
The PCL Theorem.
Transactions cannot be Parallel, Consistent and Live.

Victor Bushkov
EPFL, IC, LPD

victor.bushkov@epfl.ch

Dmytro Dziuma
FORTH-ICS

ddziuma@ics.forth.gr

Panagiota Fatourou
∗

University of Crete &
FORTH-ICS

faturu@csd.uoc.gr

Rachid Guerraoui
EPFL, IC, LPD

rachid.guerraoui@epfl.ch

ABSTRACT

We show that it is impossible to design a transactional mem-
ory system which ensures parallelism, i.e. transactions do
not need to synchronize unless they access the same appli-
cation objects, while ensuring very little consistency, i.e. a
consistency condition, called weak adaptive consistency, in-
troduced here and which is weaker than snapshot isolation,
processor consistency, and any other consistency condition
stronger than them (such as opacity, serializability, causal
serializability, etc.), and very little liveness, i.e. that trans-
actions eventually commit if they run solo.

Categories and Subject Descriptors

D.1.3 [Programming Techniques]: Concurrent Program-
ming

Keywords

transactional memory; disjoint-access-parallelism; snapshot
isolation; processor consistency; weak adaptive consistency;
obstruction-freedom; lower bounds; universal constructions

1. INTRODUCTION
The paradigm of transactions [20, 26, 35] is appealing for

its simplicity but implementing it efficiently is challenging.
Ideally a transactional system should not introduce any con-
tention between transactions beyond that inherently due to
the actual code of the transactions. In other words, if two
transactions access disjoint sets of data items, then none
of these transactions should delay the other one, i.e., these
transactions should not contend on any base object. This re-
quirement has been called strict disjoint-access-parallelism [2,

∗Currently with École Polytechnique Fédérale de Lausanne
(EPFL), Switzerland, as an EcoCloud visiting professor.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full cita-

tion on the first page. Copyrights for components of this work owned by others than

ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-

publish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from Permissions@acm.org.

SPAA ’14 Prague, Czech Republic

Copyright 2014 ACM 978-1-4503-2821-0/14/06 ...$15.00.

http://dx.doi.org/10.1145/2612669.2612690.

22]. Base objects are low-level objects, which typically pro-
vide atomic primitives like read/write, load linked/store con-
ditional, compare-and-swap, used to implement transactional
systems. Two transactions contend on some base object if
both access that object during their executions and one of
them performs a non-trivial operation on that object, i.e.
an operation which updates its state.

Strict disjoint access parallelism can be ensured by block-
ing transactional memory (TM) systems; indeed, TL [14],
a lock-based TM algorithm, ensures strict disjoint-access-
parallelism and strict serializability [30]. It was shown in [21]
that a strictly disjoint-access-parallel TM algorithm cannot
ensure both obstruction-freedom (i.e. a weak non-blocking
liveness condition) and serializability (i.e. a consistency
condition weaker than strict serializability). Specifically,
obstruction-freedom [25] ensures that a transaction is aborted
only if step contention is encountered during the course of
its execution. Serializability [30] ensures that, in any exe-
cution, all committed transactions (and some that have not
completed yet) execute like in a legal sequential execution.

In this paper, we study the following question: can we en-
sure strict disjoint-access-parallelism and obstruction free-
dom if we weaken safety? In other words, is serializability
indeed a major factor against strong parallelism? We focus
on a new weak consistency condition that we introduce in
this paper, called weak adaptive consistency. Weak adap-
tive consistency is weaker than (a weak variant of) snap-
shot isolation [10] and processor consistency [19]. Thus, it is
weaker than serializability, causal serializability and all other
consistency conditions that are stronger than processor con-
sistency (or snapshot isolation or even the union of both).
Our PCL theorem states that even with weak safety and
weak liveness, the described task is still impossible: specif-
ically, it is not possible to implement a transactional mem-
ory system which ensures strict disjoint-access-parallelism
(Parallelism), weak adaptive consistency (Consistency), and
obstruction-freedom (Liveness).

Weak adaptive consistency weakens snapshot isolation in
two ways: (1) each process is allowed to have its own sequen-
tial view and (2) it is possible to partition the transactions
of an execution in such a way that each set of transactions in
the partition satisfies either snapshot isolation or processor
consistency. Snapshot isolation [10] requires that transac-
tions should be executed as if every read operation observes
a consistent snapshot of the memory that was taken when

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/148004343?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

the transaction started. To make our result stronger, in our
definition of snapshot isolation, we do not require the extra
constraint (met in the literature [10, 16, 33] for snapshot
isolation) that from two concurrent transactions writing to
the same data item, only one can commit, and we do not
impose any restriction on the value that a read on some data
item x by a transaction T may return if T has written x be-
fore invoking this read. Processor consistency [19, 3] allows
each process to have its own sequential view which should
respect the process-order of writes, additionally it requires
writes to the same data item appear in the same order in
all sequential views. Processor consistency is stronger than
PRAM consistency [28, 3], which does not require writes to
the same data item to appear in the same order in all se-
quential views, but weaker than causal serializability [32],
which requires each sequential view to respect a relation on
transactions, called causality relation.

The proof of our impossibility result is based on indistin-
guishability arguments. The main difficulty comes from the
fact that the read operations of a transaction do not have
to be serialized at the same point as its write operations.
Basically, snapshot isolation and especially weak adaptive
consistency allow more executions to be correct and it is
much harder to construct an execution which violates it.
We end up constructing two legal executions where a trans-
action must read the same values for data items. We then
prove that in one of these two executions this is not the case.

This paper is structured as follows. Section 2 gives an
overview of the related work. Section 3 gives a system model
and all necessary definitions. Section 4 gives the PCL theo-
rem and its proof. Section 5 presents concluding remarks.

2. RELATED WORK
The notion of disjoint-access-parallelism appears in the

literature [2, 8, 15, 22, 27, 31] in many flavors. Disjoint-
access-parallelism was first introduced in [27] through the
notion of conflicting transactions. Later variants [2, 8, 15]
employed the concept of a conflict graph. A conflict graph is
a graph whose nodes represent transactions (or operations)
performed in an execution interval α (i.e. the execution
interval of those transactions overlap with α) and an edge
exists between two nodes if the corresponding transactions
(operations) access the same data item in α (i.e they conflict
in α). In most of these definitions, disjoint-access-parallelism
requires any two transactions to contend on a base object
only if there is a path in the conflict graph of the minimal ex-
ecution interval that contains the execution intervals of both
transactions such that every two consecutive transactions in
the path conflict. In [2, 5, 6, 27], additional constraints are
placed on the length of the path in the conflict graph, result-
ing in what is known as d-local contention property, where d
is an upper bound on the length of the path. In [27], where
disjoint-access-parallelism originally appeared, an additional
constraint on the step complexity of each operation was pro-
vided in the definition. Stronger versions of disjoint-access-
parallelism usually result in more parallelism and therefore
they are highly desirable when designing TM implementa-
tions. Weaker versions of disjoint-access-parallelism may re-
sult in less parallelism but are easier to implement.

Attiya et al. [8] proved that no disjoint-access-parallel TM
implementation can support wait-free and invisible read-
only transactions. A read-only transaction does not perform
writes on data items; an invisible transaction does not per-

form non-trivial operations on base objects when reading
data items. The variant of disjoint-access-parallelism con-
sidered in [8] stipulates that processes executing two trans-
actions concurrently contend on a base object only if there
is a path between the two transactions in the conflict graph.
Although our impossibility does not hold for this variant of
disjoint-access-parallel, our impossibility result considers a
much weaker liveness property and holds even for TM algo-
rithms where read-only transactions are visible.

