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Abstract

An algorithm is described for the nonnegative rank factorization (NRF) of some completely posi-

tive (CP) matrices whose rank is equal to their CP-rank. The algorithm can compute the symmetric

NRF of any nonnegative symmetric rank-r matrix that contains a diagonal principal submatrix of

that rank and size with leading cost O(rm2) operations in the dense case. The algorithm is based

on geometric considerations and is easy to implement. The implications for matrix graphs are also

discussed.
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1. Introduction

The problem of nonnegative rank factorization (NRF) is posed as follows [2, 3, 35]: Given1

A ∈ R
m×n
+ of rank r find nonnegative factors W ∈ R

m×k
+ of full column rank and H ∈ R

k×n
+ of full

row rank such that k = r and A = WH. The problem is immediately related to that of nonnegative

matrix factorization (NMF) that has been attracting a great deal of attention because of its interest

in many applications; cf.[12]. Unlike it, however, NRF does not always have a solution, in the

sense that the nonnegative rank of A, that is the minimum value k such that the above factorization

exists (termed nonnegative rank, denoted by rank+(A)) can be larger than r. In fact, it is well

known that rank(A) ≤ rank+(A) ≤ min(m, n) [13].

In this paper we are concerned with symmetric NRF. That is, in the above factorization, we

seek nonnegative W such that A = WW⊤. Matrices admitting such a factorization for some k ≥
rank(A) are called completely positive (CP) (see e.g. [32]) and the minimum k for which such a

factorization exists is called the CP-rank of A, sometimes denoted rankCP(A). CP matrices arise in

applications (e.g. [6, 14, 24, 36]) and have even been used as test matrices [31]. Whether a given

matrix is CP and computing its CP-rank are open research problems; cf. [4, 5].

For the special case of rank-2, there exist algorithms to compute the NRF [1, 13]. We show

here how to extend these to handle the symmetric case. Under some conditions, the questions of

Email addresses: kalofolb@ceid.upatras.gr (V. Kalofolias), stratis@ceid.upatras.gr (E.

Gallopoulos)
1Subscript “+” signifies the nonnegative section of the algebraic object.
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existence and construction of the symmetric NRF can also be answered for matrices of higher rank.

For example, CP matrices must have nonnegative eigenvalues. Diagonally dominant nonnegative

matrices are always CP, and an algorithm to compute their symmetric NRF was described by

Kaykobad [28]. That method, however, does not reveal the CP-rank since the dimension k of the

computed factor W ∈ Rm×k
+ can turn out larger than the smallest possible.

In this paper we are concerned with symmetric matrices of rank r that satisfy a specific prop-

erty. Because this will be used repeatedly throughout our discussion, for ease of reference we give

it a special name:

Property ∆max: A matrix A ∈ Rn×n will be said to have “property ∆max” or simply “to

be ∆max” if it contains a diagonal principal submatrix of rank equal to the rank of A.

Clearly, the diagonal principal submatrix must contain strictly positive elements along its di-

agonal. As will be made clear, nonnegative symmetric matrices that are ∆max always possess a

symmetric NRF. We develop the theory necessary to design an algorithm to construct the sym-

metric NRF for ∆max matrices. Like several other contributions (e.g. [24, 26, 29]), the proposed

algorithm is based on a geometric intepretation of the problem. The contribution could be of value

in applications where CP matrices arise. In this discussion we do not concern ourselves with

implementation details and the effects of finite precision.

The outline of this paper is as follows. We review previous NRF efforts in Section 2. In Section

3 we recall an important property of symmetric positive semidefinite matrices that is then used to

bind all possible solutions of the symmetric NRF. In Section 4 this property is utilized to solve the

problem for CP matrices of rank 2. The remainder of this paper deals with the properties and NRF

of symmetric nonnegative matrices that are ∆max. Specifically, Section 5 provides properties of

the sought factors and uniqueness results. It also shows the implications of ∆max for the associated

matrix graph. Section 6 describes the algorithm, called IREVA, for the aforementioned types of

matrices. A numerical example and illustration of IREVA are shown in Section 7.

Recall the following terminology: If K is a convex cone, and for any x ∈ K such that x = y + z

where y, z ∈ K implies that both y and z are nonnegative scalar multiples of x, then x is termed

“extreme vector” of K and the ray it generates “extreme ray” of K [5]. Also, a nonnegative square

matrix is characterized as “monomial” if it has exactly one nonzero in each row and column and

thus can be expressed as product of a diagonal matrix and a permutation matrix [2]. Matrices

that are nonnegative and positive semidefinite are termed “doubly nonnegative” [5]. Note that CP

matrices are doubly nonnegative but the opposite does not hold in general, except for matrices of

order at most 4 [7]. Finally, a matrix X is called a “1-inverse” of matrix A if AXA = A.

2. Related work

In the literature, there are no practical algorithms explicitly addressing the computation of

symmetric NRF, so we first describe aspects and algorithms for the general (i.e. nonsymmetric)

case that will be shown to be useful to the symmetric case for a certain class of matrices; cf.

