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ABSTRACT
This paper shows for the first time that distributed com-
puting can be both reliable and efficient in an environment
that is both highly dynamic and hostile. More specifically,
we show how to maintain clusters of size O(logN), each
containing more than two thirds of honest nodes with high
probability, within a system whose size can vary polyno-
mially with respect to its initial size. Furthermore, the
communication cost induced by each node arrival or de-
parture is polylogarithmic with respect to N , the maximal
size of the system. Our clustering can be achieved despite
the presence of a Byzantine adversary controlling a frac-
tion τ ≤ 1

3
− ε of the nodes, for some fixed constant ε > 0,

independent of N . So far, such a clustering could only
be performed for systems whose size can vary constantly
and it was not clear whether that was at all possible for
polynomial variances.

Categories and Subject Descriptors
F.2.2 [Theory of Computation]: Analysis of algorithms
and problem complexity—Nonnumerical Algorithms and
Problems

Keywords: Byzantine failures ; random walks ; dy-
namic networks

1. INTRODUCTION
Distributed computing can be achieved reliably in a sys-

tem where at most one third of the processes are controlled
by an adversary. Typically, assuming some synchrony, the
seminal agreement problem [25] can be solved and used
to emulate a single highly available process. This is a ba-
sic building block to achieve distributed computations in
a reliable manner. Yet, with a large number of nodes, this
technique is very expensive. One way to reduce the com-
plexity consists in clustering the nodes within smaller sub-
sets, picked randomly, so that each cluster contains two
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third of correct nodes whp, e.g., as proposed in [11]. In
short, instead of reducing a system of many processes into
a system of one reliable process that performs the compu-
tation, the idea here is to reduce it to a system of several
reliable processes, each corresponding to one of the clus-
ters. These processes share the load of the computations
reducing thereby their complexity.
So far, clustering techniques mainly assumed a static

distributed system: the number n of processes is assumed
to be fixed a priori and processes do not join or leave the
system [14] (a few can typically fail). Some approaches
have explored dynamic settings, but in a limited fashion:
the number of processes n is assumed to only vary by a
constant factor [6, 7, 12, 31]. Yet, whether this is at all
possible to go beyond has been considered an open question
so far [18, 19].
This paper answers the question positively. We show,

for the first time, that it is possible to perform distributed
computing reliably and efficiently in a system which size
can vary in a polynomial manner. At the heart of this re-
sult lies a new technique to partition nodes in a dynamic
number of clusters, which involves a radical departure from
previous schemes that assume a static number of clus-
ters [6, 7, 12, 31]. Indeed, tolerating an increase in the
number of nodes from n to n2 (and more generally from

n1/y to nz for some constants y, z > 1), with a static num-
ber of clusters, yields a significant increase in the number
of nodes within each cluster, leading to a high-complexity
computation, in the vein of a single cluster approach. How-
ever, handling dynamic clusters is not trivial. For instance,
using classical De Brujin graphs for clustering [6] in a dy-
namic setting requires a good estimation of the number of
nodes. In turn, this potentially requires techniques with
high complexity, e.g., typically Õ(n3/2) [24].
Our clustering approach achieves a polylogarithmic com-

plexity by using random walks on expander graphs with
small degrees. To ensure that each cluster contains two
thirds of correct nodes with high probability, we exchange
nodes between clusters whenever new nodes join or leave
the system. The nodes that are candidate to the exchange
are selected using continuous random walks [1]. These
provide a uniformly chosen sample even if the underly-
ing graph is not regular. To ensure that a walk ends up
fast on a node picked quasi uniformly, we connect clusters
through small degree expanders [20].
The distributed construction of this expander requires

specific care in regulating the choice of edges. Although
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several expanders could be used, our approach relies on
OVER, a technique (Over-Valued Erdös Rèiny graph) from
Erdös Rèiny random graphs to preserve a small degree
and a good expansion coefficient. OVER is described in
the long version of this paper [16] for space reasons. This
technique tolerates more crashes than [3, 15, 26] and yields
a different degree than [2]. In the rest of the paper, we
present NOW (Neighbors On Watch), a protocol main-
taining the cluster partition in Section 3 and analyze it in
Section 4. We review the related work in Section 5 and
conclude in Section 6.