Recent work [12] proved that, if the TM algorithm does
not have access to the code of each transaction, a property
similar to wait-freedom, called local progress, cannot be en-
sured by any TM algorithm. In [15], it was proved that wait-
freedom cannot be achieved even if this restriction is aban-
doned (given that each time a transaction aborts, it restarts
its execution), if the TM algorithm ensures strict serializabil-
ity and a weak version of disjoint-access-parallelism, called
feeble disjoint-access-parallelism. Thus, one must consider
weaker consistency or progress properties as we do here.

Pelerman et al. [31] proved that no disjoint-access-parallel
TM algorithm can be strictly serializable and MV-permissive.
The impossibility result holds under the assumptions that
the TM algorithm does not have access to the code of trans-
actions and the code for reading and writing data items ter-
minates within a finite number of steps. Pelerman et al. [31]
considered the same variant of disjoint-access-parallelism as
in [8]. A TM implementation satisfies MV-permissiveness
if a transaction aborts only if it is a write transaction that
conflicts with another write transaction. This impossibility
result can be beaten [7] if the stated assumptions do not
hold. Our impossibility result holds if the TM ensures just
weak snapshot isolation, even if it is MV-permissive.

Several software TM implementations [35, 14, 17, 29, 36,
25] are disjoint-access-parallel: TL [14] ensures strict disjoint-
access-parallelism but is blocking since it uses locks; the
rest satisfy weaker forms of disjoint-access-parallelism [8].
Among them OSTM [17] is lock-free. The TM in [35] is also
lock-free but it has been designed for static transactions that
access a pre-determined set of memory locations. Aparently,
our impossibility result does not contradict these implemen-
tations because all of them, except TL, ensure weaker vari-
ants of disjoint-access-parallelism and some of them weaker
progress as well. Also, our impossibility result does not con-
tradict TL since TL uses locks and consequently does not en-
sure obstruction-freedom. Linearizable universal construc-
tions [23, 24], which ensure some form of disjoint-access-
parallelism, are presented in [1, 9, 15, 37]. Barnes [9] im-
plementation is lock-free. The universal construction in [15]
ensures wait-freedom when applied to objects that have a
bound on the number of data items accessed by each opera-
tion they support, and lock-freedom in other cases. Disjoint-
access-parallel wait-free universal constructions when each
operation accesses a fixed number of predetermined mem-
ory locations are provided in [2, 37].

Snapshot isolation was originally introduced as an iso-
lation level for database transactions [10, 16] to increase
throughput for long read-only transactions. In TM comput-
ing, snapshot isolation has been studied in [4, 13, 33, 34].
An STM algorithm, called SI-STM, which ensures snapshot
isolation is presented in [33]. SI-STM employs a global clock
mechanism and therefore, it is not disjoint-access-parallel.
In [13], static analysis techniques are presented to detect,
at compile time, consistency anomalies that may arise when

the TM algorithm satisfies snapshot isolation or other safety
properties. Snapshot isolation on TM for message-passing
systems has been studied in [4].

Our definition of snapshot isolation is weaker than that de-
fined for database transactions [10] for the following reasons.
First, we do not put any constraint on the value returned
by any read that occurs after a write to the same data item
in the same transaction. Second, we do not place the ”first
committer wins” rule, i.e. we abandon the requirement to
abort one out of two concurrent transactions that are writ-
ing to the same data item. By introducing these constraints,
we would make our impossibility result weaker.

3. PRELIMINARIES
System. We consider an asynchronous system with n

processes which communicate by accessing shared base ob-
jects. A base object provides atomic primitives to access or
modify its state. The system may support various types of
base objects like read/write registers, CAS, etc. A primitive
that does not change the state of an object is called trivial
(otherwise it is called non-trivial).

Transactions. Transactional memory (TM) employs trans-
actions to execute pieces of sequential code in a concurrent
environment. Each piece of code contains accesses to pieces
of data, called data items, that may be accessed by several
processes when the code is executed concurrently; so TM
should synchronize these accesses. To achieve this, a TM
algorithm usually provides a shared representation for each
data item by using base objects. A transaction may either
commit, in which case all its updates become visible to other
transactions, or abort and then its updates are discarded.

A TM algorithm provides implementations for the rou-
tines x.read(), which returns a value for x if the operation
was successful or AT if the transaction has to abort, and
x.write(v), which writes value v to data item x and returns
ok if the write was successful or AT if the transaction has to
abort. In addition, a TM algorithm provides implementa-
tions for the routines beginT , which is called when a trans-
action T starts and returns ok, commitT , which is called
when T tries to commit and returns either CT (commit) or
AT (abort), and abortT , which aborts T and returns AT .
Each time a transaction calls one of these routines we say
that it invokes an operation; when the execution of the rou-
tine completes, a response is returned.

Executions and configurations. A configuration is a
vector with components comprising the state of each process
and the state of each base object. In an initial configuration,
processes and base objects are in initial states. A step of a
process consists of a single primitive on a single base object,
the response to that primitive, and zero or more local op-
erations that are performed after the access and which may
cause the internal state of the process to change; each step is
executed atomically. Invocations and responses performed
by transactions are considered as steps. An execution α is
a sequence of steps. An execution is legal starting from a
configuration C if the sequence of steps performed by each
process follows the algorithm for that process (starting from
its state in C) and, for each base object, the responses to the
operations performed on the object are in accordance with
its specification (and the state of the object at configuration
C). We use α · β to denote the execution α immediately
followed by the execution β and say that α is a prefix of

α · β. An execution is solo if every step is performed by
the same process. Two executions α1 and α2 starting from
configurations C1 and C2, respectively, are indistinguishable
to some process p, if the state of p is the same in C1 and C2,
and the sequence of steps performed by p (and thus also the
responses p receives) are the same during both executions.

Fix an execution α in which a transaction T is executed.
Transaction T completes in α, if α contains CT or AT . Trans-
action T accesses x in α, if α contains either x.write() or
x.read(). The execution interval of a completed transaction
T in α is the subsequence of consecutive steps of α starting
with the first step executed by any of the operations invoked
by T and ending with the last such step. The execution in-
terval of a transaction T that does not complete in α is the
suffix of α starting with the first step executed by any of
the operations invoked by T . The active execution interval
of any transaction (completed or not) T in α is the subse-
quence of consecutive steps of α starting with the first step
executed by any of the operations invoked by T and ending
with the last such step. A TM algorithm is obstruction-free
if a transaction T can be aborted only when other processes
take steps during the execution interval of T .

Histories. A history H is a sequence of invocations and
responses performed by transactions. Given an execution α,
we denote by Hα the sequence of invocations and responses
performed by the transactions in α. We denote by H |T the
longest subsequence of H consisting only of invocations and
responses of a transaction T . Transaction T is in history
H if H |T is not empty. History H is well-formed if for
every transaction T in H the following holds for H |T : (i)
H |T is a sequence of alternating invocations and responses
starting with beginT ·ok, (ii) each read invocation is followed
either by a value or by AT , (iii) each write invocation is
followed by either an ok response or AT , (iv) each invocation
of commitT is followed by CT or AT , (v) each invocation of
abortT is followed by AT , (vi) no invocation follows after
CT or AT . Herein, we consider only well-formed histories.
We say that T commits (aborts) in H if H |T ends with CT

(AT). If T does not commit or abort in H , then T is live
in H . If H |T ends with an invocation of commitT , then T
is commit-pending. Transaction T1 precedes transaction T2

in execution α (denoted T1 <α T2), if T1 is not live in Hα

and AT1
or CT1

precedes beginT2
in Hα. If T1 6<α T2 and

T2 6<α T1, then T1 and T2 are concurrent in α.
A history H is sequential if no two transactions are con-

current in H . H is complete if it does not contain any live
transactions. Transaction T is legal in a sequential history
H , if for every x.read() by T which returns some value v
the following holds: (i) if T executes an x.write() before
x.read(), then v is the argument of the last such x.write()
invocation in T ; otherwise, (ii) if there is an invocation of
x.write() by some committed transaction that precedes T ,
then v is the argument of the last such x.write() in H ; oth-
erwise (iii) v is the initial value of x. A complete sequential
history H is legal if each transaction is legal in H .