Theorem 4. It was proven by Vavasis that computing the NRF, if it exists, is NP-hard [37]2. It

2The problem there is termed “exact NMF”.
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was shown by Berman and Plemmons in [2, Thm. 4] that any matrix A ∈ R
m×n
+ of rank r that

contains an r × r monomial submatrix has an NRF, the matrix has a nonnegative 1-inverse and

each of the terms in the NRF contains a monomial submatrix of rank r. The construction of an

NRF for matrices that have a nonnegative 1-inverse was outlined by Campbell and Poole [8]. This

relies on repeated subtractions of suitable scaled rows from each other and possible exchanges.

The algorithm terminates when the matrix is brought into the form

PtPt−1 . . .P1A =

[
H

0

]

Factor W is readily obtained from the leading r columns of the product P−1
1

P−1
2
. . .P−1

t . The al-

gorithm is described at a high level and is concerned with the construction of the NRF for the

nonsymmetric problem. The stable efficient implementation and its use for symmetric NRF re-

main interesting open problems.

Gray and Wilson in [24] used a geometric approach to show the existence of NRF for symmet-

ric matrices up to size 4. Counterexamples were also provided to show the failure of this approach

for matrices of larger size.

An optimization-based approach for NRF was proposed by Dong, Lin and Chu [15]. The

algorithm relies on generating a nonnegative rank-1 factor such that when subtracted from A the

algorithm is reduced in rank while remaining nonnegative. This is related to “underapproximation”

[30] that was explored in a series of interesting papers by Gillis and collaborators to obtain the

NMF [22, 21]. The algorithm uses the Wedderburn formula ([38]) for rank reduction that we also

apply in the algorithm proposed herein. In [15], at each downdating step, a minimax problem

is solved and after r steps and in the general case that the nonnegative rank is equal to the rank,

the method generally returns an NRF. If a nonnegative remainder arises towards the end of the

computation, some recomputation has to be applied. An advantage of the algorithm is that no

prior constraints are imposed (though the method will fail when the nonnegative rank is higher

than the rank) the price being that there are heuristic steps so there is no guarantee that the method

will always work. The method can easily be modified to accommodate symmetric inputs and to

produce a symmetric factorization. One difficulty is that the minimax problem solved at each step

becomes a computational bottleneck for large matrices.

The Extreme Vector Algorithm (EVA), proposed by Klingenberg et al. in [29] considers further

restrictions on the inputs in order to address the lack of uniqueness and subsequent ill-posedness

inherent in some nonnegative factorizations. As presented, however, EVA is designed for the NRF

of full rank matrices instead of the relatively small or moderate rank for which our algorithm is

best suited.

It is worth noting that related ideas appeared in the past, e.g. [24], for small matrices and

in proving the existence of NRF. More recently, the idea of rotations, that is central in the algo-

rithm proposed here, appeared in the literature of factor analysis; cf. [33] and references therein,

especially [26]. That context, however, is quite different. The challenge there is to compute (ap-

proximate) nonnegative matrix factorizations, and because symmetry is not an issue, the term

“rotation” is used to characterize any invertible linear transformation that achieves positivity of

the factors, i.e. compute T (not necessarily orthogonal) such that A = ŴTT−1Ĥ, and ŴT, T−1Ĥ

are nonnegative for given Ŵ , Ĥ of arbitrary sign.
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In [9], Catral et al. show that when the matrix is symmetric, the best reduced rank approxi-

mation of A need not be symmetric, nor does W = H⊤ hold necessarily. The authors also discuss

conditions under which either of the above can hold. Since these results concern the approximate

NMF, they are complementary to our discussion here.

Shaked-Monderer recently proved in [34, Thm. 4] a closely related result, namely that rank-r

symmetric matrices that are doubly nonnegative and satisfy property ∆max are CP with CP-rank

equal to r. It was also shown therein how to obtain the factor W for matrices of this type in which

the rank-r principal submatrix is in the leading position. We will discuss these findings in Sections

5 and 6.

3. Relating symmetric factorizations

As is well known (cf. [16], [29] and references therein) the NRF factors might not be unique,

causing a form of ill-conditioning. A similar lack of uniqueness can occur when A is CP and one

seeks a symmetric NRF. In fact (see e.g. [27]), uniqueness is also lacking in the factorization of

(mixed-sign) symmetric positive semidefinite matrices: However, all solutions are related via an

orthogonal transformation. The following result is mentioned in [24]. For the sake of completeness

we prove it in the Appendix.

Theorem 1. Let A ∈ R
m×m be symmetric positive semidefinite of rank r and let W ∈ R

m×r and

H ∈ R
m×r be such that A = WW⊤ = HH⊤. Then there exists an orthogonal matrix R ∈ R

r×r s.t.

W = HR.