2. MODEL AND BACKGROUND

System assumptions.
In short, our network model is the one of [7] with the

difference that we allow the size of the system to vary poly-
nomially. More specifically, we consider a dynamic syn-
chronous network with a discrete time variable ti. Each
node can send messages to any node it knows through a pri-
vate channel; in this sense the network is reconfigurable as
connections between nodes can be added or removed. We
do not assume that each node knows all other nodes in the
network (except during the initialization phase in which
the global structure of the network is computed once). In-
stead, each node knows polylog(N) nodes and only knows
an upper bound on the current size of the network. We
also assume that, initially, the number of nodes is nt0 for

some
√
N ≤ nt0 ≤ N , and the current number of nodes

n in the network remains between
√
N and N (this can

be relaxed to N1/y ≤ n ≤ Nz for all constants y, z > 1).
The size of the network can increase or decrease at any
time. For simplicity of presentation, we assume (as in [7,
26]) that when a node joins or leaves, the actions relative
to previous joins and leaves are over. This corresponds to
a time step.ËIJ∗ Moreover, nodes do not need to take any
specific action when leaving the network. Instead, we as-
sume a mechanism enabling a node to detect if one of its
neighbors has crashed or left the network.

Adversary model.
Our adversary is that of [7] with the difference that in

our case it controls a fraction τ ≤ 1
3
− ε (for some constant

ε > 0) nodes, from the beginning (vs. τ ≤ 1
2
− ε after some

initialization phase; note that using cryptographic tools,
we could also assume τ ≤ 1

2
− ε by leveraging broadcast

algorithms [13].).
NOW tolerates a static Byzantine (sometimes called ac-

tive) adversary controlling a fraction τ ≤ 1
3
− ε (for some

constant ε > 0) of the nodes, having a full knowledge of
the network at any time, as in [7, 18], i.e it knows the po-
sition of any node at any time. A typical objective for the
adversary is to gain the lead in one (or more) of the clus-
ters. At the beginning of the protocol, the adversary can
choose a fraction τ of the nodes to corrupt. We assume
that, at initialization, the honest nodes form a connected
component, that the adversary cannot split it into disjoint
parts, that each node controlled by the adversary is adja-
cent to at least one honest node, and that no honest node

9∗However, the analysis can be generalized to several parallel
join and leave operations.

leaves or joins the network until the initialization is over.
Also, nodes’ identities cannot be forged. Moreover during
the execution of the protocol, each time a node joins the
network, the adversary can choose to corrupt it or not, as
in [6, 7]. However, the adversary cannot decide to corrupt
nodes at a later time (in this sense the adversary is static
and not adaptive). Furthermore, the adversary can induce
churn as in [6, 7] by join-leave attacks or by forcing honest
nodes to leave the system (e.g., through a DOS attack).
The size of the network can vary polynomially and each
node is assigned a unique identifier.

Background on OVER: expander graph.
Our clustering technique, which we call NOW (Neigh-

bors On Watch) and that maintains a cluster partition is
based on a protocol to distributely maintain an expander
overlay. Although various expanders (e.g. [2]) could be
used, we assume that NOW relies on OVER. For space rea-
sons, the detailed description of OVER is deferred to the
long version of the paper [16]. In OVER, the graph vertices
represent the clusters of nodes maintained by NOW, hence
they can be considered as honest since each vertex is com-
posed of more than two thirds of honest nodes whp. We
further assume that each vertex leaving the overlay graph
is chosen at random (this assumption will be ensured in
Section 3.3).
OVER ensures that, starting from a random graph drawn

from the Erdös-Rényi model, whp, at any time during a
sequence of vertex additions and removals polynomial in
N , the resulting graph has a large isoperimetric constant
and a low degree (ensuring properties 1 and 2). We use

the notation ĜR where the ˆ relates to the fact that we
consider an overlay, and the R that it is an instance of a
random graph. The evolution of the graph is represented

by a sequence ĜR
t0 , . . . , Ĝ

R
ti
, . . .. nti denotes the number of

vertices of ĜR
ti .

Property 1. Whp, at any time t after a number of

time steps polynomial in n, ĜR
t = (V̂ R

t , ÊR
t ) has an isoperi-

metric constant I(ĜR
t ) ≥ log1+α N/2, where:

I(ĜR
t ) = infS⊂V̂ R

t :|S|≤nt/2
E(S, S̄)/|S|.

Property 2 (Maximum degree of ĜR
). Whp, at any

time t after a number of time steps polynomial in n, ĜR
t

has maximal degree at most c log1+α N for a large enough
constant c and an arbitrarily small (pre-)chosen constant
α.

Those properties enable to achieve short random walks
leading to pick nodes uniformly at random. Note that
OVER enables to tolerate simultaneous failures as long as
the targets are picked uniformly at random. NOW to-
gether with OVER can also tolerate the failures of nodes
chosen by the adversary as long as one failure per round is
assumed.