Disjoint-access-parallelism. For proving the impossi-
bility result presented in Section 4, we consider a collection
of simple static transactions. Hence, to simplify the defi-
nitions in this paragraph, we assume that transactions are
static and predefined1, i.e. we assume that the data items
on which T invokes read and write (in any execution con-

1Apparently, this assumption makes the impossibility result
proved in Section 4 stronger.

taining T) are the same and can be derived by inspecting
T ’s code; we call the set of these data items the data set
D(T) of T . Note that the set of data items accessed by T
in a specific execution might be a proper subset of D(T) if
T is not committed in this execution. For example, consider
a transaction T whose code implies that T accesses data
items x and y and let α be an execution in which transac-
tion T invokes x.read() and gets AT as a response; then,
D(T) = {x, y} but T accesses only data item x in α.

We say that two transactions T1 and T2 conflict, if D(T1)∩
D(T2) 6= ∅. We say that two executions contend on a base
object o if they both contain a primitive operation on o and
one of these primitive operations is non-trivial. Denote by
α|T the subsequence of α consisting of all steps executed by
T . A TM implementation I is strict disjoint-access-parallel,
if in each execution α of I, and for every two transactions
T1 and T2 executed in α, α|T1 and α|T2 contend on some
base object, only if T1 and T2 conflict.

Consistency. A read operation x.read() by some trans-
action T is global if T has not invoked x.write() before in-
voking x.read(). Let T be a committed or commit-pending
transaction executed by a process pi in a history H . Let
T |readg be the longest subsequence of H |T consisting only
of global read invocations and their corresponding responses
and T |write be the longest subsequence of H |T consisting
only of write invocations and their corresponding responses.
Let λ denote the empty history. Then we define transactions
Tgr and Tw (both executed by pi) in the following way:

• (1) Tgr = T |readg · commitTgr · CTgr if T |read 6= λ,
and Tgr = λ otherwise, and

• (2) Tw = T |write ·commitTw ·CTw if T |write 6= λ, and
Tw = λ otherwise.

Definition 3.1 (Snapshot isolation). An execution
α satisfies snapshot isolation, if (i) there exists a set com(α)
consisting of all committed and some of the commit-pending
transactions in α and (ii) it is possible to insert (in α) a
global read serialization point ∗T,gr and a write serialization
point ∗T,w, for each of transactions T ∈ com(α), so that if
σα is the sequence defined by these serialization points, the
following holds:

1. ∗T,gr precedes ∗T,w in σα,

2. both ∗T,gr and ∗T,w are inserted within the active exe-
cution interval of T ,

3. if Hσα is the history we get by replacing each ∗T,gr

with Tgr and each ∗T,w with Tw in σα, then Hσα is
legal.

An STM implementation I satisfies snapshot isolation, if
each of the executions produced by I satisfies snapshot iso-
lation.

Since we require neither consistency for local reads nor
aborting two concurrent transactions writing to the same
data item, our definition of snapshot isolation is weaker than
standard definitions of snapshot isolation for databases [10].
This makes our impossibility result stronger.

To strengthen our impossibility result even more, we prove
it for a much weaker consistency property, called weak adap-
tive consistency which allows (i) each process to have its own
sequential view and (ii) to switch between snapshot isolation
and processor consistency (defined below) during the course

of an execution; specifically, the transactions of the execu-
tion can be partitioned into groups so that either snapshot
isolation or processor consistency is ensured for the transac-
tions of each group. Processor consistency is a safety prop-
erty which allows each process to have its own sequential
view but requires that writes to the same data item occur
in the same order in each sequential view.

Definition 3.2 (Processor consistency). An execu-
tion α is processor consistent if (i) there exists a set com(α)
consisting of all committed and some of the commit-pending
transactions in α and (ii) for each process pi, it is possible
to insert (in α) a serialization point ∗T , for each transaction
T ∈ com(α), so that if σi

α is the sequence defined by these
serialization points, the following holds:

1. ∀T1, T2 ∈ com(α):

(a) if T1 and T2 are executed by the same process and
T1 <α T2, then ∗T1

precedes ∗T2
in σi

α,

(b) if T1 and T2 write to the same data item and ∗T1

precedes ∗T2
in σi

α, then ∀j ∈ {1, . . . , n}, ∗T1
pre-

cedes ∗T2
in σj

α,

2. if Hσi
α
is the history we get by replacing each ∗T in σi

α

with H |T , if T commits in α, or with H |T ·CT , if T is
commit-pending in α, then every transaction executed
by pi is legal in Hσi

α
.

Let Tl and Tr be two transactions in an execution α such
that either Tl and Tr are the same or the invocation of
beginTl

precedes the invocation of beginTr . A consistency
group G(Tl, Tr) of α is a set of transactions from α such that:
(1) Tl and Tr belong to G(Tl, Tr), and (2) a transaction Tk

belongs to G(Tl, Tr) if the invocation of beginTk
occurs in

α between the invocation of beginTl
and the invocation of

beginTr . In other words, a consistency group G(Tl, Tr) of
α is a set containing the transactions that start their exe-
cution between the beginning of Tl and the beginning of Tr

(inclusive). An active execution interval of G(Tl, Tr) is the
longest execution interval of α which includes all steps in
α from the first step of Tl to the last step of any transac-
tion from G(Tl, Tr). A consistency group G(Tl, Tr) precedes
a consistency group G(T ′

l , T
′

r) in α, if the last step of any
transaction from G(Tl, Tr) precedes the first step of T ′

l in α.
A consistency partition P (α) of an execution α is a se-

quence G(Tl,1, Tr,1), G(Tl,2, Tr,2), . . . G(Tl,n, Tr,n) of consis-
tency groups such that:

1. Tl,1 is the transaction which invokes the first begin in
α and Tr,n is the transaction which invokes the last
begin in α,

2. ∀k ∈ {1, . . . , n}, either Tl,k = Tr,k or beginTl,k
pre-

cedes beginTr,k
in α,

3. ∀k ∈ {1, . . . , n−1}, beginTr,k
precedes beginTl,k+1

in α,
and there is no transaction that invokes begin between
beginTr,k

and beginTl,k+1
in α.