The lack of uniqueness and the fact that any two symmetric factorizations (i.e. the factors)

are related by means of an orthogonal transformation, turn Theorem 1 into a useful starting point

in the construction of symmetric NRF’s. First note that when the matrix is symmetric positive

semidefinite and nonnegative (all these being necessary conditions for the matrix to be CP), a

straightforward symmetric rank factorization is directly computable as V = Q
√

E, where Q ∈
R

m×r is the matrix of eigenvectors and E ∈ R
r×r
+ the diagonal matrix of (nonnegative, because of

semidefiniteness) eigenvalues of A. Because of orthogonality, the distance between any two points

in R
r is preserved when transformed by R, so this acts as an isometry. In case that the determinant

of R is 1, then this will actually be a rotation. Since by a simple column interchange of R the

matrix remains orthogonal and the determinant changes sign, in the sequel we can assume w.l.o.g.

that R is a rotation. Interpreting the rows of W, say wi, and H, say hi, as points in R
r, it also follows

from A = WW⊤ = HH⊤ that

hT
i hi = wT

i wi = αi,i (1)

and thus both hi and wi have equal lengths (2-norm).

Similarly, for any two pairs of rows at corresponding positions of H, say hi, h j, and W, say

wi,w j, it holds that hT
i
h j = wT

i
w j = αi, j, so from this and the fact shown earlier that corresponding

row vectors of W and H are of equal length, it follows that the angle between vectors hi and h j is

equal with the angle between wi and w j. Equivalently, for any given nonnegative matrix that has

an NRF A = WW⊤, the lengths of and angles between rows of W are determined by the values of

A.
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It follows that the symmetric NRF of A can be reduced to computing an orthogonal matrix

R ∈ Rr×r such that VR ≥ 0, where V ∈ Rm×r is an arbitrary (mixed sign) solution to the symmetric

factorization. The existence of such a matrix R is equivalent to matrix A being CP with CP-rank

equal to its rank.

4. Symmetric NRF: The case of rank-2 matrices

Any symmetric A ∈ R
m×m
+ of rank-2 that is positive semidefinite is CP with rankCP = 2 (cf.

[5, Theorem 2.1]). Then, finding a solution of the symmetric NRF is relatively simple. In this

section we propose an algorithm that is applicable to any symmetric, rank-2, matrix that is doubly

nonnegative.

The algorithm proceeds as follows: In the first step, a mixed-sign factor V ∈ Rm×2 s.t. A = VV⊤

is constructed to “seed” the second step, in which the rows of V are rotated into the positive orthant.

One way to implement this approach is to construct the factor V so that its first column is non-

negative. Then all rows of V lie in the nonnegative right-half plane. Moreover, the angle between

any two of these vectors would be less than π/2 because of the nonnegativity of A. Therefore,

there exists a rotation that can move all rows of V in the nonnegative quadrant. There remains to

construct the sought V and an appropriate rotation. Regarding the former, two possible choices

are the following: One is to construct V = Q
√

E, as before. Specifically, E is the 2 × 2 diagonal

matrix containing the nonzero eigenvalues of A. Since E is the matrix of eigenvalues of A that are

nonnegative and the first column of Q is the Perron vector of A that can be selected to be nonnega-

tive, so will also be the entire first column of V . We next show that an alternative seeding method

to the use of eigenvectors is the Cholesky decomposition. The following result is well known; cf.

[27]:

Theorem 2. Let the rank-r matrix A ∈ Rm×m be symmetric positive semidefinite. Then there exists

at least one lower triangular L with nonnegative diagonal elements such that A = LL⊤.

The next corollary follows immediately and guarantees a Perron-like property, specifically that

the first vector from the Cholesky decomposition of nonnegative matrices is nonnegative.

Corollary 3. If A is doubly nonnegative then at least one of the possible L factors above has

nonnegative first column.

It remains to construct an appropriate rotation. We first note that the two row vectors in V

that form the largest angle with the positive right axis actually are extreme vectors. These are

readily found so the final step is to compute an angle θ such that rotating the extreme vectors by

this angle, say counterclockwise, will bring them within the first quadrant. Clearly, this rotation

will also move therein all remaining points. Note that θ is not necessarily unique, unless the angle

between the two extreme vectors is maximal with φ = π/2. In that case, after rotation, the two

extreme vectors will align themselves, one with the x, the other with the y axis. Otherwise, θ

will not be unique and can be chosen as follows: Letting φ1 (resp. φ2) be the angle between the

x axis and the extreme vector closest to the negative (resp. positive) y axis, then it is enough to

rotate by an angle θ ∈ [−φ1,
π
2
− φ2]. Note also that whenever A contains zero rows, so will V;
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such rows correspond to the axes’ origin, are not affected by rotation and are discarded prior to

the identification of extreme vectors. Algorithm 1 implements the scheme just described with φ

selected so as to be in the middle of the interval of possible angles of rotation.

Algorithm 1 Symmetric NRF of rank-2 matrices

Input: CP matrix A ∈ Rm×m
+ of rank 2

Output: Factor W ∈ Rm×2
+ s.t. A = WW⊤

1: Compute eigenvalue decomposition A = QEQ⊤, Q ∈ Rm×2, E ∈ R2×2
+ with Q:,1 ≥ 0

2: V ← Q
√

E

3: ζ ← the set of nonzero rows of V

4: tθ ← Vζ,2./Vζ,1
5: θmin ← − arctan(min(tθ))

6: θmax ← π/2 − arctan(max(tθ))

7: θ ← (θmin + θmax)/2

8: R←
[
cos(θ) − sin(θ)

sin(θ) cos(θ)

]

9: W ← VR;

5. Symmetric NRF: Uniqueness and graph intepretation

Any investigation of matrix factorizations (rank or otherwise) has to address the topic of

uniqueness. Its absence is a source of difficulty (e.g. see [16, 25, 29] and references therein)

but can also be used as a feature to help in NRF algorithm design, as will be done here.