Notations.
We use the time step as a subscript to indicate the in-

stant at which a variable is considered (e.g., nti is the num-
ber of nodes at time ti, #Cti is the number of clusters, and
|Cj |ti the size of Cj). We may omit the index of the time
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step when there is no ambiguity (e.g., n stands for the cur-
rent number of nodes in the network). The communication
cost is the number of messages† exchanged, and the round
complexity, is the number of communication rounds (i.e.
the number of successive messages) required by a protocol
to terminate. Notice that a time step is composed of sev-
eral communication rounds, but we will prove that they
are polylog(N). Given a graph G = (V,E), and a vertex
v ∈ G, we denote by dv its degree. Similarly, for a given
cluster C, dC denotes the number of clusters adjacent to
C.

3. NOW: OVERLAY OF CLUSTERS
NOW (Neighbors On Watch) maintains both an over-

lay of clusters and the partition of the nodes into clusters.
NOW relies on the fact that the overlay is guaranteed to
have a low maximum degree and good expansion prop-
erties. This is provided by the protocol OVER that we
present in the long version of the paper [16] but could also
be ensured by other protocols which differ either in the
number of failures they can provide [3, 15, 26] or their de-
gree (e.g., 4 in [2] instead of log1+α N in OVER for some
arbitrarily small constant α > 0) ). NOW further en-
sures that each cluster contains more than two thirds of
honest nodes whp. The clusters have size O(logN) and
are used to inhibit the behavior of the Byzantine nodes.
NOW relies on two phases: initialization andmaintenance.
In a nutshell, the initialization phase generates the initial
overlay, while the maintenance phase ensures that after a
polynomially long sequence of leave and join operations,

the required properties still hold. The overlay ĜR is first
constructed during the initialization phase of NOW, and
recursively maintained by OVER as described in [16].

3.1 Preliminaries
A node of a cluster C is linked to all the other nodes

of C and knows their identities. An edge between two

clusters Ci and Cj in ĜR means that all nodes of Ci are
linked to all nodes of Cj and know their identities (and
vice-versa). A node only needs to know the identities of
the nodes in its cluster and the neighboring ones. The
initialization phase (Section 3.2) is itself divided into two
sub-phases. First, a discovery algorithm is run in order for
the nodes to acquire a global knowledge of the network.
Afterwards, a Byzantine agreement algorithm [19] is used
to construct an initial overlay of clusters. The maintenance
phase ensures that each cluster contains more than two
thirds of honest nodes whp when nodes join or leave and
preserves the properties of the overlay.

Random number generation.
We assume the existence of randNum, a distributed ran-

dom number generation protocol, enabling the nodes of
a cluster to agree on a common integer chosen uniformly
at random from the interval (0, r). randNum is secure as
long as the Byzantine nodes are less than two thirds in the
cluster and is presented the long version of the paper [16].

Cluster random choice.

9†We consider messages of identical size. Hence the commu-
nication cost is proportional to the number of bits sent.

Furthermore, we assume the existence of a function called
randCl (Algorithm in [16]), to randomly select a cluster.
To achieve the random selection (randCl), we perform a

biased CTRW ‡ on ĜR, the overlay. We bias our CTRW
such that a cluster is chosen according to the distribution
(|Ci|/n). With clusters of size O(logN), this primitive
has an expected communication cost of O(log5 N). In-
deed, the expected number of clusters visited during the
walk is O(log3 N) (whp, we do O(log n) CTRW each of
length O(log2 n)) and at each cluster a random integer
from the range (0, O(log1+α N)) is generated at a cost of
O(log2 N). The expected round complexity of this primi-
tive is O(log4 N).

Node shuffling.
In order to avoid an adversary to focus on one cluster

and gradually pollute it with Byzantine nodes, shuffling
nodes between clusters is necessary upon nodes arrival and
departure. The shuffling is implemented by the algorithm
called exchange and detailed in [16]. Basically some clus-
ters exchange their nodes with nodes chosen at random
from other clusters. For each node x to be exchanged from
cluster C (x is determined by the protocol exchange), a
cluster is chosen at random using randCl. The chosen
cluster, C′, is informed that it will receive x. The cluster
C′ chooses one of its nodes (using the primitive randNum)
to send in replacement of x. During an exchange, if C is
adjacent to another cluster, the nodes of this cluster are
informed of the new composition of C. This step is funda-
mental since a node from a neighboring cluster accepts a
message from C if and only if at least half plus one of the
nodes of C send it. The new nodes of C are informed by
the former nodes of this cluster of the local structure of the
overlay (i.e., the neighboring clusters of C in the overlay).
The expected communication cost and round complexity
of exchange are O(log6 N) and O(log4 N).