Definition 3.3 (Weak adaptive consistency). An
execution α satisfies weak adaptive consistency if it is possi-
ble to do all of the following: (i) choose a consistency parti-
tion P (α), (ii) partition all groups in P (α) into two disjoint
sets of groups: a set SI(P (α)) of snapshot isolation groups
and a set PC(P (α)) of processor consistency groups, (iii)
choose a set com(α) consisting of all committed and some of

the commit-pending transactions in α, and (iv) for each pro-
cess pi insert (in α) a global read serialization point ∗T,gr

and a write serialization point ∗T,w, for each transaction
T ∈ com(α), so that if σi

α is the sequence defined by these
serialization points, the following holds:

1. ∗T,gr precedes ∗T,w in σi
α,

2. ∀T1, T2 ∈ com(α), if T1 and T2 write to the same
data item and ∗T1,w precedes ∗T2 ,w in σi

α, then ∀j ∈
{1, . . . , n}, ∗T1,w precedes ∗T2,w in σj

α,

3. for each group G(Tl,k, Tr,k) ∈ SI(P (α)) the following
holds: ∀Tm ∈ G(Tl,k, Tr,k) ∩ com(α), both ∗Tm,gr and
∗Tm,w are inserted within the active execution interval
of Tm,

4. for each group G(Tl,k, Tr,k) ∈ PC(P (α)) the following
holds: ∀Tm ∈ G(Tl,k, Tr,k) ∩ com(α), no other serial-
ization point is inserted between ∗Tm,gr and ∗Tm,w and
both ∗Tm,gr and ∗Tm,w are inserted within the active
execution interval of G(Tl,k, Tr,k),

5. if Hσi
α
is the history we get by replacing each ∗T,gr with

Tgr and each ∗T,w with Tw in σi
α, then every transac-

tion executed by pi is legal in Hσi
α
.

Consider an execution α that satisfies weak adaptive con-
sistency, let σi

α be the sequence of serialization points for
process pi. For simplicity, we use the following notation:
∗T,l1 <i ∗T ′,l2 , where T, T ′ ∈ com(α) and l1, l2 ∈ {gr,w},
to identify that ∗T,l1 precedes ∗T ′ ,l2 in σi

α. We remark that
items 3 and 4 of Definition 3.3 imply that the global read
and write serialization points of any transaction T ∈ com(α)
are placed within the active execution interval of the consis-
tency group to which T belongs.

An STM implementation I satisfies weak adaptive consis-
tency, if each of the executions produced by I satisfies weak
adaptive consistency. Weak adaptive consistency is weaker
than processor consistency, and consequently is weaker than
causal serializability, serializability, opacity and any other
property stronger than processor consistency. This is so be-
cause if an execution α satisfies processor consistency, then
there exists a consistency partition P (α) = G(Tl, Tr) con-
sisting only of one processor consistency group such that
the active execution interval of G(Tl, Tr) is exactly α, and
therefore, serialization points of transactions from G(Tl, Tr)
can be inserted anywhere in α. Weak adaptive consistency
is weaker than snapshot isolation because in the definition
of snapshot isolation there is only one sequential view σα,
and condition 2 of the above definition trivially holds for
the case of a single sequential view σα. In fact, weak adap-
tive consistency is even weaker than the union of snapshot
isolation and processor consistency.

4. THE PCL THEOREM
In this section we show that it is impossible to implement a

TM which ensures weak adaptive consistency, obstruction-
freedom, and strict disjoint-access-parallelism. The main
idea behind the proof is the following. We design two legal
executions α = α1 · α2 · s1 · s2 · α7 and α′ = α1 · α2 · s2 ·
s1 ·α

′

7, where α1 and α2 are parts of solo executions of some
transactions T1 (executed by process p1) and T2 (executed
by process p2), respectively, s1 and s2 are single steps by T1

and T2, respectively, and α7 and α′

7 are solo executions of
T7 (executed by process p7) until it commits. We prove that

s1 and s2 are steps accessing different base objects, so α7 is
indistinguishable from α′

7 to process p7. We also prove that
there exists a data item in T7’s read set for which T7 reads a
different value in α7 from the value read for the same data
item in α′

7, which is a contradiction.

Theorem 4.1 (The PCL theorem). There is no TM
implementation which is strict disjoint-access-parallel and
satisfies weak adaptive consistency and obstruction-freedom.

Proof. Assume, by contradiction, that there exists an
obstruction-free implementation I which is strict disjoint-
access-parallel and satisfies weak adaptive consistency.

We use the following notation: we denote by bk, ck, dk
data items written by transaction Tk and by ek,m data items
written by both transactions Tk and Tm. Consider the fol-
lowing transactions (the initial value of every data item is
considered to be 0):

• T1, executed by process p1, which reads data items b3
and b7, and writes the value 1 to data items a, b1, c1,
d1, e1,3,

• T2, executed by process p2, which reads data items b5
and b7, and writes the value 2 to data items a, b2, c2,
d2, e2,5, e2,7,

• T3, executed by process p3, which reads data items b1
and b4, and writes the value 1 to data items b3, c3,
e1,3, e3,4,

• T4, executed by process p4, which reads data items d2
and c3, and writes the value 1 to data items b4, e3,4,

• T5, executed by process p5, which reads data items b2
and b6, and writes the value 1 to data items b5, c5,
e2,5, e5,6,

• T6, executed by process p6, which reads data items d1
and c5, and writes the value 1 to data items b6, e5,6,

• T7, executed by process p7, which reads data items a,
c1, and c2, and writes the value 1 to data items b7,
e2,7.

Definition of α1 and s1: Let transaction T1 be executed
solo from the initial configuration C0. Because p1 runs solo
and I is obstruction-free, T1 eventually commits. In the
resulting execution, T1 reads the value 0 for data items b3
and b7 because I satisfies weak adaptive consistency and
there is no transaction that writes to these data items in
this execution. Let C′ be the configuration resulting from
the execution of the last step of T1.

If T3 is executed solo from the initial configuration C0,
then in the resulting execution, T3 reads 0 for b1 (since I
satisfies weak adaptive consistency and no transaction writes
to b1 in this execution).

Consider now the execution δ1 where transaction T3 is
executed solo from C′ until it commits. We prove that T3

reads the value 1 for data item b1 in δ1. Since I satisfies
weak adaptive consistency, there exists a consistency parti-
tion P (δ1) which satisfies the conditions of Definition 3.3.
We consider the following cases:

• Assume first that P (δ1) = G(T1, T3) and SI(P (δ1)) =
{G(T1, T3)}. Since G(T1, T3) is a snapshot isolation
group, then ∗T1,w must be placed within the active ex-
ecution interval of T1 and ∗T3 ,gr must be placed within

α1

T1 runs solo
until C−

1

s1 α3

T3 runs solo
until it commits

α1

T1 runs solo
until C−

1

α′

3

T3 runs solo
until it commits

s1

Figure 1: Executions α1, α3, α
′

3, and step s1.

α1

T1 runs solo
until C−

1

α2

T2 runs solo
until C−

2

s2 α5

T5 runs solo
until it commits

α1

T1 runs solo
until C−

1

α2

T2 runs solo
until C−

2

α′

5

T5 runs solo
until it commits

s2

Figure 2: Executions α1, α2, α5, α
′

5, and step s2.

α1 α2 s1 α3

T3 runs solo
until it commits

α4

T4 runs solo
until it commits

s2 α7

T7 runs solo
until it commits

Figure 3: Execution β.