One case where the factorization is unique is when the matrix W ∈ Rm×r
+ is sparse and contains

row vectors (points) that “fill” the facets of the nonnegative orthant Rr
+. Then, the smallest cone

that contains the data and is inside the nonnegative orthant is the orthant itself. In that case, the

extreme vectors have to lie along the orthant axes, that is to be positive multiples of e1, e2, . . . , er.

In general, if a matrix W ∈ Rm×r contains r rows that are multiples of ei, i ∈ {1, 2, . . . , r}, then

it must contain an r × r monomial submatrix. As mentioned in Section 2 from [2, Thm. 4], it also

holds that a rank-r matrix A ∈ Rm×n
+ contains a monomial submatrix of rank r if and only if it has

a nonnegative rank factorization A = WH, where W and H contain a monomial submatrix of rank

r each. A symmetric counterpart of this property is proven in Corollary 5.

Theorem 4. Let A ∈ R
m×m
+ be rank-r symmetric and satisfy property ∆max. Then A is also CP

with rankCP(A) = r and has a unique symmetric NRF A = VV⊤, up to column permutations of V.

Moreover, for any NRF A = WH, the columns of W and rows of H can always be rescaled with

diagonal matrices DW , DH so that WDW = H⊤DH = V.

Proof. First note that if A is as above then there exists a symmetric permutation to make diagonal

its upper left r × r block. Without loss of generality, let the diagonal principal submatrix be the

leading r × r block at the upper left corner of A. Then from the discussion preceding the statement

of the theorem it follows that there is always an NRF, say A = WH, where W and H each contain

monomial submatrices of rank r. Then, if W1 is the uppermost r × r submatrix of W and H1 the
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leftmost r×r submatrix of H, it follows that W1H1 = D is diagonal and hence monomial, therefore

W1 and H1 are also monomial. We can thus write W1 = DW1
PW and H1 = PHDH1

, where DW1
and

DH1
are diagonal nonnegative and PW , PH permutation matrices. Hence DW1

PW PHDH1
= D thus

PW PH = D−1
W1

DD−1
H1

. Since the only diagonal matrix that is a product of two permutation matrices

is the identity matrix, it follows that PW PH = I and so by orthogonality PW = P⊤
H

and thus

DW1
DH1
= D.

Since all rows (columns) of W (H) may be written as conical combinations of the first r rows

(columns) of W (H),

W = CWW1 = CW DW1
PW , H = H1CH = PHDH1

CH ,

where CW ∈ Rm×r
+ and CH ∈ Rr×m

+ . Note that the uppermost r × r submatrix of CW and the leftmost

r × r submatrix of CH are the identity matrix. It also holds that A = CW DCH .

Due to the symmetry of A, it holds that

W1H = (WH1)⊤ ⇔ W1PHDH1
CH = (CW DW1

PW H1)⊤

W1PHDH1
CH = H⊤1 P⊤W D⊤W1

C⊤W ⇔ DW1
PW PHDH1

CH = (PHDH1
)⊤P⊤W D⊤W1

C⊤W

DW1
DH1

CH = D⊤H1
D⊤W1

C⊤W ⇔ DCH = D⊤C⊤W ⇔ CH = C⊤W .

Letting DW = P⊤
W

D−1
W1

D1/2PW and DH = PHD1/2D−1
H1

P⊤
H

, it follows that DW DH = I and WDW =

(DHH)⊤ = V . Thus V is a solution of the symmetric NRF of A. The extreme rays that define the

cone containing all row vectors of V are on the nonnegative axes of Rr, so the cone is unique. So

has to be the solution V , up to a permutation of columns. �

The above theorem is key as it characterizes the matrices for which the algorithm proposed in

this paper is applicable. Specifically, it guarantees that if a symmetric rank-r nonnegative matrix

satisfies property ∆max, then it is CP and has a unique symmetric NRF. Moreover, any nonsymmet-

ric NRF algorithm can be used to obtain a solution to this symmetric problem.

Corollary 5. A symmetric matrix A ∈ Rm×m
+ of rank r satisfies property ∆max if and only if it has a

symmetric NRF, say A = WW⊤, where W contains a monomial r × r submatrix of full rank.

We next note that property ∆max is equivalent to the existence of an independent set of size r

in the graph of the matrix [17]. Moreover, this is a maximum independent set, since the existence

of an independent set of size larger than r, say r + 1, would imply the existence of a principal

diagonal submatrix of size r + 1 so the rank of the matrix would be at least r + 1, thus violating

property ∆max. It is worth noting that for arbitrary graphs, the problem of finding the maximum

independent set is NP-complete [20].