3.2 NOW: Initialization Phase

Network Discovery.
The protocol starts by running an algorithm that in-

forms each node of the identifiers of all other nodes. The
global knowledge of the nodes in the network is needed only
at initialization. Note that this computation is performed
while the size of the network is still “small” in practice. Af-
terwards, it is possible to use standard off-the-shelf Byzan-
tine agreement algorithms to construct an initial partition

forming the vertices of the overlay ĜR. This algorithm
(Provided in [16]) terminates after a number of communi-
cation rounds at most the diameter of the graph consid-
ering only the edges adjacent to at least one honest node.
When the algorithm terminates, it is guaranteed that all

9‡A vertex Ci of ĜR is a cluster in G. A biased CTRW from
Ci is a sequence of CTRW as follows: the nodes of Ci choose
collaboratively the next cluster Cj and decrease the duration of
the CTRW using randNum which goes on similarly. When the
remaining duration is negative or null, a random number between
0 and 1 is chosen. If it is smaller than |Ci|/maxC |C|, the bi-
ased CTRW ends, otherwise a CTRW starts again. A node of a
cluster Cj pursues the random walk if and only if it receives an
identical message from at least half plus one of the nodes of the
neighboring cluster from which the CTRW comes.
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join and leave operations
Up to a polynomial number of

Compute global knowledge

complexity: O(N3/2 logN)

Small graph (n =
√
N) Local knowledge and

√
N ≤ n ≤ N

Preserve a good partition of the nodes

Maintenance

Maintain the overlay

complexity: Polylog(N)

Initialization

Apply robust Byzantine Agreement

Figure 1: Overview of NOW.

honest nodes know the identities of all nodes in the net-
work. Its communication cost is O(n × e) where e = |E|
(see [16] for the theorem and details).

Clusterization.
Once all the honest nodes know the identities of all the

nodes in the network, any Byzantine agreement protocol
can be used, such as [19] whose complexity is Õ(n

√
n).

This protocol works in the presence of a static Byzantine
adversary controlling less than 1/3 − ε of the nodes for
some positive constant ε. A representative cluster of log-
arithmic size containing more than two thirds of honest
nodes is selected. Afterwards, we use the nodes of this
representative cluster to randomly partition the network
into #C clusters, {C1, . . . , C#C}, each of size k logN , for
some constant k. The constant k is a security parameter
of the protocol that is chosen a priori depending on the
requirements of the application considered: the higher k,
the less chances the adversary has to control more than
a third of the nodes of one of the clusters. Choosing the
partition at random ensures that whp, there is more than
two thirds of honest nodes in each cluster. This can be
proved using standard Chernoff bound and union bound
arguments. To obtain a random partition, it is sufficient
for the representative cluster to order the nodes at random
by calling the primitive randNum. Once the random order-
ing has been computed, the partition is obtained by taking

for each cluster k logN successive nodes. Afterwards, ĜR
t0

is initiated on top of this partition: for each pair of clus-
ters, the representative cluster determines with probability
p = log1+α N/

√
N whether or not they will be linked by an

edge in ĜR
t0 . Finally, the representative cluster tells each

node x the cluster it belongs to, the identities of the other
nodes in this cluster, and the adjacent clusters as well as
their composition (i.e., the identities of the nodes). The
node x is “linked” to all these nodes and can for efficiency
purposes forget the identifier of any other node that it may
know. It is fundamental for the security of our protocol
that each cluster contains more than two thirds of honest
nodes. Indeed, a node receiving a message from all the
nodes of a particular cluster considers this message valid if
and only if, it receives the same message from more than
half of the nodes of this cluster. Using this rule for inter-
cluster communication, together with the condition that
each cluster has more than two thirds of honest nodes, is
sufficient to ensure the correctness of the protocol.

