Retry contention man-

ager to obtain a common ground for comparison. Like the

SCC, our multi-core machine also embeds 48 cores in total.

More precisely, it consists of four 2.1 GHz 12-core AMD

OpteronTM processors and 32 GB of RAM running Linux

(Ubuntu 10.04 64 bit, kernel version 2.6.32). The L1 cache

size is 128 KB, the L2 cache is 512 KB, and each of the

processors has a 12 MB L3 cache. To take benefit of the in-

herent hardware cache-coherence protocol provided by the

multi-core machine, we used a message passing library sim-

ilar to the one of Barrelfish [3] that translates cache lines

into core-to-core communication channels. Additionally, we

used the SCC on both its slowest and fastest performance

settings (see Section 5.1), yet note that the clock frequencies

of the many-core remain more than twice slower than the

one of the multi-core.

Figure 8(a) illustrates the latency of message passing

in TM2C. Specifically, we use the dedicated service cores

(one half dedicated to the DTM, the other half dedicated

to the application services) and set each application core

to send one million messages evenly distributed to all ser-

vice cores. Upon reception of a message, a service core re-

sponds immediately, without performing any local compu-

tation. The results reveal that asynchronous message pass-

ing on the SCC does not scale well. This degradation stems

from the software-based message passing implementation of

the SCC. In order to be able to asynchronously receive mes-

sages, a core has to repeatedly poll a flag for any other core

to be able to detect any incoming messages. However, the

SCC on its fastest setting (SCC800) provides faster mes-

sage passing than the messaging implementation used on the

multi-core.

7.2 Experimental Comparison

We compare TM2C on the multi-core and the many-core

using the bank application, the hash table and the linked

list benchmarks. On 48 cores, the multi-core and SCC800

performed similarly. SCC800 has slightly faster message

passing but the multi-core has significantly faster process-

ing speed. Since our benchmarks make heavy use of the

DTM service, messaging is more important than the clock

frequency.

We run TM2C on the bank application (Figure 8(b)) under

two workloads: the first consists of 20% balance and 80%

transfer operations (left graph) and the second contains only

transfer operations (right graph). The former workload re-

veals that the SCC behaves better under heavy contention.

The latter, which is a low contention workload, follows the

messaging latencies. We also run TM2C both on the linked

list (Figure 8(c)) and the hash table (Figure 8(d)) with an
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initial size of 512 and 10% update ratio. Linked list is an-

other high contention example. In this case, the multi-core

performs better relatively to the bank. All operations of the

linked list include a sequential search among its elements,

creating some hotspots on the first elements. Consequently,

caching improves the memory access latencies.

These results are preliminary and a more extensive eval-

uation is necessary to precisely assess the architectural arti-

facts that affect the observed performance. Yet, the observed

results (in particular on the low contention hash table) con-

firm the difference of message latencies we observed on both

architectures. Finally, a general observation is that TM2C

seems to scale almost linearly with the number of applica-

tion cores on low contended workloads when the message

passing scales accordingly, independently from the consid-

ered architectures.

8. Discussion

In this section, we discuss a possible extension to support

privatization and we elaborate on the portability of TM2C.

Privatization. The action of making data private to some

thread is known as privatization. Privatization is appealing

when using transactional memory to support legacy code

or to avoid the overhead of transactional wrappers when

accessing some private data.

The Intel R©’s SCC allows the programmer to define bar-

riers that can be employed to guarantee that after some exe-

cution point all transactions have completed. Such technique

allows to delimit a part of the program where some data is

shared among transactions, and a subsequent part where the

same data is private to some thread. In TM2C a more generic

solution would be to implement barriers using the available

message passing paths among the application cores. When

the application reaches a barrier it sends a barrier-reached

message to all the other application cores and blocks until it

receives a message from each of them.

Portability. As our experience illustrates (see Section 7),

TM2C can be ported to platforms providing reliable asyn-

chronous message passing. However, both versions (many-

core and multi-core) utilize the existing shared memory of

the platform. We have started implementing a Partitioned

Global Address Space (PGAS) memory model for TM2C.

We expect the benefit from PGAS to be twofold. Firstly,

PGAS will increase the portability of the system since mes-

sage passing will be the only requirement. Towards this di-

rection we are working on implementing a version of TM2C

running on clusters. Secondly, PGAS will act as a software-

level cache-coherence protocol since the data will be locally

cached on the residing node. We anticipate that the data

caching will diminish the memory load and increase the per-

formance.

9. Related Work

Transactional memory (TM) was originally proposed to sim-

plify concurrent programming to avoid lock-related issues,

like deadlocks [20, 39]. They were dedicated to shared mem-

ory systems, all relying on an underlying hardware cache-

coherence [35, 36]. More recently, much effort was spent in

implementing the TM abstraction on top of clusters of dis-

tributed machines, resulting in various distributed transac-

tional memories (DTMs) [5, 25, 27, 33].This distribution un-

veiled new research challenges, whose prominent one is pos-

sibly to guarantee transaction termination despite message-

based synchronization. Our solution is the first to exploit

many-cores to provide efficient transactions that are guar-

anteed to terminate.

A first class of DTMs use a separate centralized service

in order to arbitrate contention between transactions. Dis-

tributed Multi-Versioning (DMV) [27] is a replicated DTM

that exploits multi-version concurrency control to minimize

the number of aborts. DMV operates in two different modes.