These matrices can be brought by symmetric permutation into what could be termed “thin shaft

broad arrowhead” form, that is

A =

[
D A12

A21 A22

]
, (2)

where D ∈ R
r×r is diagonal, A22 ∈ R

(n−r)×(n−r), and A22, A12, A21 not trivially 0. Such matrices

become standard arrowhead matrices when r = n − 1. Moreover, A21 = A⊤12 because of summetry.
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Furthermore, because rank(A) = rank(D) = r, there exists a matrix M such that M[D, B] =

[B⊤, A22], where for convenience we set B := A12 and thus M = B⊤D−1 and A22 = B⊤D−1B. Note

that setting

W⊤ = [D1/2, B⊤D−1/2], (3)

it readily follows that A is doubly nonnegative as well as CP, corroborating the findings of Theorem

4. See also [34, Thm. 4] for a closely related result.

We assume next w.l.o.g. that the matrix has been scaled so that D is the r × r identity matrix

and thus A22 = B⊤B. This latter factorization and expression (2) for A reveal the type of weighted

undirected graphs associated with such matrices. Specifically, they show that the graphs in ques-

tion can be partitioned into two (hitherto unknown) classes, say T and T̂ , the former containing

the r nodes of the maximum independent set and the latter all remaining ones. Then, the elements

of each column of B correspond to the weights of the edges between nodes from T to nodes in T̂ .

Thus, for any two nodes in T̂ , the weight of the edge between them is equal to the inner product

of the weights of the edges linking each of these two nodes with each of the r nodes in T . Finally,

there is a self loop for each node in T .

6. Identification and rotation of extreme vectors algorithm

In this section, we describe an algorithm for computing the symmetric NRF of matrices that

satisfy the criteria of Theorem 4, that is they are positive symmetric of rank-r and have property

∆max. From Theorem 4 it follows that the symmetric NRF of such matrices is unique. The al-

gorithm consists of two major phases. In the first phase, the algorithm computes some matrix

V ∈ R
m×r such that A = VV⊤ with the first column of V strictly positive. This then becomes the

seed for the next phase, in which an orthogonal matrix R ∈ Rr×r is computed to bring the rows of

V into the nonnegative orthant of Rr. The existence of such a matrix is assured by Theorem 1.

6.1. Computing V: A rank reduction framework

The eigenvalue decomposition and Cholesky factorization are candidate methods, as shown in

Section 4 for the case of rank-2, however the requirement for strictly positive first column requires

some extra care. Specifically, when the matrix is reducible, it must first be brought by symmetric

permutations into normal form, in which each diagonal block is irreducible [19]; algorithms to

that effect exist, e.g. [18, Ch. 6]. Because of symmetry, the normal form will be block diagonal.

Each diagonal block can then be factorized so that the first column of each factor is positive by

irreducibility and ready for the rotation step described in Section 6.3.

The rank reduction method of Wedderburn offers a more general framework. The following is

corollary to the Wedderburn rank reduction formula ([10, 38]):

Corollary 6. Let matrix A ∈ Rm×m be symmetric and x ∈ Rn such that ω = x⊤Ax , 0. Then matrix

B = A − 1
ω

Axx⊤A has rank exactly one less then the rank of A.

Therefore, when A is also nonnegative with nonzero rows, one could select any (strictly) posi-

tive x ∈ Rm and set V:,1 =
1√
ω

Ax. The following “Rank Reduction Theorem” is essential:
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Theorem 7. [11, Th. 3.1] Suppose that A is symmetric positive semidefinite, H symmetric and

rank(A − H) = rank(A) − rank(H). Then A − H is positive semidefinite.

Here H := 1
ω

Axx⊤A and because of Corollary 6 the conditions of Theorem 7 hold, thus B

remains positive semidefinite and the procedure can be repeated using B and selecting another x

as before to reduce its rank, until a zero remainder is reached after r = rank(A) steps; at that point

there will be r vectors that can be used to populate the columns of V so that A = VV⊤. Since the

signs of the vectors of V other than the first do not matter, to generate them after the first step,

one can use any convenient method suitable for symmetric semidefinite matrices, e.g. symmetric

eigensolver, any decomposition suitable for symmetric positive semidefinite matrices, e.g. pivoted

Cholesky [31], or directly the Wedderburn formula.

6.2. Identifying extreme vectors

The next phase of the algorithm consists of computing and applying the orthogonal transfor-

mation to bring the rows of V into the nonnegative orthant Rr
+. To prepare for this the algorithm

must identify the extreme vectors of the cone of rows of V . One way to identify the extreme rays in

matrix V would be by comparing angles between pairs of row-vectors. This method is being used

in the algorithm (EVA) proposed in [29]. In [13] Cohen and Rothblum used a different approach

which motivated our method. Instead of the matrix multiplication necessary for the angular com-

putations, they first scaled the columns of A to make it stochastic and then identified as extreme

vectors the columns with minimum and maximum value in the first element. As described in [13],

however, the method appeared to be applicable only for rank-2 matrices. We extend this strategy

to arbitrary rank, utilizing the fact that the first column of V is positive. The basis for the algorithm

is the next theorem.