3.3 NOW: Maintenance Phase
While the initialization phase of NOW ensures the de-

sired properties for both the overlay and the clusters, main-
taining these properties under high dynamics is challeng-
ing. In this section, we describe how to preserve the prop-
erty that each cluster is composed of an honest majority in
the presence of nodes join and leave operations. Shuffling
the network is crucial at this point as mentioned in [6, 7,
31] to avoid the adversary to control a majority of nodes in
a cluster after a few steps by using a very simple strategy:
the adversary chooses a specific cluster and keeps adding
and removing the Byzantine nodes until they fall into that
cluster. Similarly, it is crucial to introduce dynamics with
shuffling if nodes are forced to leave the network by the
adversary. The shuffling is generated upon Join and Leave
operations. Complementary, the Split and Merge opera-
tions ensure that the clusters remain of size Ω(logN), and

that the required properties of ĜR (i.e., expansion and low
maximum degree) are preserved.
The NOW following operations are invoked by the nodes

upon joining, or leaving the network, or simultaneously by
all the nodes of a cluster involved in a split or a merge
operation.

Join.
This operation (as well as the leave operation), initiated

by a node joining the network, is inspired by [6, 7, 31].
When a node x joins the network, we assume that it gets in
contact with a cluster of the overlay. This cluster chooses
another cluster using randCl in which x is inserted. The
chosen cluster proceeds by inserting x and uses exchange
for all of its nodes. This operation has a communication
cost of polylog(N).

Split.
This operation is initiated simultaneously by all nodes of

a cluster C if after a join operation, the size of this cluster
is larger than lk logN for some fixed parameter l (l is a
constant greater than

√
2 which influences the number of

split and merge operations). Then C has to be split in two,
the old and the new clusters. To this end, the nodes of C
generate a random partition of C. The old cluster keeps

its neighbors in ĜR, whereas the new cluster is added to
the overlay using Add as described in [16]. This procedure
has a communication cost of polylog(N) and a O(log4 N)
round complexity. Recall that each node knows the exact
composition of its cluster, therefore a split operation can
be easily achieved.
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Join x contacts C

→ randCl outputs C ′.
→ C ′ exchanges its nodes using exchange

Merge

→ randCl outputs C .
→ C and C ′ exchange their nodes.

x leaves CLeave

→ C exchanges its nodes using exchange
with nodes from C1, . . . , C|C|.

→ C ′ is removed and its nodes re-join
→ 2 log2N edges are added using randCl

→ C1, . . . , C|C| exchange their nodes using exchange.

→ neighbors chosen for C2 using randNum and randCl.

Split

→ C is partitioned in C1 and C2if |C ′| > lk logN

if |C| < k logN/l

Figure 2: Maintenance of the overlay. Each operation has a polylog(N) complexity.

Algorithm 1 Join operation.

9
Require: Node x contacting cluster C to join the network.
Ensure: The preservation of the properties of the overlay and

of the clusters.
Nodes of C choose a cluster C′ using randCl.
All nodes of C′ add x to their local view of C′.
All nodes of C′ send a message to all the nodes from the neigh-
boring clusters informing that x is added to C′.
All nodes of C′ send their neighborhood to x using the path
used to find C′ in randCl.
if |C′| > kl log n then

Nodes of C′ compute a partition of C′ into two parts of
roughly the same size using randCl: C1 and C2.
Nodes of C1 keep their neighborhood.
Nodes of C1 and C2 send a message informing that C′ is
replaced by C1 to the neighbors of C1.
Nodes of C2 are given a new neighborhood using Add(C2)
(Algorithmof OVER [16]).

end if

Leave.
This operation occurs when a node from a cluster C

leaves the network or when the other nodes of C detect
its absence. C exchanges all its nodes using the primitive
exchange. Then, a cluster receiving one or more nodes
from C execute exchange for all of its nodes. This process
has a communication cost of polylog(N) and a O(log4 N)
round complexity.

Merge.
This operation is initiated simultaneously by all nodes of

a cluster C containing less than k logN
l

users (for the same
fixed parameter l described previously). In this situation,
a cluster, chosen at random in order to ensure Properties
1 and 2, has to be removed. This is achieved using the
primitive randCl. Nodes in C proceed as if they were join-
ing the network while the nodes from the chosen cluster

C′ become members of C. In ĜR, C′ is removed by using
the operation Remove described in [16].

4. NOW: ANALYSIS
In this section, we prove that after a polynomial se-

quence of join and leave operations (some of them inducing
some splitting and merging of clusters), each cluster con-
tains more than two thirds of honest nodes as long as the
fraction of Byzantine nodes τ controlled by the adversary is
smaller than 1/3− ε (for some constant ε > 0 independent
of n).

Algorithm 2 Leave operation.