α1 α2 s2 α5

T5 runs solo
until it commits

α6

T6 runs solo
until it commits

s1 α′

7

T7 runs solo
until it commits

Figure 4: Execution β′.

p1

p2

p3

p4

p7

T1

b3 : 0, b7 : 0

a(1), b1(1), c1(1), d1(1),
e1,3(1) T2

b5 : 0, b7 : 0

a(2), b2(2), c2(2), d2(2),
e2,5(2), e2,7(2)

s1

T3

b1 : 1, b4 : 0

b3(1), c3(1),
e1,3(1), e3,4(1) T4

d2 : 0, c3 : 1

b4(1), e3,4(1)

s2

T7

a : 2, c1 : 1, c2 : 2

b7(1), e2,7(1)

Figure 5: Values read by transactions in execution β. Where x : v denotes a read from x which returns value

v, x(v) denotes a write to x which writes value v, and • denotes a commit event.

p1

p2

p3

p4

p7

T1

b3 : 0, b7 : 0

a(1), b1(1), c1(1), d1(1),
e1,3(1) T2

b5 : 0, b7 : 0

a(2), b2(2), c2(2), d2(2),
e2,5(2), e2,7(2)

s2

T5

b2 : 2, b6 : 0

b5(1), c5(1),
e2,5(1), e5,6(1) T6

d1 : 0, c5 : 1

b6(1), e5,6(1)

s1

T7

a : 1, c1 : 1, c2 : 2

b7(1), e2,7(1)

Figure 6: Values read by transactions in execution β′.

the active execution interval of T3
2. Since T1 <δ1 T3,

then ∗T1,w <3 ∗T3,gr. It follows that T3 must observe
the update performed on data item b1 by T1, and con-
sequently T3 must read 1 for b1.

• Assume that P (δ1) = G(T1, T3) and PC(P (δ1)) =
{G(T1, T3)}. Because T1 reads 0 for b3 in δ1, it fol-
lows that ∗T1,gr <1 ∗T3,w. Since G(T1, T3) is a proces-
sor consistency group, no serialization point is inserted
between ∗T1,gr and ∗T1,w. Thus, ∗T1 ,w <1 ∗T3 ,w. Be-
cause T1 and T3 write to the same data item e1,3, it fol-
lows that ∗T1,w <3 ∗T3,w. Since no serialization point
is inserted between ∗T3,gr and ∗T3 ,w, it follows that
∗T1,w <3 ∗T3,gr, so T3 must read 1 for b1.

• Assume now that P (δ1) = G(T1, T1), G(T3, T3). Be-
cause T1 <δ1 T3, it follows that G(T1, T1) precedes
G(T3, T3) in δ1. Since ∗T1,w should be placed within
the execution interval of G(T1, T1) and ∗T3,gr should
be placed within the execution interval of G(T3, T3),
∗T1,w <3 ∗T3,gr. Hence, T3 must read 1 for b1.

Since in the solo execution of T3 from C0, T3 reads 0 for
b1, whereas in the solo execution of T3 from C′, T3 reads 1
for b1, it follows that there exists some step s1 in the solo
execution of T1 from C0, resulting in a configuration C1, such
that: (I) if α′

3 is the solo execution of T3 from configuration
C−

1
(where C−

1
is the configuration just before s1), then, in

α′

3, T3 reads 0 for b1; and (II) if α3 is the solo execution of
T3 from configuration C1, then in α3, T3 reads 1 for b1. (If
there are more than one steps with this property, let s1 be
the first of them.)

Denote by α1 the solo execution of T1 from C0 until C−

1
is

reached (Figure 1). Note that T3 reads 0 for b4 in α3 since
there is no transaction in α1 · s1 · α3 which writes to b4.

Claim 1: Transaction T1 invokes commitT1
in α1.

Proof: Assume, by contradiction, that T1 does not invoke
commitT1

in α1. We argue that the execution α1 ·s1 ·α3 does
not satisfy weak adaptive consistency. This is so because,
by definition of s1, T3 reads 1 for b1 in this execution but T1

is not yet commit-pending and therefore we cannot assign a
write serialization point to T1 in this execution.

Claim 2: Step s1 applies a non-trivial operation op on some
base object o1 for which the following holds: T3 reads o1 in
α3 and α′

3.
Proof: If op is a trivial operation on o1 or T3 does not read
o1 in α3 (or in α′

3), then α3 and α′

3 are indistinguishable to
p3. This is a contradiction, since by the definition of s1, T3

reads a different value for b1 in these two executions.

Definition of α2 and s2: Using a similar reasoning as
above, we can show that in an execution where T2 is executed
solo from C−

1
until it commits, there is a step s2, resulting

in a configuration C2, such that:

1. if α′

5 is the solo execution of T5 from configuration C−

2
,

where C−

2
is the configuration just before the execution

of s2, then T5 reads 0 for b2 in α′

5;

2. if α5 is the solo execution of T5 from configuration C2,
then T5 reads 2 for b2 and 0 for b6 in α5,

3. if α2 is the solo execution of T2 from C−

1
until C−

2
is

reached (Figure 2), then T2 invokes commitT2
in α2,

2 For simplicity, throughout the proof, we use the term exe-
cution interval instead of active execution interval, whenever
it is clear from the context.

4. T2 reads the value 0 for data items b5 and b7 in α2,

5. s2 applies a non-trivial operation on some base object
o2 which is read in α5 and α′

5.

Claim 3: o1 6= o2
Proof: Assume that o1 = o2. Consider an execution α1 ·
α2 · s′1 · γ3, where s′1 is a single step by p1 and γ3 is a solo
execution of T3 by p3 until T3 commits. We argue that
s′1 = s1 and γ3 is indistinguishable from α3 to p3. Obviously,
since s′1 is the step that p1 is poised to perform after α1, s1
and s′1 access the same base object, namely object o1. Thus,
if s1 and s′1 are different, they differ in their response.

Since T3 and T2 do not conflict, strict disjoint-access-
parallelism implies that α2 does not contain any non-trivial
operation on base objects read in γ3. Thus, the prefix of α3

until the point that o1 is first accessed is also a prefix of γ3.
Therefore, T3 reads o1 in γ3 (as it does in α3).

Because γ3 reads o1, and T3 and T2 do not conflict, strict
disjoint-access-parallelism implies that α2 does not contain
a non-trivial operation on o1 = o2. It follows that s1 = s′1.
This and the fact that T3 and T2 do not conflict imply that γ3
is indistinguishable from α3 to p3. So, execution α1·α2 ·s1 ·α3

is legal.
Since p2 is poised to execute a step which applies a non-

trivial operation on o2 = o1 after α1 ·α2 ·s1 ·α3 and o1 is read
in α3, it follows that in execution α1 · α2 · s1 · α3 · s

′

2, where
s′2 is a single step by p2, strict disjoint-access-parallelism is
violated. This is a contradiction. Thus, o1 6= o2.

Consider executions α = α1 · α2 · s1 · s2 · α7 and α′ =
α1 · α2 · s2 · s1 · α′

7, where α7 and α′

7 are solo executions of
T7 until T7 commits. Since steps s1 and s2 access different
base objects, α7 is indistinguishable from α′

7 to process p7.

Consider an execution α1 · α2 · s1 · α3 · α4 · s
′′

2 , where α4

is the solo execution of T4 until it commits. We first argue

that s
′′

2 = s2.
Recall that α1 · α2 · s1 · α3 is legal, so α1 · α2 · s1 · α3 · α4

is legal. Notice that s′′2 , like s2, accesses base object o2. It
remains to argue that the response of s′′2 is the same as that
of s2. Recall that α3 does not contain a non-trivial operation
on o2. It remains to argue that the same is true for α4.

Consider the execution δ2 = α1 ·α2 ·s1 ·α3 ·α4 ·α
′

5. Recall
that α′

5 is the solo execution of T5 from configuration C−

2
.

Since T5 does not conflict with T1, T3, and T4, strict disjoint-
access-parallelism implies that α1 ·α2 ·s1 ·α3 ·α4 ·α

′

5 is legal.
Since α′

5 reads o2 and T5 does not conflict with T4, strict
disjoint-access-parallelism implies that α4 does not contain
a non-trivial operation on o2. It follows that s′′2 = s2.