The first mode requires a global token to protect the broad-

cast of updates in order to keep the memory consistent, but

suffers from livelocks. The second mode relies on a central-

ized master node, which may hamper the scalability by se-

rializing all update transactions, even non-conflicting ones.

DiSTM [25] is a framework for prototyping and testing soft-

ware cache-coherence protocols for TMs. The underlying

TCC protocol is described as a decentralized coherence pro-

tocol, yet it needs a single master node and a global ticket

mechanism.

A second class of DTMs are control-flow in that they han-

dle transactions that execute on a distributed set of data. The

challenge of such a control-flow technique is to guarantee

that the conflict resolution adopted at some place does not

contradict another conflict resolution adopted at a remote

place. Cluster-TM [5] is a DTM designed for large-scale

clusters. It introduces techniques for minimizing the com-

munication among nodes by exploiting data locality. Unfor-

tunately, Cluster-TM suffers from livelock, being unable to

guarantee that an issued transaction will eventually commit.

Snake D-STM [34] utilizes local contention management

where each node takes decision based on local information.

Such a local decision does not avoid the creation a global

cycle among the aborting relations, also leading to livelocks.

A third class of DTMs are data-flow in that they move

data among processors executing transactions and rely on

an underlying cache-coherence protocol to invalidate dis-

tant transactions upon conflict detection. The crux here is

rather to ensure that communication asynchrony does not

stale contention management. New directory protocols were

accordingly designed to move and retrieve data in a cache-

coherent way [2, 21, 41] but none of them proposes a full-

fledged DTM protocol. Combine [2] guarantees termination

of individual move and retrieval operations, not of transac-

tional groups of moves/retrievals, and in a distributed envi-
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ronment the Greedy contention manager needs nodes to syn-

chronize their clock [40]. DecentSTM [4] is another data-

flow STM that utilizes consensus on the cached copies but

does not guarantee livelock freedom. As opposed to Snake

D-STM, the Transactional Forwarding Algorithm (TFA) of

RMI-DSTM [32] is a data flow algorithm that relies on an

underlying directory protocol. It uses a modification of Lam-

port’s clocks in order to have a synchronized timestamp to

be used for object versioning. Although it guarantees strong

progressiveness [16], it remains livelock-prone.

Finally and in accordance with [30, 31], there was lately

an extensive work towards designing replication techniques

for DTMs. To our knowledge, all existing techniques build

on top of the Atomic Broadcast [10]; a rather strong and ex-

pensive (regarding communication) primitive. D2STM [9] is

a fully replicated fault-tolerant DTM which uses a certifi-

cation scheme for guaranteeing the consistency among dif-

ferent nodes. D2STM is also livelock-prone. Asynchronous

Lease-Based Replication (ALC) [7] is a certification scheme

for replicating STMs. A transaction needs to acquire the

leases that correspond to its data-set in order to commit.

In case of an abort and retry the transaction keeps the ac-

quired leases, but there is a chance that these data do not co-

incide with the newly accessed data. For the aforementioned

reason, ALC cannot guarantee livelock-freedom since every

new transaction run may need a disjoint set of leases, hence

it is not guaranteed it will be able to commit. The authors

suggest that this problem could be bypassed if all transac-

tions explicitly request for the whole set of leases (sort of

a global lock), solution that hinders concurrency. SCert is a

complement to ALC replication/certification scheme which

inherits ALC’s livelock problems [8].

To our knowledge TM2C is the first TM protocol for

many-core systems. It does not require any underlying

cache-coherence protocol, thus avoiding data lookup, cache

misses and false sharing. It detects conflicts eagerly by ex-

ploiting the low network-on-chip latency to rapidly grant

shared read accesses to memory bytes. Once granted, the

read access becomes visible to other transactions thus allow-

ing conflicts to be detected at read time. Last but not least,

all its transactions terminate. Upon conflict detection, any of

the three companion contention managers resolve the con-

flict ensuring that there is no executions in which one trans-

action may repeatedly abort another.

10. Conclusions

We have proposed TM2C, the first transactional memory for

many-cores, the family of processors that promise to recon-

cile high performance with low energy consumption at the

cost of trading hardware cache-coherence for message pass-

ing. TM2C exports the standard transactional interface hid-

ing the complex underlying on-chip communications from

the programmer. It incorporates the first starvation-free dis-

tributed contention manager, FairCM, thus preventing con-

tinuous contention from repeatedly aborting the same trans-

actions. Moreover, it ascertains the fair usage of the system

by every core. We implemented and evaluated TM2C on the

Intel R©’s SCC many-core processor, attesting that TM2C ex-

ploits the scalability of many-cores even on irregular appli-

cations with many dependencies.

As for future work, we plan to introduce fault-tolerance

to TM2C. Contemporary many-cores consist of less than a

hundred cores, thus the non-failure assumption is realistic.

However, many-cores are expected to scale in the number

of cores, hence on a single many-core node failures should

become more frequent.

Another research direction is to automate the selection

of the DTM service cores. Currently, the cores that host the

TM2C are statically predetermined. Under heterogeneous

workloads it would be preferable for the system to vary the

number of service cores depending on the transactional load.
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