9
Require: Node x from a cluster C leaving the network.
Ensure: The preservation of the properties of the overlay and

the clusters.
Nodes of C remove x from their view.
Nodes of C send a message to their neighbors informing them
to remove x from their view.
A node that is a neighbor of C receiving a message to remove
x ∈ C from more than half of the nodes of C removes it from
its view.
C exchanges its nodes using exchange.
A cluster exchanging one or more of its nodes with C execute
the exchange procedure.
if |C ′| < k log n/l then

Nodes of C inform all their neighbors that C is removed.
Nodes of C execute Remove(C1) ([16]) of OVER.
A node that is a neighbor of C receiving a message that C is
removed from more than half of the nodes of C removes it
from its view.
Nodes of C execute Algorithm 1 as to rejoin the network.

end if

The results are proved under the assumption that the
random choices of nodes are perfectly uniform (i.e, the
small bias induced by the random walk is ignored). This
assumption is justifed by the fact that we consider a mix-
ing time after which the distance from the desired dis-
tribution is O(n−c) for some arbitrarily large constant c.
More specifically, we describe the output of a CTRW us-
ing two random variables X and Y . X indicates whether
or not the output of the CTRW has the desired distribu-
tion and is defined as follows: we consider the probability
distribution D of the endpoints of a CTRW, and set pv
as the probability node v is hit. Set pmin = minv(pv).
The binary random variable X has value 1 with proba-
bility n × pmin and 0 otherwise. Y is equal to node v
with probability (pv − pmin)/(

∑
w(pw − pmin)). We can

reproduce D by first evaluating X. Then, if X = 1, the
endpoint is picked according to the desired distribution.
Else, the endpoint is picked according to Y . We have
P (X = 0) ≤ n×max(pv−pmin) = O(n−c+1), which means
that the probability of the endpoint not to be picked as de-
sired is O(n−c+1). Conditional to that, in the following we
assume that the random choices made using a CTRW are
as desired, i.e (|C|/n) for each cluster C where |C| is its
size.
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4.1 Status of a cluster after exchange

At each time step, we assume that either a join or leave
operation takes place or nothing occurs. These operations
may in turn induce the splitting or merging of clusters.
A split operation is done directly at the time it occurs,
whereas, when a cluster executes a merge operation, we
consider that its nodes re-join the network in subsequent
time steps inducing normal join operations. Given a cluster
C, pCt is the proportion of Byzantine nodes in C at time t.

Lemma 1 (2/3 of honest nodes in a cluster). If
a cluster C has exchanged all its nodes at time step t, we
have P (pCt > τ (1+ ε)) ≤ n−γ , for any positive constant γ,
as long as the security parameter k is large enough.

Proof. When a cluster C exchanges one of its nodes
with another cluster, this cluster is first selected at ran-
dom according to the probability distribution (|C|ti/n),
and then a node is chosen out of it uniformly at random.
In this scenario, the probability of performing an exchange
with a Byzantine node is τ .

Using standard Chernoff bound arguments, we can de-
rive the following result on the number X of Byzantine

nodes among |C|ti nodes: P (X > (1+ε)τ |C|ti) ≤ e−ε2τ |C|ti/3.
Therefore as |C|ti ≥ (k logN)/l, we have P (X > (1 +
ε)τ |C|ti) ≤ N−γ when k is sufficiently large for some con-
stant γ.

This lemma is a consequence of the Chernoff bound ar-
guments [17] and implies that to obtain more than two
thirds of honest nodes in a cluster whp, it is sufficient that
τ + ε < 1/3, which is true by assumption on τ .

Remark 1 (Increasing the robustness). One can
tolerate a fraction of Byzantine nodes up to 1/2 − ε, but
then we need to use cryptographic tools to allow for broad-
cast and Byzantine agreement.

4.2 Evolution of the divergence
To summarize, we have seen that each time a cluster ex-

changes all of its nodes, as long as τ (1+ε) < 1/3, we obtain
more than two thirds of honest nodes whp in the resulting
cluster. We now proceed by proving that in between two
exchanges, this property also holds. To realize this, we
focus on a specific cluster C and consider a sequence of s
join and leave operations.

We first prove that if the cluster has less than a τ (1+ε/2)
fraction of Byzantine nodes, then after it has exchanged
O(logN) of its nodes, it does not have more than a τ (1+ε)
fraction of Byzantine nodes. Then, we prove that if it has
between a τ (1 + ε/2) and τ (1 + ε) fraction of Byzantine
nodes, then after it has exchanged O(logN) of its nodes,
it has less than a τ (1 + ε/2) fraction of Byzantine nodes
whp.