Let β = α1 ·α2 · s1 ·α3 ·α4 · s2 ·α7 (see Figure 3). We first
argue that β is legal. This is so because T7 does not conflict
neither with T3 nor with T4, so α7 does not access any base
object modified in α3 or α4.

We now argue that T7 reads 2 for data items a and c2,
and 1 for data item c1 in α7.

Claim 4: T7 reads the value 2 for data items a and c2, and
the value 1 for data item c1 in α7.

Proof: We first prove that transaction T4 reads 0 for d2
in α4. Recall that δ2 = α1 · α2 · s1 · α3 · α4 · α′

5 is legal.
Since I satisfies weak adaptive consistency, there exists a
consistency partition P (δ2) and a set com(δ2) of committed
and commit-pending transactions from δ2 which satisfy the
conditions of Definition 3.3. We argue that T2 6∈ com(δ2).

Assume, by contradiction, that T2 ∈ com(δ2). We consider
the following cases.

• Assume first that P (δ2) includes G(Ti, T5) for some
i ∈ {3, 4, 5}. Since the execution intervals of T2 and
T1 precede the execution intervals of T3, T4, and T5,
and the execution intervals of T3, T4, and T5 do not
overlap in δ2, it follows that the execution interval of
the consistency group containing T2 in P (δ2) precedes
the execution interval of G(Ti, T5). Thus, ∗T2 ,w <5

∗T5,gr. This contradicts the fact that T5 reads 0 for b2
in α′

5.

• Assume that P (δ2) includes G(Ti, T5) for some i ∈
{1, 2} and G(Ti, T5) ∈ SI(P (δ2)). Since G(Ti, T5) is a
snapshot isolation group and the execution interval of
T2 precedes the execution interval of T5 in δ2, it follows
that ∗T2,w <5 ∗T5,gr. This contradicts the fact that T5

reads 0 for b2 in α′

5.

• Assume that P (δ2) includes G(Ti, T5) for some i ∈
{1, 2} and G(Ti, T5) ∈ PC(P (δ2)). Because T2 reads 0
for b5 in α2, it follows that ∗T2,gr <2 ∗T5,w. Since no
point is inserted between ∗T2,gr and ∗T2,w, it follows
that ∗T2,w <2 ∗T5 ,w. Because T2 and T5 write to the
same data item e2,5, it follows that ∗T2,w <5 ∗T5 ,w.
Since no point is inserted between ∗T5 ,gr and ∗T5 ,w, it
follows that ∗T2,w <5 ∗T5,gr. This contradicts the fact
that T5 reads 0 for b2 in α′

5.

Hence, T2 /∈ com(δ2), and consequently T4 reads 0 for d2
in α4.

We next argue that T4 reads 1 for c3 in α4. Since δ3 =
α1 · α2 · s1 · α3 · α4 is legal and I satisfies weak adaptive
consistency, there exists a consistency partition P (δ3) and a
set com(δ3) of committed and commit-pending transactions
from δ3 which satisfy the conditions of Definition 3.3. We
consider the following cases:

• Assume first that P (δ3) includes G(T4, T4). Since the
execution interval of any consistency group contain-
ing transaction T3 precedes the execution interval of
G(T4, T4), it follows that ∗T3 ,w <4 ∗T4 ,gr.

• Assume now that P (δ3) includes G(Ti, T4) for some
i ∈ {1, 2, 3} and that G(Ti, T4) ∈ SI(P (δ3)). Since
T3 <δ3 T4, it follows that ∗T3,w <4 ∗T4,gr.

• Assume now that P (δ3) includes G(Ti, T4) for some
i ∈ {1, 2, 3} and that G(Ti, T4) ∈ PC(P (δ3)). Since
T3 reads 0 for b4 in α3, it follows that ∗T3,gr <3 ∗T4 ,w.
Since no point is inserted between ∗T3 ,gr and ∗T3 ,w, it
follows that ∗T3 ,w <3 ∗T4,w. Because T3 and T4 write
to the same data item e3,4, it follows that ∗T3,w <4

∗T4,w. Since no point is inserted between ∗T4,gr and
∗T4,w, it follows that ∗T3,w <4 ∗T4,gr.

We conclude that (in all cases) ∗T3,w <4 ∗T4,gr. Thus, T4

reads 1 for c3 in α4.
We now prove that T7 reads 2 for c2 in α7. Notice that

α1 · α2 · s1 · s2 · α5 is legal. This is so because s1 and s2
are steps on different base objects and T5 does not conflict
with T1, so it does not access o1 in α5. We argue that
δ4 = α1 · α2 · s1 · s2 · α5 · α7 is also legal. This is so because
α1 · α2 · s1 · s2 · α5 and α1 · α2 · s1 · s2 · α7 are legal and T7

does not conflict with T5.
Since I satisfies weak adaptive consistency, there exists a

consistency partition P (δ4) and a set com(δ4) of committed

and commit-pending transactions from δ4 which satisfy the
conditions of Definition 3.3. Since T5 reads 2 for b2 in α5, it
follows that T2 ∈ com(δ4) and ∗T2 ,w <5 ∗T5,gr. We consider
the following cases.

• Assume first that P (δ4) includes G(Ti, T7) for some
i ∈ {5, 7}. Since the execution intervals of T1 and T2

do not overlap with the execution intervals of T5 and
T7 in δ4, it follows that the execution interval of the
consistency group of P (δ4) that contains transaction
T2 precedes the execution interval of G(Ti, T7). There-
fore, ∗T2 ,w <7 ∗T7,gr, and consequently T7 must read
2 for c2 in α7.

• Assume now that P (δ4) includes G(Ti, T7), for some
i ∈ {1, 2} and that G(Ti, T7) ∈ SI(P (δ4)). Since the
execution interval of T2 precedes the execution inter-
val of T7 and T2, T7 ∈ G(Ti, T7), which is a snapshot
isolation group, it follows that ∗T2,w <7 ∗T7,gr. Thus,
T7 must read 2 for c2 in α7.

• Assume now that P (δ4) includes G(Ti, T7), for some
i ∈ {1, 2} and that G(Ti, T7) ∈ PC(P (δ4)). Because
T2 reads 0 for b7 in α2, it follows that ∗T2 ,gr <2 ∗T7,w.
Since no point is inserted between ∗T2,gr and ∗T2,w, it
follows that ∗T2,w <2 ∗T7,w. Because T2 and T7 write
to the same data item e2,7, it follows that ∗T2,w <7

∗T7,w. Since no point is inserted between ∗T7,gr and
∗T7,w, it follows that ∗T2 ,w <7 ∗T7,gr. Thus, T7 must
read 2 for c2 in α7.

Since T3 reads 1 for b1 in β, it follows that ∗T1,w <3

∗T3,gr <3 ∗T3,w. Because T1 and T3 write to the same data
item e1,3, it follows that ∗T1 ,w <4 ∗T3,w. Since T4 reads 0
for d2 and 1 for c3, it follows that ∗T3 ,w <4 ∗T4 ,gr <4 ∗T2,w.
Thus, ∗T1,w <4 ∗T2,w. Because T1 and T2 write to the
same data item a, it follows that ∗T1,w <7 ∗T2 ,w. Since
T7 reads 2 for c2, it follows that ∗T2 ,w <7 ∗T7,gr. Thus,
∗T1,w <7 ∗T2,w <7 ∗T7,gr, and consequently, it follows that
T7 reads 2 for a and 1 for c1 in α7 (see Figure 5).