Theorem 8. Let V be a set of vectors in R
k with nonnegative first component and unit length

under some p-norm, where 1 < p < ∞. If all elements ofV are contained in a conical hull defined

by r ≤ k linearly independent extreme vectors also contained inV and at most one of the vectors

in V has zero first component, then the vector with the smallest first component is an extreme

vector.

Proof. Denote by v(1), . . . , v(r) the extreme vectors ofV in order of ascending first coordinate, that

is 0 ≤ v1
(1) ≤ . . . ≤ v1

(r). Let also u be an arbitrary vector ofV. This must be a conical combination

of extreme vectors, therefore u = β1v(1) + . . . + βrv
(r), βi ≥ 0. From Minkowski’s inequality, for

1 < p < ∞, if vectors x, y are in lp (that is a strictly convex space), then ‖x+ y‖p ≤ ‖x‖p+ ‖y‖p with

equality holding if and only if x = 0 or y = 0 or x = γy for some γ > 0. This can be generalized,

so that

‖u‖p = ‖β1v(1) + . . . + βrv
(r)‖p ≤ β1‖v(1)‖p + . . . + βr‖v(r)‖p, (4)

where we know that v(1), v(2), . . . , v(r) are nonzero and linearly independent. Thus, equality holds if

and only if at most one of β1, . . . , βr is strictly positive. All vectors u, v(i) have unit length, so from

inequality (4)

β1 + . . . + βr ≥ 1. (5)
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Equality holds when exactly one of the βi’s is equal to 1, otherwise the inequality is strict. Let now

u be the vector ofV with smallest first component, u1. Then

u1 = β1v
(1)

1
+ . . . + βrv

(r)

1
≥ (β1 + . . . + βr)v

(1)

1
≥ v

(1)

1
≥ u1,

Therefore u1 = v
(1)

1
and thus

β1v
(1)

1
+ . . . + βrv

(r)

1
= v

(1)

1
. (6)

If v
(1)

1
= 0, from the statement of the theorem, this will be the only one that is 0, that is

0 < v
(2)

1
≤ v

(3)

1
. . . ≤ v

(r)

1
.

From relation (6) it follows that

0 = β2v
(2)

1
+ . . . + βrv

(r)

1
⇔ β2 = β3 = . . . = βr = 0

and so β1 = 1 and u ≡ v(1). If v
(1)

1
> 0, let v

(1)

1
= v

(2)

1
= . . . = v

( j)

1
< v

( j+1)

1
≤ v

( j+2)

1
≤ . . . ≤ v

(r)

1
, r ≤ k,

so from relations (5) and (6) follows that

1 = β1 + β2 + . . . + β j + β j+1

v
( j+1)

1

v
(1)

1

+ . . . + βr

v
(r)

1

v
(1)

1

≥ β1 + β2 + . . . + βr ≥ 1,

so equalities must hold, therefore

β j+1 = β j+2 = . . . = βr = 0. (7)

As the sum of the βi’s is 1, exactly one of them will be 1 while the remaining ones will be 0. From

Eq. (7) we conclude that the latter r − j coefficients are 0, so for some t ≤ j it holds that βt = 1.

Furthermore βi = 0 for i , t and thus u ≡ v(t). �

Note that if two distinct extreme vectors of V have zero first component, any vector that

is generated from their conical combination will also have zero first component, preventing the

identification of the extreme vector using the above approach.

In the sequel we assume that the set of vectors in V are m rows3 of a matrix Ṽ ∈ R
m×k that

results after normalizing the rows of V . Then, as long as the first column of Ṽ is positive, the

first extreme vector is readily found. Assuming w.l.o.g. that v(1) has been tagged as the first

extreme vector, to find the second one, first all rows of Ṽ that are not perpendicular to v(1) are

eliminated from consideration. The rows remaining are linearly independent to v(1) and form a

cone that has dimensionality reduced by one. The assumption that Ṽ contains another r − 1 rows

that are orthogonal to v(1) simplifies things further, since the next extreme vector will be one of

them. Theorem 8 again applies, so the vector amongst those that remain that has the smallest first

element is tagged as the second extreme vector, say v(2), and so on, until all r extreme vectors have

been found.

3Hence the choice of superscript for each v( j).
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6.3. Rotation

What remains is to rotate the extreme vectors (rows) of V into the nonnegative orthant Rr
+.

Since A satisfies the conditions of Theorem 4, its symmetric NRF is unique up to column permu-

tations. Having computed a factorization A = VV⊤, it follows from Theorem 1 that there exists

orthogonal R ∈ R
r×r such that W = VR. To compute R, we utilize the properties of the extreme

vectors of the cone containing all rows of V . They are pairwise perpendicular, as will be the ex-

treme vectors of W after rotation, due to the orthogonality of R. After rotation, the extreme vectors

would lie on each of the distinct nonnegative axes of Rr, their lengths remaining unchanged.

Assume now that the extreme vectors of V are the rows of its uppermost square submatrix V1.