Lemma 2. If a cluster C has less than τ (1 + ε/2)|C|
Byzantine nodes, then after O(logN) node exchanges with
nodes chosen uniformly at random, the cluster does not
contain more than τ (1 + ε)|C| Byzantine nodes whp.

Proof. A cluster C with a fraction p of Byzantine nodes
has a probability at most p(1− τ ) to have this fraction de-
creased by 1/|C|, and at least (1− p)τ to have it increased
by the same amount. If this fraction is at most τ (1+ ε/2),

we prove that it increases by ε with probability o(1/Nγ),
for γ being arbitrarily large depending on the chosen value
of k.
The fraction of Byzantine nodes in the cluster is dom-

inated by the martingale with starting state τ (1 + ε/2),
which increases or decreases by 1/|C| with probability τ .
We now show that whp, this martingale will not exceed
τ (1+ ε) after O(logN) steps (recall that k logN/l ≤ |C| ≤
kl logN).
For k large enough, let T exchange stands for the number

of exchanges. It is O(logN) and hence there is a constant
M such that T ≤ M logN . We can derived from Azuma-
Hoeffding’s inequality that:

Prob(pC > τ (1 + ε/2)) < e−ε2/4
∑Texchange

i=1 1/|C|2

≤ e−ε(k/l)2 log2 N/4(M logN)

= e−ε(k/l)2 log(N)/4M = n−γ

Similarly, if a cluster has more than a τ (1+ ε/2) fraction
of Byzantine nodes, we have that after O(logN) exchanges,
the cluster has less than a τ (1+ ε/2) fraction of Byzantine
nodes.

Lemma 3. Given a cluster C whose fraction of Byzan-
tine nodes is between τ (1 + ε) and τ (1 + ε/2) (for some
constant ε > 0 independent of n), then whp, the fraction
of Byzantine nodes in this cluster is less than τ (1 + ε/2)
after O(logN) exchanges with nodes chosen uniformly at
random.

Proof. We use the same arguments for the previous
theorem. Here, the fraction of Byzantine node will de-
crease of 1/|C| with probability at least τ (1+ ε/2) and will
increase by 1/|C| with probability τ . Therefore, as we start
from a fraction of at most τ (1 + ε), whp, after O(logN)
exchanges, the fraction of Byzantine nodes in this cluster
is less than τ (1 + ε/2).

When we look at a sequence of s exchanges affecting a
given cluster C, we can split this sequence in alternating
sub-sequences to apply Lemmas 2 and 3. Some sequences
might lead to a fraction of Byzantine nodes between τ (1+
ε/2) and τ (1 + ε), while the following one will lead to a
fraction of Byzantine nodes bellow τ (1+ ε/2) whp. Hence,
for a sequence s whose length is polynomial, by the union
bound, we obtain that is there is always (whp) more than
two thirds of honest node in each cluster for an adequate k.

Theorem 3. Whp, after a number of steps polynomial
in N , at each time step, all clusters are composed of more
than two thirds of honest nodes.

Proof. Notice that to apply the previous lemmas, one
has to ensure that the exchanged nodes are replaced by
nodes chosen uniformly at random. This is ensured by our
join and leave operations. This is clear for a join operation
by the use of a biased CTRW to select the replacement
node. For a leave operation, this is also clear for the cluster
C from which the node leaves has its nodes exchanged with
nodes selected uniformly at random. However, if we look
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at a cluster C′ with which C has exchanged nodes, then
the probability that C′ receives a Byzantine node is not
necessarily τ as it is equal the proportion of Byzantine
nodes in C. This is why we enforce C′ to exchange all its
nodes.

Now, given a specific cluster, C we consider an alternat-
ing sequence of time steps t1, . . . , ti, . . . when the fraction
of nodes controlled by the adversary in C becomes larger
or equal to τ (1 + ε/2) and when it becomes smaller.

Consider i such that at ti the fraction of nodes con-
trolled by the adversary in C is less than τ (1 + ε/2) (this
is in particular true at the beginning). Then at ti+1, it
becomes greater or equal to τ (1 + ε/2) and is less than
τ (1+ε). Lemma 3 ensures that time step ti+2 comes within
O(logN) steps, and Lemma 2 ensures that between ti+1

and ti+2, the adversary never controls more than a τ (1+ε)
fraction of nodes of the cluster.

By an union bound over all clusters, we have the an-
nounced result.

Remark 2. Considering an adversary controlling at most
a fraction 1/r−ε of the nodes for some constant ε > 0 and
r ≥ 2 independent of n, it is possible to strengthen Theorem
3 to obtain that in all the clusters the adversary controls
at most a fraction 1/r of the nodes.