Consider now execution α1 · α2 · s2 · α5 · α6 · s
′′

1 , where α6

is the solo execution of T6 until it commits. We first argue

that s
′′

1 = s1.
Recall that α1 · α2 · s2 · α5 is legal, so α1 · α2 · s2 · α5 · α6

is legal. Notice that s′′1 , like s1, accesses base object o1. It
remains to argue that the response of s′′1 is the same as that
of s1. Recall that α5 does not contain a non-trivial operation
on o1. It remains to argue that the same is true for α6.

Consider an execution δ5 = α1 ·α2 ·s2 ·α5 ·α6 ·α
′

3. Since T3

does not conflict with T2, T5, and T6, strict disjoint-access-
parallelism implies that α1 ·α2 ·s2 ·α5 ·α6 ·α

′

3 is legal. Recall
that α′

3 reads o1. Since T3 does not conflict with T6, strict
disjoint-access-parallelism implies that α6 does not contain
a non-trivial operation on o1. It follows that s′′1 = s1.

Let β′ = α1 · α2 · s2 · α5 · α6 · s1 · α′

7 (see Figure 4). We
first argue that β′ is legal. This is so because T7 does not
conflict neither with T5 nor with T6, so α′

7 does not access
any base object modified in α5 or α6.

Claim 5: T7 reads 1 for a in α′

7.

Proof: We first prove that transaction T6 reads 0 for d1
in α6. Recall that δ5 = α1 · α2 · s2 · α5 · α6 · α′

3 is legal.
Since I satisfies weak adaptive consistency, there exists a
consistency partition P (δ5) and a set com(δ5) of committed
and commit-pending transactions from δ5 which satisfy the
conditions of Definition 3.3. We argue that T1 6∈ com(δ5).

Assume, by contradiction, that T1 ∈ com(δ5). We consider
the following cases.

• Assume first that P (δ5) includes G(Ti, T3) for some i ∈
{2, 3, 5, 6}. Since the execution interval of T1 precedes
the execution intervals of T2, T3, T6 and T5, and the
executions intervals of T2, T3, T6 and T5 do not over-
lap in δ5, it follows that the execution interval of the
consistency group containing T1 precedes the execu-
tion interval of G(Ti, T3) in δ5. Thus, ∗T1,w <3 ∗T3,gr.
This contradicts the fact that T3 reads 0 for b1 in α′

3.

• Assume now that P (δ5) = G(T1, T3) and that it holds
that SI(P (δ5)) = {G(T1, T3)}. Since the execution
interval of T1 precedes the execution interval of T3 in
δ5, it follows that ∗T1,w <3 ∗T3 ,gr. This contradicts
the fact that T3 reads 0 for b1 in α′

3.

• Assume now that P (δ5) = G(T1, T3) and that it holds
that PC(P (δ5)) = {G(T1, T3)}. Because T1 reads 0
for b3 in α1, it follows that ∗T1,gr <1 ∗T3,w. Since no
point is inserted between ∗T1,gr and ∗T1,w, it follows
that ∗T1,w <1 ∗T3 ,w. Because T1 and T3 write to the
same data item e1,3, it follows that ∗T1,w <3 ∗T3 ,w.
Since no point is inserted between ∗T3 ,gr and ∗T3 ,w, it
follows that ∗T1,w <3 ∗T3,gr. This contradicts the fact
that T3 reads 0 for b1 in α′

3.

Hence, T1 /∈ com(δ5), and consequently T6 reads 0 for d1
in α6.

We next argue that T6 reads 1 for c5 in α6. Since δ6 =
α1 · α2 · s2 · α5 · α6 is legal and I satisfies weak adaptive
consistency, there exists a consistency partition P (δ6) and a
set com(δ6) of committed and commit-pending transactions
from δ6 which satisfy the conditions of Definition 3.3. We
consider the following cases:

• Assume first that P (δ6) includes G(T6, T6). Since the
execution interval of any consistency group containing
transaction T5 must precede the execution interval of
G(T6, T6), it follows that ∗T5 ,w <6 ∗T6 ,gr.

• Assume now that P (δ6) includes G(Ti, T6) for some
i ∈ {1, 2, 5} and that G(Ti, T6) ∈ SI(P (δ6)). Since
T5 <δ6 T6, it follows that ∗T5,w <6 ∗T6,gr.

• Assume now that P (δ6) includes G(Ti, T6) for some
i ∈ {1, 2, 5} and that G(Ti, T6) ∈ PC(P (δ6)). Since
T5 reads 0 for b6 in α5, it follows that ∗T5,gr <5 ∗T6 ,w.
Since no point is inserted between ∗T5 ,gr and ∗T5 ,w, it
follows that ∗T5 ,w <5 ∗T6,w. Because T5 and T6 write
to the same data item e5,6, it follows that ∗T5,w <6

∗T6,w. Since no point is inserted between ∗T6,gr and
∗T6,w, it follows that ∗T5,w <6 ∗T6,gr.

We conclude that (in all cases) ∗T5,w <6 ∗T6,gr. Thus, T6

reads 1 for c5 in α6.
Because α′

7 and α7 are indistinguishable to p7, it follows
that T7 reads the same values in α′

7 and α7. Since T5 reads
2 for b2 in β′, it follows that ∗T2,w <5 ∗T5,gr <5 ∗T5 ,w.
Because T2 and T5 write to the same data item e2,5, it follows
that ∗T2,w <6 ∗T5 ,w. Since T6 reads 0 for d1 and 1 for c5, it
follows that ∗T5,w <6 ∗T6,gr <6 ∗T1,w. Thus, ∗T2 ,w <6 ∗T1 ,w.
Because T1 and T2 write to the same data item a, it follows
that ∗T2,w <7 ∗T1 ,w. Since T7 reads 1 for c1, it follows that
∗T1 ,w <7 ∗T7,gr. Thus, ∗T2,w <7 ∗T1 ,w <7 ∗T7,gr in β′,
and consequently, it follows that T7 reads 1 for a in β′ (see
Figure 6) and in α′

7.

Claim 4 states that T7 reads 2 for data item a in α7,
and Claim 5 states that T7 reads 1 for data item a in α′

7.
Since α7 is indistinguishable from α′

7 to process p7 this is a
contradiction.

5. DISCUSSION
We proved the PCL theorem: in transactional systems

it is impossible to ensure strict disjoint-access-parallelism
(Parallelism), weak adaptive consistency (Consistency), and
obstruction-freedom (Liveness). To circumvent the impos-
sibility result it is sufficient to weaken just one of the three
requirements. Weakening obstruction-freedom to a blocking
liveness property makes it possible to ensure strict disjoint-
access-parallelism and strong consistency (e.g. strict serial-
izability) by using locks; these are the properties ensured by
TL [14]. Likewise, weakening consistency makes it possible
to ensure strict disjoint-access-parallelism and strong live-
ness. For example, allowing writes to the same data item to
be viewed differently, as in PRAM consistency [28], makes it
possible to trivially ensure strict disjoint-access-parallelism
and wait-freedom, the strongest liveness property, without
any synchronization between processes. In [11], we design a
simple variant of DSTM [25], which satisfies snapshot isola-
tion, obstruction-freedom, and the following weakening of
strict disjoint-access-parallelism: two write operations on
different data items contend on the same base object only if
there is a chain of transactions starting with the transaction
that performs one of these write operations and ending with
the transaction that performs the other, such that every two
consecutive transactions in the chain conflict. The PCL the-
orem shows that the distance between strict disjoint-access-
parallelism and its non-strict forms draws a sharp line in the
design of transactional systems.