After rotation, they are transformed into extreme vectors of W and are positioned in the uppermost

submatrix W1 of W. Both matrices have rows that are pairwise perpendicular, so

V1V⊤1 = W1W⊤
1 = D2,

where D is a diagonal matrix containing the lengths of the extreme vectors. As the extreme vectors

of W lie on the nonnegative axes of Rr, W1 has to be a monomial matrix, from Corollary 5, thus

W1 = DP, where P is a permutation matrix assigning each extreme vector of W1 to a nonnegative

axis of Rr. Since the sequence of vectors is not important, we assume that P is the identity matrix,

leaving W1 diagonal, hence

W1 = D =

√
V1V⊤

1

This assumption is equivalent to expecting to find a rotation matrix that brings the first row of V1

on the nonnegative axis along e1, the second row on the axis along e2, and so on. Thus

V1R = W1 = D2D−1 = V1V⊤1 D−1

and thus R = V⊤
1

D−1. It follows that to compute R, it is enough to normalize the rows of V1 to unit

length and then to transpose it. The above procedure could also be done in the (easier) case that

we were initially given V rather than A.

It is worth noting4 that once the extreme vectors have been identified, as indicated in the

previous subsection, we can readily compute W from expression (3). This form was shown in

[34, Thm. 4]. That way of computing W is more direct and would be useful in practice though it

is not as revealing of the geometrical features of our approach.

The entire method, using rotations, is listed as Algorithm 2, called IREVA (Identification &

Rotation of Extreme Vectors Algorithm). The most expensive step is that of the computation of

the r columns of V , its exact cost depending on the method chosen to implement it. If the matrix

is rank-r and the first step is implemented with the Wedderburn formula followed by Cholesky

for semidefinite matrices (e.g. [31]) for the remaining columns, then the cost is O(m2r). The

remaining steps cost much less, so this value would be a fair estimate of the total cost. If the

matrix is reducible and one wants to apply the “eigenvalue decomposition” method (line 2) in the

4We thank the reviewer who suggested this.
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first phase, some preprocessing is necessary to bring the matrix into block diagonal normal form

(cf. Section 6.1) and then the algorithm must be slightly modified to accommodate it. It is also

straightforward to modify the algorithm to accept as input any matrix and perform internally the

tests for symmetry and positive semidefiniteness and rank detection.

Algorithm 2 IREVA

Input: Symmetric positive semidefinite matrix A ∈ Rm×m
+ of rank-r,

Method ∈ {“eigenvalue decomposition”, “Wedderburn rank reduction”}
Output: Factor W ∈ Rm×r

+ s.t. A = WW⊤ or warning message

1: if Method = ”eigenvalue decomposition” then

2: Compute eigenvalue decomposition A = QEQ⊤, Q ∈ Rm×r, E ∈ Rr×r
+ with Q:,1 ≥ 0

3: V ← Q
√

E

4: else if Method = ”Wedderburn rank reduction” then

5: Pick a positive vector x ∈ Rn

6: ω← x⊤Ax , 0

7: V:,1 ← 1√
ω

Ax

8: B← A − V:,1V⊤
:,1

//rank(B) = r − 1

9: Compute semidefinite Cholesky decomposition PBP⊤ = LL⊤,

P ∈ Rm×m permutation matrix, L ∈ Rm×(r−1) lower triangular

10: V:,2:r ← P⊤L

11: end if

12: Z ← { j : j ∈ {1, 2, . . . ,m},V j,: , 01×r}
13: for all j ∈ Z do

14: Ṽ j,: = V j,:/‖V j,:‖2 //Normalization

15: end for

16: for i = 1 to r do //Identify extreme vectors

17: ξi ← arg min
j

Ṽ j,1, j ∈ Z //Index of row with minimum first component

18: v(i) ← Ṽ⊤ξi,: //i-th extreme ray

19: c← ṼZ,:v
(i) //Cosines of angles between rows of Ṽ and v(i)

20: Z← { j : j ∈ Z, c j = 0} //Keep rows orthogonal to v(i)

21: if |Z| < r − i then

22: return “no full rank r × r diagonal principal submatrix exists”

23: end if

24: end for

25: R←
[
v(1) | v(2) | . . . | v(r)

]

26: W ← VR

To compute W directly using formula (3), it suffices to replace the last two lines of the algo-

rithm with

25:W ← A(:, ξ) A(ξ, ξ)−1/2.

Moreover, if at any iteration, i, of the loop 16 the cardinality of the index set Z is less than r − i,

then it follows that there are not enough extreme vectors and hence A fails to be ∆max and the
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sought factorization cannot be computed with IREVA. This is monitored in line 21.

In view of the interpretation of property ∆max in terms of the associated matrix graph at the end

of Section 5, if IREVA terminates successfully, vector ξ would contain the indices of its maximum

independent set. This welcome side effect must be tempered, however, since it depends on the edge

weights satisfying the constraints described earlier. In particular, even if a matrix is ∆max, it will

not necessarily remain so if all its nonzero elements are turned into ones (in fact, its rank would

most likely increase) therefore the corresponding graph will not be amenable to our analysis.