5. RELATED WORK
Several authors studied the impact of dynamics on dis-

tributed computations [9, 8]. In [10, 21, 22], the communi-
cation links of a dynamic network may be modified by the
adversary under some connectivity restrictions. In [4], the
authors study the scenario in which the adversary can force
a large number of nodes of its choice to leave the network
while other nodes naturally join the network at the same
time. These join and leave operations impact the topol-
ogy. Yet the size of the network is assumed to remain con-
stant. The authors assume furthermore that the nodes are
connected via an expander graph. Depending on whether
the adversary has to decide in advance the identities of the
nodes to be kicked-out of the network, the authors propose
almost-everywhere agreement protocols tolerating at each
time step a churn of, respectively O(n) and O(

√
n). The

two main differences with our work are that (1) all nodes
are assumed to be honest (i.e., the adversary is only exter-
nal) and (2) nodes are connected via an expander graph by
assumption. In contrast, our protocol tolerates a Byzan-
tine adversary controlling a constant fraction of the nodes
of the network and dynamically maintains the expander
graph.

Some protocols have been proposed to maintain P2P
overlay networks. Some offer efficient routing strategies
and tolerate crashes, e.g. CAN, Pastry or Tapestry [29,
30, 33]. Some are dedicated to asynchronous networks with
concurrent joins and leaves [27]. However, none guarantees
both that each node has a low degree and that the resulting
overlay exhibits good expansion properties in the sense we
require here. Protocols such as SHELL [32] organize peers
into a heap structure resilient to large Sybil attacks, while
the overlay presented in [23] is resilient to an adversary
that can force several peers to crash and join in a arbitrary
manner. In [23], the number of join and leave operations
tolerated at each turn is proportional to the degree of the

nodes, which is optimal. However, the communication cost
for maintaining the overlay is high as all the nodes of the
network exchange messages at each step.
Other protocols considered unstructured overlays. The

protocol of [26] builds an overlay corresponding to an ex-
pander graph obtained from the union of several random
cycles. This protocol has been further extended and ana-
lyzed in [3, 15]. Maintaining unstructured overlays induces
fewer message exchanges compared to structured overlays
[23, 29, 30, 33] since only a polylogarithmic number of
nodes are involved in the communication upon a join or a
leave operation. Some of the previous constructions [3, 15]
and [26] can be complemented by a recent protocol from
Pandurangan and Trehan [28] which preserves the expan-
sion properties of a graph upon adversarial node removals.
Nevertheless, the healing procedure proposed does not en-
sure an absolute expansion factor as we do.
The closest to ours, from the model perspective (dy-

namic network), is the one developed by Awerbuch and
Scheideler [5, 6, 7, 31]. They consider a synchronous net-
work in which an adversary can force nodes to join and
leave at each time step, with the constraint that the num-
ber of nodes in the network is always within a constant
factor of the initial size. Their protocols further require
that initially the network is exclusively composed of hon-
est nodes and that the Byzantine ones join the network
only after a particular initialization phase has taken place.
Within this model, the authors propose a technique to
maintain clusters of size O(log n) composed of a majority
of honest ones. Our approach improves upon these previ-
ous works in several ways as we do not assume that ini-
tially the network is exclusively composed of honest nodes,
we describe more precisely how to distributively perform
all the operations, and, more importantly, we maintain a
partition of the nodes when the size of the network varies
polynomially.

6. CONCLUDING REMARKS
This paper answers positively the following question raised

in [19]: “Can we [..] address problems of robustness in net-
works subject to churn? An idea is to assume that: 1) the
number of processors fluctuates between n and

√
n where

n is the size of name space; 2) the processors do not know
explicitly who is in the system at any time; and 3) that the
number of bad processors in the system is always less than
a 1/3 fraction. In such a model, can we 1) do Byzantine
agreement; and 2) maintain small (i.e. polylogorathimic
size) quorums of mostly good processors?”
Our clustering protocol can be leveraged to implement

efficient and robust algorithms for various problems such
as broadcast, agreement, aggregation, and sampling in the
context of highly dynamic networks. A broadcast algo-
rithm using our technique would have for instance Õ(n)
message complexity as compared to O(n2) without the
clustering. Similarly, a sampling algorithm relying on our
protocol would have a polylog(n) message complexity per
sample.
We currently seek schemes to alleviate the need of the

assumption of synchronous nodes. Another objective is
to devise a procedure for the initialization phase of NOW
whose communication cost is o(n2

t0) (as opposed toO(n3
t0)).
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