Our theorem might at first glance look close to the CAP
theorem [18] which states that it is impossible to ensure con-
sistency, availability, and partition in a distributed system
and weakening at least one of these requirements circum-
vents the impossibility result. In fact, they are different re-
sults. While consistency can be viewed as a safety property,
and availability can be viewed as a liveness property, parti-
tion is not analogous to disjoint-access-parallelism. Specif-
ically, partition tolerance ensures that the system tolerates
arbitrary network partitions. Disjoint-access-parallelism on
the other hand, does not ensure tolerance against failures
but imposes that logical components of a system (transac-
tions or operations) do not contend at low level (i.e. on base
objects) if they do not conflict at high level (i.e. do not
access the same data items).

Our definition of snapshot isolation is incomparable to
strict serializability [30] and opacity [22]. This is because
strict serializability and opacity are defined in terms of ex-
ecution intervals whereas our definition of snapshot isola-
tion is based on active execution intervals. The same holds
for previous definitions of snapshot isolation, both in the
database world [10], and in TM computing [4, 33]. We can
easily remedy this problem by defining snapshot isolation in
terms of execution intervals. Indeed, we did so in [11] and we
were able to prove [11] that no TM implementation satisfies
that version of snapshot isolation, obstruction-freedom, and
strict disjoint-access-parallel. This impossibility result [11]
also holds if a primitive accesses up to k base objects in one
atomic step.

6. ACKNOWLEDGEMENTS
This work has been supported by the European Commis-

sion under the 7th Framework Program through the Trans-
Form (FP7-MC-ITN-238639) project and by the ARISTEIA
Action of the Operational Programme Education and Life-
long Learning which is co-funded by the European Social
Fund (ESF) and National Resources through the GreenVM
project.

7. REFERENCES

[1] Y. Afek, D. Dauber, and D. Touitou. Wait-free made
fast. In Proceedings of ACM STOC ’95.

[2] Y. Afek, M. Merritt, G. Taubenfeld, and D. Touitou.
Disentangling multi-object operations (extended
abstract). In Proceedings of ACM PODC ’97.

[3] M. Ahamad, R. A. Bazzi, R. John, P. Kohli, and
G. Neiger. The power of processor consistency. In
Proceedings of ACM SPAA ’93.

[4] M. S. Ardekani, P. Sutra, and M. Shapiro. The
impossibility of ensuring snapshot isolation in genuine
replicated stms. In WTTM’11.

[5] H. Attiya and E. Dagan. Universal operations: unary
versus binary. In Proceedings of ACM PODC ’96.

[6] H. Attiya and E. Hillel. Built-in coloring for
highly-concurrent doubly-linked lists. In Proceedings of
ACM DISC’06.

[7] H. Attiya and E. Hillel. Single-version stms can be
multi-version permissive. In Proceedings of ICDCN’11.
Springer-Verlag.

[8] H. Attiya, E. Hillel, and A. Milani. Inherent
limitations on disjoint-access parallel implementations
of transactional memory. In Proceedings of ACM
SPAA ’09.

[9] G. Barnes. A method for implementing lock-free
shared-data structures. In Proceedings of ACM SPAA
’93.

[10] H. Berenson, P. Bernstein, J. Gray, J. Melton,
E. O’Neil, and P. O’Neil. A critique of ansi sql
isolation levels. ACM SIGMOD Rec., 24(2):1–10, 1995.

[11] V. Bushkov, D. Dziuma, P. Fatourou, and
R. Guerraoui. Snapshot isolation does not scale either.
Technical Report TR-437, FORTH-ICS, 2013.

[12] V. Bushkov, R. Guerraoui, and M. Kapa lka. On the
liveness of transactional memory. In Proceedings of
ACM PODC ’12.

[13] R. J. Dias, J. Seco, and J. M. Lourenço. Snapshot
isolation anomalies detection in software transactional
memory. In Proceedings of InForum 2010.

[14] D. Dice and N. Shavit. What really makes transactions
faster? In Proceedings of ACM TRANSACT’06.

[15] F. Ellen, P. Fatourou, E. Kosmas, A. Milani, and
C. Travers. Universal constructions that ensure
disjoint-access parallelism and wait-freedom. In
Proceedings of ACM PODC ’12.

[16] A. Fekete, D. Liarokapis, E. O’Neil, P. O’Neil, and
D. Shasha. Making snapshot isolation serializable.
ACM Trans. Database Syst., 30(2), 2005.

[17] K. Fraser and T. Harris. Concurrent programming
without locks. ACM Trans. Comput. Syst., 25(2),
2007.

[18] S. Gilbert and N. Lynch. Brewer’s conjecture and the
feasibility of consistent, available, partition-tolerant
web services. ACM SIGACT News, 33(2), 2002.

[19] J. R. Goodman. Cache consistency and sequential
consistency. Technical report, Technical Report 61,
IEEE Scalable Coherent Interface Working Group,
1989.

[20] J. Gray. A transaction model. In Proceedings of
ICALP ’80. Springer-Verlag.

[21] R. Guerraoui and M. Kapalka. On obstruction-free
transactions. In Proceedings of ACM SPAA ’08.

[22] R. Guerraoui and M. Kapalka. On the correctness of
transactional memory. In Proceedings of ACM PPoPP
’08.

[23] M. Herlihy. A methodology for implementing highly
concurrent data structures. ACM SIGPLAN Not.,
25(3), 1990.

[24] M. Herlihy. Wait-free synchronization. ACM Trans.
Program. Lang. Syst., 13(1), 1991.

[25] M. Herlihy, V. Luchangco, M. Moir, and W. N.
Scherer, III. Software transactional memory for
dynamic-sized data structures. In Proceedings of ACM
PODC’03.

[26] M. Herlihy and J. E. B. Moss. Transactional memory:
Architectural support for lock-free data structures.
SIGARCH Comput. Archit. News, 21(2), 1993.

[27] A. Israeli and L. Rappoport. Disjoint-access-parallel
implementations of strong shared memory primitives.
In Proceedings of ACM PODC ’94.

[28] R. J. Lipton and J. S. Sandberg. Pram: A scalable
shared memory. Technical Report CS-TR-180-88,
Princeton University, 1988.

[29] V. J. Marathe, W. N. Scherer, and M. L. Scott.
Adaptive software transactional memory. In
Proceedings of DISC’05. Springer-Verlag.

[30] C. H. Papadimitriou. The serializability of concurrent
database updates. J. ACM, 26(4), 1979.

[31] D. Perelman, R. Fan, and I. Keidar. On maintaining
multiple versions in stm. In Proceedings of ACM
PODC ’10.

[32] M. Raynal, G. Thia-Kime, and M. Ahamad. From
serializable to causal transactions for collaborative
applications. In Proceedings of EUROMICRO ’97.

[33] T. Riegel, C. Fetzer, and P. Felber. Snapshot isolation
for software transactional memory. In Proceedings of
ACM TRANSACT’06.

[34] M. Saeida Ardekani, P. Sutra, M. Shapiro, and
N. Preguiça. On the scalability of snapshot isolation.
In Euro-Par Parallel Processing. Springer Berlin
Heidelberg, 2013.

[35] N. Shavit and D. Touitou. Software transactional
memory. In Proceedings of ACM PODC ’95.

[36] F. Tabba, M. Moir, J. R. Goodman, A. W. Hay, and
C. Wang. Nztm: nonblocking zero-indirection
transactional memory. In Proceedings of ACM SPAA
’09.

[37] J. Turek, D. Shasha, and S. Prakash. Locking without
blocking: making lock based concurrent data structure
algorithms nonblocking. In Proceedings of ACM PODS
’92.

	Introduction
	Related work
	Preliminaries
	The PCL theorem
	Discussion
	Acknowledgements
	References