7. Examples

We seek the factorization of symmetric matrix A ∈ R
6×6
+ of rank-3 that contains a diagonal

principal submatrix of equal rank,

A =



13 15 12 0 10 14

15 25 0 0 0 20

12 0 37 4 30 9

0 0 4 16 0 12

10 0 30 0 25 5

14 20 9 12 5 26



.

In the first step, matrix V ∈ R6×3 is computed so that A = VV⊤ and having a positive first column.

Vector x = [1, 1, . . . , 1]⊤ is selected and used in the Wedderburn rank reduction formula to compute

V:,1 ← Ax/
√
ω > 0, where ω = x⊤Ax > 0. In the sequel, pivoted Cholesky is applied on the

semidefinite matrix A − Axx⊤A/ω. This provides the next two columns of V . Next, the rows of V

are normalized to obtain Ṽ, that contains the projections of the rows of V on the unit sphere. It is

V =



3.1841 1.3700 −0.9923

2.9851 4.0111 0

4.5772 −3.4064 −2.1086

1.5921 −1.1848 3.4730

3.4826 −2.5918 −2.4807

4.2787 1.8019 2.1086



, Ṽ =



0.8831 0.3800 −0.2752

0.5970 0.8022 0

0.7525 −0.5600 −0.3467

0.3980 −0.2962 0.8682

0.6965 −0.5184 −0.4961

0.8391 0.3534 0.4135



As per Theorem 8, the row index of the first extreme vector v(1) is the position of the smallest

element in the first column of Ṽ. For the next step only row vectors perpendicular to v(1) need to

be considered. These are readily identified by the values in Ṽv(1), while the remaining rows are

discarded.

v(1) =



0.3980

−0.2962

0.8682

 , Ṽv(1) =



0

0

0.1644

1

0

0.5883



, Ṽ ←



0.8831 0.3800 −0.2752

0.5970 0.8022 0

0.6965 −0.5184 −0.4961


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The updated Ṽ has fewer rows. The one with smallest first coordinate is identified, and this is the

second extreme vector v(2). Following the same procedure, only rows of Ṽ that are perpendicular

to v(2) are to be kept for the next step.

v(2) =



0.5970

0.8022

0

 , Ṽv(2) =



0.8321

1

0

 , Ṽ ←
[
0.6965 −0.5184 −0.4961

]

Any row of Ṽ in the last step should be perpendicular to all extreme rays already found. In this

example there is only one left, that corresponds to v(3).

v(3) =



0.6965

−0.5184

−0.4961

 , R←
[
v(1) | v(2) | v(3)

]
=



0.3980 0.5970 0.6965

−0.2962 0.8022 −0.5184

0.8682 0 −0.4961



Finally, V is multiplied with the orthogonal matrix R containing all normalized extreme vectors

and the result is W ≥ 0 such that A = WW⊤ holds.

W ← V R =



0 3 2

0 5 0

1 0 6

4 0 0

0 0 5

3 4 1



≥ 0

The above step can be replaced by the direct computation of W from A immediately after the

indices of the extreme vectors among the rows of Ṽ have been identified, as described in [34,

Thm. 4] and explained in Section 6.3 above. Since ξ = [4, 2, 5], it follows that

W ← A(:, ξ) A(ξ, ξ)−1/2 =



0 15 10

0 25 0

4 0 30

16 0 0

0 0 25

12 20 5





1/4 0 0

0 1/5 0

0 0 1/5



Figure 1 depicts the steps and geometrical features of IREVA for a CP matrix of rank-3 satis-

fying the conditions of Theorem 4.

We finally note that even though the effects of finite precision were not the subject of this

paper, in numerical experiments with many random matrices that satisfied the postulated condi-

tions (Corollary 5) the computed factorization was accurate to machine precision. A more detailed

analysis, however, remains to be done.
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Appendix A. Proof of Theorem 1

Proof. Let W = UWΣWV⊤
W

and H = UHΣHV⊤
H

be the thin SVD’s of the two factors. Thus VW and

VH are orthogonal and UW and UH have orthonormal columns. Therefore UWΣ
2
W

U⊤
W
= UHΣ

2
H

U⊤
H

and if we set X = UWΣWU⊤W it will be the unique symmetric positive semidefinite square root of

A, which is also symmetric positive semidefinite (cf. [23, Section 4.2.10]). From uniqueness, it

also follows that X = UHΣHU⊤H . Let now R = VHU⊤HUWV⊤W . Then HR = UHΣHV⊤HVHU⊤HUWV⊤W
and after some algebra it follows that HR = W. Moreover, R is orthogonal. To prove this it

suffices to show that U⊤
H

UW is orthogonal: From the above UHΣHU⊤
H

UW = UWΣW hence U⊤
H

UW =

Σ−1
H U⊤HUWΣW . So

(U⊤HUW)(U⊤HUW)⊤ = Σ−1
H U⊤HUWΣW(Σ−1

H U⊤HUWΣW)⊤ = Σ−1
H U⊤HUWΣWΣWU⊤WUHΣ

−1
H

= Σ−1
H U⊤H(UHΣ

2
HU⊤H)UHΣ

−1
H = I,

thus U⊤
H

UW is orthogonal and so R is also orthogonal. �
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